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Abstract. In this work a three-level model of ceramic composites mate-
rials based on a reaction bonded silicon carbide is developed. Numerical
solution is based on the method of multiscale homogenization along with
the finite element method. As a result a series of local problems on the
periodical cells of 3 structure levels are solved. The calculations of stress
concentration tensors in matrixes and weighing materials are presented.
New criteria for matrixes and weighing materials is used to calculate
the strength properties in multiaxis stressed condition. This criteria in-
cludes essential differences (more than an order of magnitude) of ceramic
properties under straining and compression. The model which includes
scale effect of strength of ceramic composite materials is proposal. The
computational research of sequential micro-destruction processes of ce-
ramic composite until complete destruction is done. The results show
that changing of concentration of larger fractions is less significant then
content of smaller fractions in the presence of polydisperse structure in
ceramics.

Keywords: ceramic composites, reaction bonded SiC, microdestruc-
tion, numerical simulation, finite-element method, multiscale homoge-
nization method, strength criterion, stress concentration tensor, scale
strength effect

1 Introduction

Composite materials based on reaction bonded silicon carbide matrix (RBSiC)
and SiC disperse filler are perspective materials for creation of shockproof pro-
tecting systems because of their high strength, stiffness, destruction energy and
relatively low cost. However characteristics of this materials significantly depend
on manufacturing technological processes and on receipt of composite compo-
nents. In addition during the hardening details can give strong shrink, giving
significant residual stresses. This residual stresses can give deformation and even
breakdown in the final product. To select the optimal content of ceramic com-
posite components of SiC system and to calculate strength properties of such
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materials it is demanded to develop special mathematic model, which can fore-
cast strength properties of composite materials including variation of content,
form and disperse filling. This model also should take into account locked-up
stresses, appearing in ceramic composite during agglomeration of particles.

Existing analytical and numerical models of composite materials, armed with
particles, allow to forecast elastic properties with certain precision, however nu-
merical calculation of strength properties is essentially more complex problem,
because it is necessary to build the appropriate model of microcrack emission
in heterogeneous structure. Attempts to build such models using simple concen-
tration of finite-element mesh were not successful, because of dramatic increase
of non-physical singularity effect of calculation. Widely known commercial soft-
ware not always allow to get adequate results of microdestruction modeling of
composite.

Nowadays the great attention is paid to the development of numerical fi-
nite element methods of microstress modeling in composites [4, 18, 21]. One of
the most efficient method for calculation of microstress in composites is the
method of asymptotic averaging (MAA) (or homogenization method) [2, 3, 5, 23,
25], which ensures the high accuracy of calculation of microdestruction in math-
ematical terms. Possible errors of calculation by this method can be related only
to errors of its numerical application as well as to inaccurate specifications of the
component characteristics and the microstructure geometry. In [1, 6–8, 13] algo-
rithms of finite element solution of the so-called local problems in periodicity
cells, which appear when MAA is used, were developed.

This work continues the development cycle [14, 16, 17, 20] of creating models
and numerical methods for modelling microdestruction processes in composite
materials. The new 3-level strength model of ceramic composite is presented.
This model is based on RBSiC and allows to describe the effect of strengthening
of composite material during the changing particles content of SiC including the
production technology of its manufacturing.

2 Microstructure of the reaction bonded silicon carbide
composite

A composite based on reaction bonded silicon carbide consists of a filler and
a silicon carbide matrix. The filler is powder of silicon carbide of the different
fractions. The silicon carbide matrix is synthesized by chemical reaction of liq-
uid silicon, carbon and solid carbon, which is produced during the pyrolysis of
phenol-formaldehyde resin [22, 24]. The filler is, as a rule, fission fragments which
have random character and big difference in fractions. Generally it can be iden-
tified large fractions of the size of 20-100 microns and small fractions of 1-10
microns. Photographies of real microstructure of RBSiC are shown in Fig. 1.

We consider a model of reaction bonded silicon carbide composite material
which has three structure levels [5, 15, 6, 19, 26] (Fig 2). The first level is formed
by the periodicity cells 1 (PC1) consisting of a filler of a coarse fraction and
a matrix 𝑚1. On the second level the matrix 𝑚1 is formed by the periodicity
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a) b)

Fig. 1. The microstructure of the material with the original grains of silicon carbide
of 28 microns.

cells 2 (PC2), each of them consists of a filler of a fine-grained fraction and
a reaction bonded silicon carbide matrix 𝑚2. The matrix 𝑚2 has defects, for
example, high concentration of dissolved, but unreacted component C and Si,
microcracks due to technological stresses and mainly pores. So, we introduce the
third structural level formed by the periodicity cells 3 (PC3). Each periodicity
cell of type 3 is formed by a zero defect silicon carbide matrix 𝑚3 and a defect.

Fig. 2. The three level structure of silicon carbide ceramics.

3 Mathematical formulation of local problems

All structural levels may be considered as independent according to the method
of multiscale homogenization [17]. At first we compute the effective elastic and
strength properties of the third level, then we calculate the effective characteris-
tics of the second level, considering the composite matrix 𝑚2 as a homogeneous

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

279



material with effective characteristics of the third level, and then we calculate
the characteristics of the first level.

Consider the solution of local problems for the periodicity cell of the second
level having the volume 𝑉𝜉. It includes the matrix 𝑚2 and fine-disperse filler.
We believe that the PC2 has three-axial symmetry, therefore instead of a full
volume of PC2 𝑉𝜉 we can consider its 1/8th part of volume 𝑉𝜉. This volume 𝑉𝜉
consist of the 𝑁 components: 𝑁 − 1 pieces of fine-disperse particulate of filler of
the volume 𝑉𝜉𝛼, 𝛼 = 1...𝑁 − 1, and binding matrix 𝑚2 (𝛼 = 𝑁). For calculating
microstresses in PC2 by homogenization method [15, 11, 12] we formulate a series
of the so-called local problems 𝐿𝑝𝑞 of the elasticity theory on the 1/8th part of
the periodicity cell

⎧
⎪⎪⎨
⎪⎪⎩

𝜎𝑖𝑗(𝑝𝑞)/𝑗 = 0, 𝑉𝜉
𝜎𝑖𝑗(𝑝𝑞) = 𝐶𝑖𝑗𝑘𝑙(𝜉𝑠, 𝑧)(𝜀𝑘𝑙(𝑝𝑞) − 𝛼𝑘𝑙(𝜃 − 𝜃*)), 𝑉𝜉 ∪𝛴′

𝑠 ∪𝛴𝑠
𝜀𝑖𝑗(𝑝𝑞) = 1

2

(︀
𝑈𝑖(𝑝𝑞)/𝑗 + 𝑈𝑗(𝑝𝑞)/𝑖

)︀
, 𝑉𝜉,

[𝑈𝑖(𝑝𝑞)] = 0, [𝜎𝑖𝑗(𝑝𝑞)]𝑛𝑗 = 0, �̃�𝜉𝛼𝑁 ,

(1)

where 𝑝 and 𝑞 are the indexes of the local problems changing from 1 to 3 (there
are a total of nine different problems 𝐿𝑝𝑞); 𝑈𝑖(𝑝𝑞) (𝜉𝑠) are the components of the
displacement vectors (the unknown functions) in the problem 𝐿𝑝𝑞; 𝜎𝑖𝑗(𝑝𝑞), 𝜀𝑖𝑗(𝑝𝑞)
are the components of the stress and deformation tensors in 𝑉𝜉; 𝜉𝑠 are the local
Cartesian coordinates in the 1/8th PC; /𝑖 = 𝜕/𝜕𝜉𝑖 are the derivatives of the local

coordinates;
[︀
𝑈𝑖(𝑝𝑞)

]︀
are the jumps of functions at the interface �̃�𝜉𝛼𝑁 of the cell

components; 𝐶𝑖𝑗𝑘𝑙(𝜉𝑠, 𝑧) are the components of the tensors of the elasticity mod-
uli of the composite structural components of PC2 (they are described by the
dependencies of the coordinates 𝜉𝑠); 𝑧 is the parameter of the component dam-
ageability; 𝛼𝑘𝑙 (𝜃) are the components of the tensor of thermal expansion, which
depend on the temperature; 𝜃 is the current temperature; 𝜃*(𝜉𝑠) is the sintering
temperature of the ceramic particles, depending on the local coordinates.

System (1) is supplemented by the special boundary conditions at the surfaces
𝛴′
𝑠 = {𝜉𝑠 = 0.5} of the 1/8th part of PC

𝑎𝑡 𝛴
′
𝑖 : 𝑈𝑖(𝑝𝑝) = 1/2𝜀𝑝𝑝𝛿𝑖𝑝, 𝑆𝑗(𝑝𝑝) = 0, 𝑆𝑘(𝑝𝑝) = 0, 𝑖 ̸= 𝑗 ̸= 𝑘 ̸= 𝑖,

𝑎𝑡 𝛴
′
𝑗 : 𝑈𝑖(𝑝𝑞) = (1/4)𝜀𝑖𝑝𝛿𝑖𝑝, 𝑆𝑗(𝑝𝑞) = 0, 𝑈𝑘(𝑝𝑞) = 0, 𝑖, 𝑗 = {𝑝, 𝑞},

𝑎𝑡 𝛴
′
𝑘 : 𝑆𝑖(𝑝𝑞) = 0, 𝑆𝑗(𝑝𝑞) = 0, 𝑈𝑘(𝑝𝑞) = 0, 𝑖 ̸= 𝑗 ̸= 𝑘 ̸= 𝑖,

(2)

where 𝜀𝑝𝑞 are the components of the averaged deformation tensor for PC, 𝑆𝑖(𝑝𝑞) ≡
𝜎𝑖𝑙(𝑝𝑞)𝑛𝑙 are the vectors of forces.

The boundary conditions at the symmetry planes 𝛴𝑠 = {𝜉𝑠 = 0} are similar
to relations (2), where we assume 𝜀𝑝𝑞 = 0.

4 Effective elastic characteristics of the periodicity cells
of the second level structure

Using the numerical solution of problems 𝐿𝑝𝑞 (1), (2) we find the fields of dis-
placements 𝑈𝑖(𝑝𝑞) and stresses �̄�𝑖𝑗(𝑝𝑞)(𝜉𝑠) in the PC2 at given values of average
deformations 𝜀𝑘𝑙.
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These fields are used to find the average values of stress:

�̄�𝑖𝑗 =< 𝜎𝑖𝑗 >=

3∑︁

𝑝,𝑞

�̄�𝑖𝑗(𝑝𝑞),

where

�̄�𝑖𝑗(𝑝𝑞) =
⟨︀
𝜎𝑖𝑗(𝑝𝑞)

⟩︀
=

∫︁

𝑉𝜉

𝜎𝑖𝑗(𝑝𝑞)(𝜉𝑠)𝑑𝑉𝜉. (3)

Then the components of the tensor of effective elasticity moduli of the composite
are calculated by the formulas

𝐶𝑖𝑗𝑝𝑞 =
�̄�𝑖𝑗(𝑝𝑞)

𝜀𝑝𝑞
, (4)

where there is no summation over 𝑝 and 𝑞. After that we calculate the effective
tensor of elastic compliances �̄�𝑖𝑗𝑝𝑞, that is inverse to 𝐶𝑖𝑗𝑝𝑞, and technical elastic
constants of the composite, such as effective Young moduli 𝐸𝛼 = 1/�̄�𝛼𝛼𝛼𝛼,
effective Poisson constants 𝑣𝛼𝛽 = −�̄�𝛼𝛼𝛽𝛽𝐸𝛼, and effective shear moduli 𝐺𝛼𝛽 =
𝐶𝛼𝛽𝛼𝛽 .

The components of the tensor of stress concentrations 𝐵
(𝛼)
𝑖𝑗𝑘𝑙 connect mi-

crostresses 𝜎
(𝛼)
𝑖𝑗 (𝜉𝑠) =

3∑︀
𝑝,𝑞
𝜎𝑖𝑗(𝑝𝑞)(𝜉𝑠) in the matrix and the filler (the fine disperse

particles SiC) with average stresses �̄�𝑘𝑙 in the PC2 by the formulas

𝜎
(𝛼)
𝑖𝑗 (𝜉𝑠) = 𝐵

(𝛼)
𝑖𝑗𝑘𝑙(𝜉𝑠)�̄�𝑘𝑙, 𝜉𝑠 ∈ 𝑉𝜉𝛼, 𝛼 = 1...𝑁. (5)

The components 𝐵
(𝛼)
𝑖𝑗𝑘𝑙 in the matrix and the filler are calculated by the formulas

𝐵
(𝛼)
𝑖𝑗𝑘𝑙(𝜉𝑠) = 𝜎𝑖𝑗(𝑝𝑞)(𝜉𝑠)�̄�𝑝𝑞𝑘𝑙, 𝜉𝑠 ∈ 𝑉𝜉𝛼, 𝛼 = 1...𝑁. (6)

5 Model of the strength properties of the components

The strength criterion of ceramic materials should take into account the signif-
icant differences in their properties in tension and compression. Therefore, we
introduce a failure criterion of isotropic matrix 𝑚2 and filler particles [19] based
on Pisarenko-Lebedev criterion:

𝑧 =
𝜎
(𝛼)2
𝑢

3𝜎
(𝛼)2
𝑆 (1 +𝐵(𝛼)𝑉 (𝜎

(𝛼)
− ))

, (7)

where 𝜎
(𝛼)
− = 1

2 (
⃒⃒
𝜎(𝛼)

⃒⃒
− 𝜎(𝛼)), 𝜎(𝛼) = 𝜎

(𝛼)
11 + 𝜎

(𝛼)
22 + 𝜎

(𝛼)
33 are the invariants of

the stress tensor in the matrix and fillers, 𝜎
(𝛼)
𝑢 are stress intensity [10], 𝐵(𝛼) =(︂

𝜎
(𝛼)2
𝐶

3𝜎
(𝛼)2
𝑆

− 1

)︂
1

𝜎
(𝛼)
𝐶

is the constant, 𝜎
(𝛼)
𝐶 , 𝜎

(𝛼)
𝑇 , 𝜎

(𝛼)
𝑆 are the ultimate compression
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strength, ultimate tensile strength and ultimate shear strength. For ultimate
strengths the following relationships should be taken into account: 𝜎𝐶 >

√
3𝜎𝑆 ,

𝜎𝐶 > 0, 𝜎𝑆 > 0. In (7) a continuous positive function of the 1st invariant 𝑉 (𝜎
(𝛼)
− )

is introduced

𝑉 (𝜎
(𝛼)
− ) =

⎧
⎨
⎩

0,
−𝜎(𝛼)

𝜎
(𝛼)
𝐶 ,

,

𝜎(𝛼) > 0,

−𝜎(𝛼)
𝐶 < 𝜎(𝛼) < 0,

𝜎(𝛼) < −𝜎(𝛼)
𝐶 .

(8)

The failure criterion 𝑧, which is calculated by the formula (7), has the value 0 if

the stress is absent in the composite. It is ranged within 0 < 𝑧(𝜎
(𝛼)
𝑖𝑗 ) ≤ 1 in the

loaded condition if there is not damage. And it takes the values 𝑧(𝜎
(𝛼)
𝑖𝑗 (𝜉𝑠)) ≥ 1,

if the fracture initiation occurs at some point 𝜉𝑠. If the failure criterion reaches
the value 𝑧 = 1, then we obtain strength surface of a component

𝜎(𝛼)2
𝑢 = 3𝜎

(𝛼)2
𝑆 (1 +𝐵(𝛼)𝑉 (𝜎

(𝛼)
− )). (9)

In the tensile area 𝜎(𝛼) > 0 the strength surface is the von Mises ellipsoid

𝜎
(𝛼)2
𝑢 = 3𝜎

(𝛼)2
𝑆 . In the compression area −𝜎(𝛼)

𝐶 < 𝜎(𝛼) < 0 the tensile strength

is increased. And in the ”supercompression” area 𝜎(𝛼) < −𝜎(𝛼)
𝐶 the strength

surface again is the von Mises ellipsoid, but with the modified tensile strength:

𝜎
(𝛼)2
𝑢 = 𝜎

(𝛼)2
𝐶 .

If the condition 𝑧(𝜎
(𝛼)
𝑖𝑗 (𝜉𝑠)) ≥ 1 is satisfied at the point 𝜉𝑠 or in a certain

area PC2, there is no complete destruction. This is partial destruction of PC2,
hereinafter called microdestruction. Introduce the dependence of the components
of the elastic modulus of the failure criterion for accounting microdestruction of
components in the model:

𝐶𝑖𝑗𝑘𝑙(𝜉𝑠, 𝑧) = (1 − ℎ(𝑧(𝜎
(𝛼)
𝑖𝑗 (𝜉𝑠) − 1))𝐶

(𝛼)
𝑖𝑗𝑘𝑙, 𝜉𝑠 ∈ 𝑉𝜉𝛼, 𝛼 = 1...𝑁, (10)

where 𝐶
(𝛼)
𝑖𝑗𝑘𝑙 are the components of the tensor of elasticity moduli of the com-

posite components (they are constants). According to the formula (10) if mi-
crodestruction occurs at the point 𝜉𝑠, elasticity modulus is equal to zero at this
point.

To calculate the strength of the composite as a whole, we need to calculate the
limit values of average stresses �̄�𝑘𝑙. At this stresses an initial microdestruction
occurs at least in one of its components (fillers or matrix) in a point 𝜉*𝑠 ∈ 𝑉𝜉 at a
time 𝑡*, and then complete destruction occurs. For the calculation of limit values
of stresses in experimental research usually implement a process of linear load, in
which the average stresses are proportional the time: �̄�𝑘𝑙(𝑡) = �̃�𝑘𝑙𝑡, where �̃�𝑘𝑙 are
the components of the stress gradient tensor. Substituting (5) in the strength
criterion of the matrix or fillers (7) we obtain the initial failure condition of
composite

max
𝜉𝑠∈𝑉𝜉

{𝑧(𝐵(𝛼)
𝑙𝑛𝑘𝑚(𝜉𝑠)�̄�𝑘𝑚(𝑡*))} = 1, (11)

where 𝜉𝑠 = 𝜉*𝑠 are coordinates of the point in the PC2, 𝑡* is the time point at
which the condition (11) is executed first, �̄�𝑘𝑚(𝑡*) are limit stresses.

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

282



After appearance of the initial failure elastic moduli are changed in the de-
stroyed areas of the matrix and/or fillers in accordance with the model described
above. With further increase in average stress values �̄�𝑘𝑚(𝑡) failure condition (11)
is satisfied in a large number of points of PC2, that is, there is the process of
propagation of microdestruction. Some area 𝑉𝜉

*(𝑡) of the partial destruction of
the composite is formed in the periodicity cell 2.

For modeling of effective elastic and strength properties of PC3 and PC1
is used a similar method. The stresses occur due to the thermal strain 𝜀0𝑘𝑙 =
𝛼𝑘𝑙 (𝜃 − 𝜃*) of the ceramic composite during cooling after the laser sintering.

6 Details of numerical simulation

The local tasks (1), (2) are solved by a finite element method which is described in
[16, 17, 20]. We use 4-node tetrahedral finite elements, generated by open-source
grid generators. The meshes contain different numbers of nodes (from 104 to
106 ). Meshes with a large number of finite elements are used in the calcula-
tion of effective elastic moduli, when micro destruction is not happened. After
microdestruction is beginning, the local tasks become nonlinear, because the
elastic modulus of the matrix or fillers is changed, so we use iterative method to
solve it. The number of iterations to achieve complete destruction is about 103,
so for these tasks we use meshes with a smaller number of elements to reduce
the time of the numerical experiments. A numerical solution of large systems of
linear algebraic equations, preprocessing and postprocessing, including 3D visu-
alization and animation, was implemented in the software package, developed
by the scientific and educational center ”Supercomputer Engineering Simulation
and Development of Software Packages” of the Bauman Moscow State Technical
University.

7 Results

7.1 Numerical simulation of microdestruction of ceramics for
periodicity cell of the third level

Consider the numerical simulation of microdestruction of ceramics for periodicity
cell of the third level with the following properties of SiC matrix 𝑚3: elastic
modulus 𝐸𝑚 = 320 GPa, Poisson’s ratio 𝜈𝑚 = 0.35, ultimate strength 𝜎0

𝑇𝑚 =
0, 07 GPa; 𝜎0

𝐶𝑚 = 4 GPa; 𝜎0
𝑆𝑚 = 0, 06 GPa. We suppose that the pores have

a spherical shape. Fig. 3 shows some of the results of microstresses calculations

in the PC3. Fig. 3a) shows the distribution of component 𝐵
(𝛼)
1111 of the stress

concentration tensor in the PC3, where concentration of pore before the start
failure is equal to 20%. Fig. 3b) shows the distribution of parameter of damage 𝑧
in the PC3 under tension in the direction of 𝑂𝑥1.

Fig. 4 shows the process of microdestruction in the PC3 (matrix with defect)
under compression. The failure of the periodicity cell starts on the surface of the
pore (defect) and at first is spread in a direction perpendicular to load direction,
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a) b)

Fig. 3. a) Distribution of the components 𝐵
(𝛼)
1111 of the stress concentration tensor in

the PC3 (before the start of failure); b) distribution of the parameter of damage 𝑧 in
the PC3 under tension in the direction of 𝑂𝑥1.

and then the failure zone is turned round and spread in the direction of load
action to complete destruction of PC3.

a) b) c)

Fig. 4. The process of microdestruction of PC3 (matrix with defect) depending on
compressive stress.

7.2 Numerical simulation of microdestruction of ceramics for
periodicity cell of the second level

Fig. 5 shows the results of numerical solution of the process of microdestruction
in the periodicity cell of the second level under compression. These results are
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calculated taking into account initial technological stresses, which occurs from
the application of laser sintering.

a) b) c)

Fig. 5. The process of microdestruction of PC2 under compression taking into account
initial technological stresses.

Figure 6 shows the tensile strength of ceramic material depending on con-
centration of coarse-grained fractions of SiC particle taking into account initial
technological stresses.

Fig. 6. The tensile strength of ceramic material depending on concentration coarse-
grained fractions of SiC particle taking into account initial technological stresses.

8 Conclusions

A mathematical model of microdestruction of reaction bonded silicon carbide
has been developed. This model is based on the homogenization method and the
finite element method for solution of local problems on periodicity cells. The new
strength criterion of ceramic materials has been applied. The comparison with
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experimental data has shown that this criterion is applicable to solve the problem
of microdestruction of the reaction-bonded silicon carbide. It is demonstrated
that the developed model allows to simulate the processes of microdestruction
of the ceramic composite and can be used as a tool for research and design of
new materials with specified properties.
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