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Abstract. Simulations of the resonant ions stochastic dynamics in the
polychromatic optical field are presented. We prove the possibility of
long-term four- and nine-particle ionic Coulomb planar clusters (crystals)
by all-optical method. An estimate of lifetime of a single particle in an
optical lattice is also carried out. Our analysis is based on the numerical
solution of the stochastic differential equations with multiplicative noise
using MVS-100K and MVS-10P supercomputers.
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1 Introduction

Electromagnetic ion traps have many important applications in quantum infor-
matics, high resolution spectroscopy of ions, metrology, physics of cold collisions
and many-body physics [1–4]. A new and interesting trend in this field of research
is the so-called all-optical confinement of ions, i.e. optical ion trapping without
applying additional radiofrequency or electrostatic and magnetic fields [5–9]. In
particular, it is assumed that development of all-optical methods of ion trapping
can be useful for creation of ionic clock with better characteristics [10].

In our previous papers [7–9] the solution of all-optical ion trapping problem
was proposed, based on using the rectified gradient forces that act on ions in
the polychromatic field [11–15]. We demonstrated, by the numerical simulations
of stochastic ion motion in the 3D polychromatic optical super-lattice (OSL),
the long-term all-optical trapping of two- and three-ion ytterbium clusters in
OSL. In the present work, we carried out numerical simulations of dynamics of
four- and nine mercury ions in OSL and demonstrated the long-term all-optical
trapping of ordered ion array (planar Coulomb cluster) in OSL. Note that a
large array of trapped cold ions has attracted special interest from researchers
because of its very useful applications [1, 3]. Now there is a broader interest in the
form of arrays of ion traps in the context of quantum computings [4]. Stochastic
dynamics of a single particle in an optical lattice is also considered.
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The mathematical model is a system of stochastic differential equations
(SDEs) for positions and velocities of each ionic particle. We take into account
four acting forces in the model: the trapping, friction, Coulomb, and stochastic
forces. The last force arises due to quantum fluctuations of the optical forces [11].
The Monte Carlo method with parallelization among computing cores is used to
evaluate different average characteristics of this physical problem.

2 Equations of Stochastic Motion

Our study is based on the system of stochastic differential equations with mul-
tiplicative noise which can be written in the following dimensionless form

𝑑r𝛼(𝑡, 𝜔) = 𝜁v𝛼(𝑡, 𝜔)𝑑𝑡, 𝑡 ∈ T = [0, 𝑡𝑓 ] , (1)

𝑑v𝛼(𝑡, 𝜔) = F𝛼(r1, . . . , r𝑁 ,v𝛼)𝑑𝑡+
√︀

2𝐷(v𝛼) ∘ 𝑑W𝛼(𝑡, 𝜔) , (2)

F𝛼(r1, . . . , r𝑁 ,v𝛼) ≡ F𝑡𝑟𝛼 (r𝛼,v𝛼) + F𝑓𝑟𝛼 (r𝛼,v𝛼) + F𝐶𝛼 (r1, . . . , r𝑁 ) , (3)

r𝛼(0, 𝜔) = r0𝛼(𝜔), v𝛼(0, 𝜔) = v0
𝛼(𝜔), 𝛼 = 1, . . . , 𝑁 , (4)

where r𝛼, v𝛼 ∈ R3 are the position r𝛼 and velocity v𝛼 of the center-of-mass
of the 𝛼-th ion; r𝛼 = (𝑟𝛼𝑥, 𝑟𝛼𝑦, 𝑟𝛼𝑧)

T, v𝛼 = (𝑣𝛼𝑥, 𝑣𝛼𝑦, 𝑣𝛼𝑧)
T; 𝑡 is time; 𝑁 is

the number of ions; F𝑡𝑟𝛼 , F𝑓𝑟𝛼 , F𝐶𝛼 are the trapping, friction and Coulomb forces
acting on the 𝛼-th ion, respectively. The symbol ∘ means that this SDEs are
interpreted in the Stratonovich sense [16].

W𝛼(𝑡, 𝜔) is a standard three-dimensional vector Wiener process [17]. Re-
call some of its properties: 1) W𝛼(0, 𝜔) ≡ 0; 2) for fixed 𝜔 ∈ 𝛺 the vector-
function W𝛼(𝑡, 𝜔) is continuous on T; 3) for ∀𝑚 > 1 and ∀{𝑡𝑘} ∈ T (𝑘 =
1, . . . ,𝑚) such that 0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑚, the random vectors W𝛼(𝑡1, 𝜔),
W𝛼(𝑡2, 𝜔) −W𝛼(𝑡1, 𝜔), . . . ,W𝛼(𝑡𝑚, 𝜔) −W𝛼(𝑡𝑚−1, 𝜔) are independent; 4) for
∀𝑡1, 𝑡2 ∈ T, (𝑡1 < 𝑡2), the random vector W𝛼(𝑡2, 𝜔) −W𝛼(𝑡1, 𝜔) has a Gaussian
distribution with mean 0 and dispersion matrix (𝑡2 − 𝑡1)𝐼3, where 𝐼3 is an unit
matrix of the 3-th order. Notice also that for ∀𝛼1, 𝛼2, (1 6 𝛼1 < 𝛼2 6 𝑁), the
random vectors W𝛼1

(𝑡, 𝜔) and W𝛼2
(𝑡, 𝜔) are independent.

The argument 𝜔 ∈ 𝛺 emphasizes that r𝛼, v𝛼, and W𝛼 are the random vector
functions in corresponding probability space (𝛺,F,P). Below the letter 𝜔 will be
omitted.

We use the dimensionless variables measuring the positions in units of 𝐿 =
𝐿𝑥, time 𝑡 in units of 𝜔−1

𝑅 (where 𝜔𝑅 = ~𝑘2/𝑚 is the photon recoil frequency,
𝑚 is the ionic mass), 𝐿𝑖 is a period of the OSL cell along 𝑖-axis (𝑖 = 𝑥, 𝑦, 𝑧),
𝑘 is the wave number, and velocities in units of 𝑠0 =

√︀
𝑇𝐷/𝑚 where 𝑇𝐷 =

~𝛾′/2 is the characteristic temperature determining the so-called Doppler cooling
temperature limit [11]. The dimensional time 𝑡 = 𝑡/𝜔𝑅 is also calculated for
describing the simulation results; 𝜁 = 𝑠0/𝜔𝑅𝐿≪ 1 is an analog of the Knudsen
number (a small parameter) for the problem under consideration.
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Components of the trapping force vector F𝑡𝑟𝛼 = (𝐹 𝑡𝑟𝛼𝑥, 𝐹
𝑡𝑟
𝛼𝑦, 𝐹

𝑡𝑟
𝛼𝑧)

T are [7]

𝐹 𝑡𝑟𝛼𝑖 = −𝜁 𝜕𝑈𝑖(𝑟𝛼𝑖, 𝑣𝛼𝑖)
𝜕𝑟𝛼𝑖

, 𝑖 = 𝑥, 𝑦, 𝑧 , (5)

𝑈𝑖(𝑟, 𝑣) = −cos(2𝜋𝑝𝑖𝑟)

𝑝𝑖

(︂
̂︁𝑊0ℒ

(︁ 𝑣

𝑣𝑐0

)︁
+̂︁𝑊1ℒ

(︁ 𝑣

𝑣𝑐1

)︁)︂
, (6)

where ̂︁𝑊0 = 4𝑎1𝐺𝐿
⧸︀

9𝜆(𝑏+ 1)(4𝜒+ 3); ̂︁𝑊1 = 2𝜒̂︁𝑊0

⧸︀
(4𝜒+ 3); 𝑝𝑖 = 𝐿/𝐿𝑖;

ℒ(𝑢) = 1/(1 + 𝑢2) is the Lorentzian function; 𝑣2𝑐0 = (𝛾/6𝜔𝑅)𝜒2 and 𝑣2𝑐1 =
(𝛾/6𝜔𝑅)(4𝜒+3)2 are the squares of the so-called capture velocities. The physical
constants 𝑎1, 𝐺, 𝑏, 𝜒, 𝑝𝑖, 𝑎1, 𝛾, 𝜆 determine various ion and force characteristics
of the three-dimensional OSL; it is supposed that 𝐿 ≫ 𝜆, where 𝜆 is the light
wavelength.

Components of the friction force vector F𝑡𝑟𝛼 are defined as

𝐹 𝑓𝑟𝛼𝑖 =

(︂
−𝜅𝑖(𝑟𝛼𝑖, 𝑣𝛼𝑖) +

𝜕𝐷(𝑣𝛼𝑖)

2𝑣𝛼𝑖𝜕𝑣𝛼𝑖

)︂
𝑣𝛼𝑖, 𝑖 = 𝑥, 𝑦, 𝑧 , (7)

where
𝜅𝑖(𝑟, 𝑣) = 𝜅(𝑣)[𝑏+ cos(2𝜋𝑝𝑖𝑟)]/(1 + 𝑏) (8)

are the friction coefficients, 𝜅(𝑣) = 𝜅0ℒ(𝑣/𝑣𝑐0) + 𝜅1ℒ(𝑣/𝑣𝑐1), 𝜅0 = 2𝑎1𝐺
⧸︀

3𝜒(4𝜒+ 3), 𝜅1 = [2𝜒2/(4𝜒+ 3)2]𝜅0.
The velocity diffusion coefficient can be written in the form [15]

𝐷(𝑣) = 𝐷𝑠 +𝐷𝑅(𝑣) , (9)

where 𝐷𝑠 = 2𝜒(𝜒 + 1)/3(4𝜒 + 3), 𝐷𝑅(𝑣) = 𝐷0ℒ(𝑣/𝑣𝑐0) + 𝐷1ℒ(𝑣/𝑣𝑐1), 𝐷0 =
(2𝐺2/9𝜒)(16𝜒3 + 40𝜒2 + 33𝜒+ 9)/(4𝜒+ 3)3, 𝐷1 = (16𝐺2/9)(𝜒+ 1)𝜒/(4𝜒+ 3)3.
An amplitude of the noise

√︀
2𝐷(v𝛼) in Eq. (2) is calculated on the basis of

diffusion coefficients (9).
The long-range Coulombic interaction F𝐶𝛼 can be expressed via the dimen-

sionless Coulomb energy 𝑈𝐶(𝑟) = 𝑒2/(4𝜋𝜀0𝑟𝐿𝑇𝐷) of the ions separated by the
distance 𝑟 in the following way

F𝐶𝛼 (r1, . . . , r𝑁 ) = −𝜁
𝑁∑︁

𝛼′=1
𝛼′ ̸=𝛼

𝜕𝑈𝐶(|r𝛼 − r𝛼′ |)
𝜕r𝛼

. (10)

Pay attention, the phases of optical fields forming OSL are set so that friction
coefficients (8) reach maximum at the center of OSL cell (unlike the case of our
previous articles [7, 8]).

3 Numerical Algorithm

For solution of Eqs. (1)–(4), we developed the numerical algorithm which is
a combination of two other computational approaches: 1) the velocity Verlet
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method [18] for integrating Newton’s ordinary differential equations of particle
motion, and 2) the numerical scheme (so called an “integrator”) published by
R. Mannella et al. [19–21] for solution of the Langevin stochastic equation. The
integrator of Mannella has the following advantages: a) ability to reproduce the
equilibrium behaviour and properties of dynamical system with a high accuracy;
b) ability to well reproduce long-time dynamics of phenomena, such as large rare
fluctuations [20], and hence correctly to describe decay of metastable states.

Recall the velocity form of the Verlet algorithm:

r𝑛+1
𝛼 = r𝑛𝛼 + v𝑛𝛼ℎ+ F𝑛𝛼

ℎ2

2
+ O(ℎ3),

F𝑛+1
𝛼 = F𝛼({r𝑛+1}), 𝛼 = 1, . . . , 𝑁,

v𝑛+1
𝛼 = v𝑛𝛼 + (F𝑛+1

𝛼 + F𝑛𝛼)
ℎ

2
+ O(ℎ2) .

However our numerical algorithm for solving stochastic system of differential
equations (1)–(4) turns out considerably more complicated:

r𝑛+1
𝛼 = r𝑛𝛼 + 𝜁v𝑛𝛼ℎ+ 𝜁F𝛼(r𝑛,v𝑛)

ℎ2

2
+ 𝜁g𝑛𝛼Z

𝑛
2,𝛼 +

𝜁S1Z
𝑛
3,𝛼 + O(ℎ5/2), 𝛼 = 1, . . . , 𝑁 , (11)

v𝑛+1
𝛼 = v𝑛𝛼 +

[︀
F𝛼(r𝑛,v𝑛) + F𝛼(r𝑛+1,v𝑛)

]︀ ℎ
2

+ g𝑛𝛼Z
𝑛
1,𝛼 + S2Z

𝑛
2,𝛼 +

S1(Z𝑛1,𝛼)2 + S3Z
𝑛
1,𝛼ℎ+ S4(Z𝑛1,𝛼)3 + O(ℎ2) , (12)

where

r𝑛 = {r𝑛𝛼}; v𝑛 = {v𝑛𝛼}; g𝑛𝛼 =
√︀

2𝐷(v𝑛𝛼); S1 = g𝑛𝛼(g′
𝛼)𝑛/2;

S2 = −𝜅(r𝑛,v𝑛)g𝑛𝛼 + f̂𝛼g
𝑛
𝛼 − (g′

𝛼)𝑛F𝛼(r𝑛,v𝑛);

S3 = (g′
𝛼)𝑛F𝛼(r𝑛,v𝑛); S4 = {(g′′

𝛼)𝑛(g2
𝛼)𝑛 + [(g′

𝛼)2]𝑛g𝑛𝛼}/6;

with [20]

Z1,𝛼(ℎ) =

∫︁ ℎ

0

𝑑W(𝑡) = Y1,𝛼ℎ
1/2;

Z2,𝛼(ℎ) =

∫︁ ℎ

0

Z1,𝛼(𝑡) 𝑑𝑡 =

[︂
Y1,𝛼 + Y2,𝛼

1√
3

]︂
ℎ3/2

2
;

Z3,𝛼(ℎ) =

∫︁ ℎ

0

Z2
1,𝛼(𝑡) 𝑑𝑡 ≈

[︂(︀
Y1,𝛼

)︀2
+ Y3,𝛼 +

1

2

]︂
ℎ2

3
.

Y1,𝛼,Y2,𝛼,Y3,𝛼 ∈ R3 are three uncorrelated random vectors with normal dis-

tribution 𝑁(0, 1) (mean zero and standard deviation one) [19]; f̂𝛼 is a given
function of physical parameters; ℎ is a time step. By definition, we assume here
that for any vectors A, B the record AB gives the vector (𝐴𝑥𝐵𝑥, 𝐴𝑦𝐵𝑦, 𝐴𝑧𝐵𝑧)

T,

and
√︀

2𝐷(v𝑛𝛼) ≡
(︁√︀

2𝐷(𝑣𝑛𝛼𝑥),
√︁

2𝐷(𝑣𝑛𝛼𝑦),
√︀

2𝐷(𝑣𝑛𝛼𝑧)
)︁T

.
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The Monte Carlo method is used to evaluate both the average of the solution
and the average for different functions from the solution (the size of the cluster,
the cluster lifetime, kinetic energy, temperature, etc.). Due to the slow conver-
gence of the Monte Carlo method, the volume of independent samples can be
very large. We set different values (from 214 to 216 ) in different variants. The
number of time steps reached ∼ 6 · 107 . Use was made of 128–256 processing
cores and the run time reached 12 hours. We used the uniform random number
generator with period length ≈ 1038 from [22, 23].

To implement parallel computing the DVM-system developed in Keldysh In-
stitute of Applied Mathematics of RAS was used. The calculations were carried
out using the MVS-100K and MVS-10P supercomputers at the Joint Supercom-
puter Center of RAS.

Besides, we tested the algorithm by comparing our simulation result (for two-
ion cluster [7]) with the analytical predictions of so-called renormalized model of
the metastable (cluster) state of ions in the dissipative optical superlattice [9]. As
a result, the very good agreement between the results of a numerical simulations
and analytical results of renormalized model was obtained.

4 Results of Computation

In all computations we set 𝛾 = 1.46 · 108 s−1, 𝑚 = 199 amu, 𝜆 = 194 nm,
𝜒 = 0.3, 𝐺 = 2.2, 𝑏 = 1.2, 𝑣2𝑐0 = 6.542, 𝑣2𝑐1 = 358.1, 𝑎21 = 0.2, 𝜁 = 2.63 · 10−3,
𝜔𝑅 = 3.35 · 105 s−1, 𝑝𝑥 = 𝑝𝑦 = 1, 𝑝𝑧 = 0.5 (i.e. the OSL cell is a cuboid). The
number of ions 𝑁 takes values 1, 4, and 9.

In Fig. 1 a general view of the computational domain and initial positions
of particles at N=9 is shown. Fig. 2 also shows initial position of ions in more

-1.5 -1 -0.5  0  0.5  1  1.5 -1.5
-1

-0.5
 0

 0.5
 1

 1.5

-0.5

 0

 0.5

Z-axis

X-axis

Y-axis

Z-axis

Fig. 1. General view of the computational domain in dimensionless coordinates for
the case of nine particles (N=9). Bold points are the initial positions of ions in the
XOY-plane at Z=0. Here there are nine OSL cells in all domain.
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details.
The example of nine-ion Coulomb cluster formation is shown in Fig. 3. Here

the positions of ions (averaged over 214 independent samples) in 0.8 seconds for
two values of the parameter 𝐿 is presented. Average coordinates of the central
ion coincide with its initial values.

Fig. 4 shows a behavior of a particle at one partial solution of the basic
equations (without averagings).
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 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Y-
ax

is

X-axis
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-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Y-
ax

is

X-axis

Fig. 2. The initial positions of the ions
correspond to the local minimum values
of the potential functions, Eq. (6), for
trapping forces.

Fig. 3. Formation of the nine-ions
metastable Coulomb clusters: projec-
tions of the mean ions positions on the
plane XOY (the bold points for 𝐿 = 0.5
mm and the circles for 𝐿 = 0.6 mm).

1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

X-axis

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Y-
ax

is

Fig. 4. An example of sample stochastic motion of a single particle in any OSL cell. The
point 1 is the initial position, the initial velocity is zero. The particle tends to a point
(0, 0, 0) where there is a minimum of potential, and then it makes chaotic fluctuations
there.

In Fig. 5 dependence of the clusters lifetime and a single particle on parameter
𝐿 is shown. The present result, i.e. almost linear dependence of ln 𝜏 on 𝐿, are
in a very good agreement with theories of the metastabe states of stochastic
dynamical system [26]. For the case of small noises they predict the exponential
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dependence of the metastable state lifetime on the relative height of the energetic
barrier 𝛥𝑊/𝑇 (Arrhenius law). Indeed, the 𝛥𝑊 ∼ 𝐿 (at fixed parameters 𝐺
and 𝜒), therefore ln 𝜏 ∼ 𝐴+𝐵𝐿, where 𝐴 and 𝐵 are almost independent on 𝐿 at
fixed 𝐺 and 𝜒. The small deviation from the linear relation probably is caused
by influence of a Coulomb interaction of ions on height of an energy barrier.

The relative root-mean-square interionic separation 𝛿 is defined as [24, 25]

𝛿 =
2

𝑁(𝑁 − 1)

∑︁

𝑖<𝑗

√︁
⟨𝑟2𝑖𝑗⟩ − ⟨𝑟𝑖𝑗⟩2

⟨𝑟𝑖𝑗⟩
, (13)

where 𝑟𝑖𝑗 is a distance between ions 𝑖 and 𝑗. And Coulomb coupling parameter
𝛤 is defined as [3]

𝛤 =
𝑒2

4𝜋𝜀0𝑘𝐵𝐿𝑇
, (14)

where 𝑇 is kinetic temperature, 𝐿 is an OSL period.
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Fig. 5. The lifetime of nine-ions, four-ions clusters, and a single ion (solid line) versus
parameter 𝐿. The left axis is scaled logarithmically but digits on the axis indicate the
actual lifetime (in seconds).

The ordered crystal-like states (Coulomb cluster states) of ion array corre-
spond to small values of 𝛿, 𝛿 ≪ 1, and large magnitude of large 𝛤 ≫ 1 [7]. It
is means that relative fluctuations of ion positions around their mean are small
compared to the cluster size and interionic distance but ions are strongly coupled
by the Coulomb interactions.

We see from Fig. 6 that for the long-time ion array the both necessary condi-
tions (of Coulomb ion cluster formation) can be satisfied simultaneously. Note,
that the case 𝛿 ≃ 1 corresponds to breakup of the cluster.
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Fig. 6. Correlation parameter 𝛿 and parameter of nonideality 𝛤 versus parameter 𝐿.

Note also that at 𝛿 ≥ 0.1 the lifetime of cluster is small (Figs. 5, 6). Cluster
states quickly break up in view of a Coulomb interaction and quantum fluctu-
ations of the optical forces. Pay attention that in the theory of clusters [24, 25]
the value 𝛿 = 0.1 usually defines a point of the cluster melting according to
Lindemann’s criterion.

5 Conclusion

So, our numerical experiments prove that dissipative optical superlattices are
able to form a long-term (up to ∼ 1000 seconds) many-particle Coulomb cluster,
which is the highly ordered array of mercury ions. Such cluster is characterized by
the small values of the relative root-mean-square interionic distance, 𝛿 ≪ 1, and
by the large magnitude of the Coulomb coupling parameter 𝛤 ≫ 1. Dependences
of basic parameters of a Coulomb cluster on the period of a dissipative optical
superlattice are investigated. They sufficiently well correspond to the known the-
ories of metastable states of stochastic dynamical systems and clusters [25, 26].
Comparison of the obtained numerical results with results of theoretical paper [9]
shows very good agreement. For numerical solution of stochastic equations, we
give generalization of the well-known velocity Verlet scheme for accounting of a
random force.

Our algorithm, Eqs. (11)–(12), allows to consider correctly key features of our
stochastic model: a metastability of Coulomb clusters in OSL, non-conservatism
of optical trapping forces, nonlinearity of friction coefficients (8), and a multi-
plicativity of stochastic noise. Parallel realization of this algorithm on supercom-
puters was performed. In future works, it is planned to increase the number of
ions up to several dozens.
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