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Abstract. Most of the cosmological parameters, such as the scale fac-
tor 𝑎(𝑡), the energy density 𝜌(𝑡) and the pressure of the material in the
universe 𝑝(𝑡) under usual circumstances satisfy asymptotically the power
law. On the other hand the quantities that satisfy the power law are best
modeled by regularly varying functions. The aim of this paper is to apply
the theory of regularly varying functions to study Friedmann equations
and their solutions which are in fact mentioned cosmological parame-
ters. In particular we shall consider possible formulas for cosmological
parameters of the dual universe.

Keywords: regular variation, cosmological parameter, Friedmann equa-
tions, dual universe.

1 Introduction

Theory of regularly varying functions was started by J. Karamata in [13] and
sometimes it is also called Karamata theory of regular variation. Many other
mathematicians further developed this theory, see Bingham et al. [2] and Seneta
[22]. At the present time this theory is used in many areas, including asymp-
totic analysis of functions, Tauberian theory, probability, differential equations
and analytic number theory. There were several attempts to use this theory in
cosmology, particularly in the study of asymptotic behavior of cosmological pa-
rameters, eg Mijajlovic et al., [18], [19], but also by Molchanov [20] and Stern
[23]. Barrow in [3] and Barrow and Show in [4] used a theory of Hardy and
Fowler which preceded the theory of regular variation in studies of asymptotic
behavior of solutions to the Einstein equations describing expanding universes.

In [18] we introduced a new constant 𝛤 related to Friedmann equations.
Determining the values of 𝛤 one can obtain the asymptotical behavior of the so-
lutions, i.e. of the expansion scale factor 𝑎(𝑡) and terms 𝜌(𝑡) and 𝑝(𝑡). It appears
that the instance 𝛤 < 1/4 is appropriate for both cases, a spatially flat and an
open universe, and gives a sufficient and necessary condition for the solutions to
be regularly varying. In describing cosmological parameters we used the theory
of regularly varying solutions of linear second order differential equations, see
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Marić [16], which gives necessary and sufficient conditions for the existence of
such solutions. From the theory of regular variation it follows that the solutions
under usual assumptions include a multiplicative term which is a slowly varying
function. We also present a set of formulas that can be assigned to cosmolog-
ical parameters of the dual universe. These formulas correspond to the second
fundamental solution of the acceleration equation.

We shall shortly review definitions and properties of regularly varying func-
tions. In particular we shall use some theorems on regularly varying solutions of
the second order differential equation

𝑦 + 𝑓(𝑡)𝑦 = 0, 𝑓(𝑡) is continuous on [𝛼,∞]. (1)

The notion of regular variation is related to the power law distribution repre-
sented by the following relationship between some quantities 𝐹 and 𝑡:

𝐹 (𝑡) = 𝑡𝑟(𝛼+ 𝑜(1)), 𝛼, 𝑟 ∈ R. (2)

This definition of power law is in a close relation to the notion of a slowly
varying function. A real positive continuous function1 𝐿(𝑡) defined for 𝑥 > 𝑥0
which satisfies

𝐿(𝜆𝑡)

𝐿(𝑡)
→ 1 as 𝑡→ ∞, for each real 𝜆 > 0. (3)

is called a slowly varying (SV) function.

Definition 1. A function F(t) is said to satisfy a generalized power law if

𝐹 (𝑡) = 𝑡𝑟𝐿(𝑡) (4)

where 𝐿(𝑡) is a slowly varying function and 𝑟 is a real constant.

Logarithmic function ln(𝑥) and iterated logarithmic functions ln(. . . ln(𝑥) . . .)
are examples of slowly varying functions. More complicated examples are pro-
vided in [2], [22] and [16].

A positive continuous function 𝐹 defined for 𝑡 > 𝑡0, is a regularly varying
(RV) function of an index 𝑟, if and only if it satisfies

𝐹 (𝜆𝑡)

𝐹 (𝑡)
→ 𝜆𝑟 as 𝑡→ ∞, for each 𝜆 > 0. (5)

It immediately follows that a regularly varying function 𝐹 (𝑡) has the form (4).
Therefore 𝐹 (𝑡) is regularly varying if and only if it satisfies the generalized
power law. By ℛ𝛼 we denote the class of regularly varying functions of an index
𝛼. Hence ℛ0 is the class of all slowly varying functions. By 𝒵0 we shall denote
the class of zero functions at ∞, i.e. 𝜀 ∈ 𝒵0 if and only if lim

𝑡→+∞
𝜀(𝑡) = 0. The

following theorem [13] describes the fundamental property of these functions.
1 Continuing the works of G.H. Hardy, J.L. Littlewood and E. Landau, Karamata [13]
originally defined and studied this notion for continuous functions. Later this theory
was extended to measurable functions. Due to physical constraints, we are dealing
here only with continuous functions.

Mathematical and Information Technologies, MIT-2016 — Mathematical modeling

373



Theorem 1. (Representation theorem) 𝐿 ∈ ℛ0 if and only if there are measur-
able functions ℎ(𝑥), 𝜀 ∈ 𝒵0 and 𝑏 ∈ R so that

𝐿(𝑥) = ℎ(𝑥)𝑒
∫︀ 𝑥
𝑏

𝜀(𝑡)
𝑡 𝑑𝑡, 𝑥 ≥ 𝑏, (6)

and ℎ(𝑥) → ℎ0 as 𝑥→ ∞, ℎ0 is a positive constant.

If ℎ(𝑥) is a constant function, then 𝐿(𝑥) is called normalized. Let 𝒩 denote
the class of normalized slowly varying functions. The next fact on 𝒩 -functions
will be useful for our later discussion. If 𝐿 ∈ 𝒩 and there is �̈�, then 𝜀 in (6) has
the first order derivative �̇�. This follows from the identity 𝜀(𝑡) = 𝑡�̇�(𝑡)/𝐿(𝑡).

For our study of Friedmann equations we need the next result [9], [16] on
solutions of equation (1). This theorem gives necessary and sufficient conditions
for equation 𝑦 + 𝑓(𝑡)𝑦 = 0 to have regularly varying solutions.

Theorem 2. (Howard-Marić) Let −∞ < 𝛤 < 1/4, and let 𝛼1 < 𝛼2 be two roots
of the equation

𝑥2 − 𝑥+ 𝛤 = 0. (7)

Further let 𝐿𝑖, i=1,2 denote two normalized slowly varying functions. Then there
are two linearly independent regularly varying solutions of 𝑦 + 𝑓(𝑡)𝑦 = 0 of the
form

𝑦𝑖(𝑡) = 𝑡𝛼𝑖𝐿𝑖(𝑡), 𝑖 = 1, 2, (8)

if and only if lim
𝑥→∞

𝑥

∫︁ ∞

𝑥

𝑓(𝑡)𝑑𝑡 = 𝛤 . Moreover, 𝐿2(𝑡) ∼ 1

(1 − 2𝛼1)𝐿1(𝑡)
. ⊓⊔

The limit integral in the theorem is not easy to compute. As lim
𝑡→∞

𝑡2𝑓(𝑡) = 𝛤

implies lim
𝑥→∞

𝑥

∫︁ ∞

𝑥

𝑓(𝑡)𝑑𝑡 = 𝛤 , we see that

lim
𝑡→∞

𝑡2𝑓(𝑡) = 𝛤 (9)

gives a useful sufficient condition for the existence of regular solutions of the
equation 𝑦 + 𝑓(𝑡)𝑦 = 0 as described in the previous theorem.

2 Cosmological parameters

Cosmological parameters are usually defined as some general physical quantities
related to the Universe. Such approach for Lambda cold dark matter model of
Universe (𝛬CDM model) is presented in the standard literature, for example in
[12], [10] and [21]. Here our approach is somewhat formalistic. For cosmological
parameters we take primarily solutions of Fiedmann equations [7]:

(︂
�̇�

𝑎

)︂2

=
8𝜋𝐺

3
𝜌− 𝑘𝑐2

𝑎2
, Friedmann equation,

�̈�

𝑎
= −4𝜋𝐺

3

(︂
𝜌+

3𝑝

𝑐2

)︂
, Acceleration equation,

�̇�+ 3
�̇�

𝑎

(︁
𝜌+

𝑝

𝑐2

)︁
= 0, Fluid equation.
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and any functions derived from these solutions. Therefore, the scale factor 𝑎(𝑡),
the energy density 𝜌(𝑡) and the pressure of the material in the universe 𝑝(𝑡) are
basic cosmological parameters. We remind that Friedmann equations are derived
from the Einstein field equations. These three equations are not independent.
For example, the fluid equation can be inferred from the other two equations.
Therefore, for solving of these system which consists essentially of two equations
and three unknowns some additional condition is needed. Usually equation of
state 𝑝 = 𝑤𝜌𝑐2 is assumed.

Suppose �̄�(𝑡), 𝜌(𝑡) and 𝑝(𝑡) are some definite solutions of Friedmann equa-
tions. Taking

𝜇(𝑡) =
4𝜋𝐺

3
𝑡2
(︂
𝜌(𝑡) +

3𝑝(𝑡)

𝑐2

)︂
, (10)

we see that then �̄�(𝑡) is a solution of the second order linear differential equation:

�̈�+
𝜇(𝑡)

𝑡2
𝑎 = 0. (11)

It is easy to check that in fact any solution 𝑏(𝑡) of (11) jointly with 𝜌(𝑡) and
𝑝(𝑡) is a solution of all three Friedmann equations. Therefore, in search for RV
solutions of the acceleration equation and so of the Friedmann equations, we can
use the Howard-Marić theorem 2. We just did this in our previous work [18]. We
review some results from there we need in our further discussion.

First observe that the integral limit in the Howard-Marić theorem for the
equation (11) is given by:

M(𝜇) = lim
𝑥→∞

𝑥

∫︁ ∞

𝑥

𝜇(𝑡)

𝑡2
𝑑𝑡. (12)

The functions for which this integral limit converges define so called Marić class
of functions ℳ. Then M is a real functional defined on ℳ. Also, in view of (9)
we have

If lim
𝑡→∞

𝜇(𝑡) = 𝛤 then M(𝜇) = 𝛤. (13)

We note that the opposite of (13) does not hold, see [18], [19]. There RV solu-
tions of Friedmann equations are found (theorems 3.2 and 3.3) and appropriate
cosmological parameters for non-oscillatory universe are determined. Assuming
that the integral limit M(𝜇) is convergent, say M(𝜇) = 𝛤 , there is proved:

- If 𝛤 < 1/4 then the universe is non-oscillatory.
- The converse is almost true, namely, if the universe is non-oscillatory then
𝛤 ≤ 1/4.
- If 𝛤 < 1/4 and in some special cases for 𝛤 = 1/4, the scale factor 𝑎(𝑡), a
solution of Friedmann equations, is an RV function.

In view of these properties it is justified to call the constant 𝛤 a threshold
constant. Assume that 𝛼 is a root of the polynomial 𝑥2 − 𝑥+ 𝛤 . Then

𝛤 = 𝛼(1 − 𝛼) (14)
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In this case cosmological parameters are represented as follows:

Scale factor 𝑎(𝑡): 𝑎(𝑡) = 𝑡𝛼𝐿(𝑡), 𝛼 ̸= 0 and 𝐿 is an RV function. In other words,
𝑎(𝑡) is a regularly varying function of an index 𝛼.

Hubble parameter 𝐻(𝑡) = �̇�(𝑡)/𝑎(𝑡):

𝐻(𝑡) =
𝛼

𝑡
+
𝜀

𝑡
, 𝜀 ∈ 𝒵0. (15)

Deceleration parameter 𝑞(𝑡):

𝑞(𝑡) =
𝜇(𝑡)

𝛼2
(1 + 𝜂) =

1 − 𝛼

𝛼
− 𝑡�̇�

𝛼2
(1 + 𝜂) + 𝜏, 𝜀, 𝜂, 𝜏 ∈ 𝒵0. (16)

Assuming that the scale factor 𝑎(𝑡) satisfies the generalized power law one
can introduce a new constant 𝑤. It will appear that 𝑤 is in fact the equation of
state parameter. Assuming 𝑎(𝑡) = 𝑡𝛼𝐿(𝑡), 𝐿 ∈ 𝒩 and 𝛼 ̸= 0, we define 𝑤 by

𝑤 ≡ 𝑤𝛼 =
2

3𝛼
− 1. (17)

Then the cosmological parameters can be put in the following form:

𝛼 =
2

3(1 + 𝑤)
, 𝑎(𝑡) = 𝑎0𝑡

2
3(1+𝑤)𝐿(𝑡)

𝐻(𝑡) ∼ 2

3(1 + 𝑤)𝑡
, M(𝑞) =

1 + 3𝑤

2

(18)

Formulas for the exponent 𝛼 and the Hubble parameter 𝐻(𝑡) are widely found
in the literature. Formulas for 𝑎(𝑡) and 𝑞(𝑡) are also reduced to the standard
form if 𝐿(𝑡) and 𝑞(𝑡) are constant at infinity, or if the equation of state 𝑝 = 𝑤𝜌𝑐2

is assumed, or lim𝑡→∞ 𝑡�̇�(𝑡) = 0. We did not assumed in derivation of (18) any
of these assumptions. In fact, we found asymptotics for solutions of Friedmann
equations only assuming M(𝜇) = 𝛤 < 1/4, and in certain cases for 𝛤 = 1/4.
As far as we know, it is implicitly widely assumed that the limit lim𝑡→∞ 𝜇(𝑡)
exists and is finite, what is much stronger assumption than that the integral
limit M(𝜇) is convergent.

We note, if basic cosmological parameters satisfy power law under definition
(17), then for the universe with the flat curvature the following weak form of the
equation of state holds:

There are functions 𝜉, 𝜁 ∈ 𝒵0 such that 𝑝 = �̂�𝜌𝑐2, where �̂�(𝑡) = 𝑤 − 𝑡𝜉 + 𝜁.

Therefore, if 𝑡𝜉 → 0 as 𝑡 → ∞, then �̂�(𝑡) ≈ 𝑤, what leads to 𝑝 = 𝑤𝜌𝑐2, the
standard equation of state and classical asymptotics for cosmological parameters.
In [18] is also found

M(𝜇) = 𝛤 =
2

9
· 1 + 3𝑤

(1 + 𝑤)2
. (19)

As the Friedmann equations are invariant under translation transformation,
the above formulas also hold for the expanding universe with the cosmological
constant 𝛬.
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3 Cosmological parameters for dual universe

In the previous section we have seen that 𝑞(𝑡) and 𝑝(𝑡) may vary, depending on
the limit of the hidden parameter 𝑡�̇�(𝑡) as 𝑡 → ∞. As indicated in [19] one can
speculate that this variation is an effect of the existence of the dual universe. We
remind that one of the concepts of string theory and hence M-theory is that the
big bang was a collision between two membranes. The outcome was the creation
of two universes, one in the surface of each membrane. Using the Large Hadron
Collider (LHC) located in CERN, some data are collected that might lead to
the conclusion that the parallel universe exist. Specifically, if the LHC detects
the presence of miniature black holes at certain energy levels, then it is believed
[6] that these would be the fingerprints of multiple universes. Collected data are
still analyzed.

We will not enter here into a full discussion on the existence of the multiverse.
But if the existence the parallel universe is assumed, we can explicitly find a set
of formulas that might represent cosmological parameters of the dual universe.
We obtain them using the second fundamental solution 𝐿2(𝑡) in Howard - Marić
theorem applied to the acceleration equation. To find the second fundamental
solution and therefore the dual set of these formulas we take the second root
𝛽 = 1 − 𝛼 of the quadratic equation 𝑥2 − 𝑥+ 𝛤 = 0 appearing in this theorem.
To avoid singularities, we assume 𝛼, 𝛽 ̸= 0. Now we use 𝛽 instead of 𝛼 for the
index of RV solution 𝑎(𝑡) - scale factor and for determination of other constants
and cosmological parameters. As in (17) we introduce 𝑤𝛽 = 2

3𝛽 − 1. Then we
have the following symmetric identity for the equation of state parameters:

𝑤𝛼 + 𝑤𝛽 + 3𝑤𝛼𝑤𝛽 = 1 (20)

For our universe we have 𝑤 = 𝑤𝛼, while for the dual universe the corresponding
equation of state parameter is 𝑤𝛽 . Then the dual formulas are obtained by
replacing 𝛼 with 𝛽 and 𝑤𝛼 with 𝑤𝛽 in (15), (16) and (18). If one wants to give
any physical meaning to the so obtained dual set of functions, it is rather natural
to interpret them as the cosmological parameters of the dual universe.

As we shall see these two universes are isomorphic in the sense that there is
an isomorphism which maps cosmological parameters into their dual forms. In
this derivation we shall use some elements of the Galois theory. For the basics
of this theory the reader may consult for example [11].

Our assumption that 𝛤 < 1
4 and that the solutions 𝛼 and 𝛽 of the equation

(7) differ, say 𝛼 < 𝛽, introduces the following kind of symmetry. Let 𝐹 = R(𝑡, 𝛤 )
be the extension algebraic field where R is the field of real numbers and 𝑡 and 𝛤
are letters (variables). It is easy to see that for such 𝛤 the polynomial 𝑥2−𝑥+𝛤
is irreducible over the field 𝐹 . Hence, the Galois group G of the equation (7)
is of the order 2 and has a nontrivial automorphism 𝜎. Let 𝛼 and 𝛽 be the
roots of the polynomial 𝑥2 − 𝑥 + 𝛤 . Then 𝜎(𝛼) = 𝛽 and 𝜎(𝛽) = 𝛼. Further,
let 𝛤 = 2

9 · 1+3𝑤
(1+𝑤)2 where 𝑤 is a parameter. Then we can take 𝛼 = 2

3(1+𝑤) and

𝛽 = 1+3𝑤
3(1+𝑤) . Let 𝑤𝛼 ≡ 𝑤 and 𝑤𝛽 ≡ 1−𝑤

1+3𝑤 . Then 𝜎(𝑤𝛼) = 𝑤𝛽 since 𝑤𝛼 and 𝑤𝛽
are rational expressions respectively in 𝛼 and 𝛽. Further, the time 𝑡 and the
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constant 𝛤 are invariant under 𝜎 i.e. 𝜎(𝑡) = 𝑡 and 𝜎(𝛤 ) = 𝛤 since 𝑡 and 𝛤 are
the elements of the ground field 𝐹 . The cosmological parameters (15), (16) and
(18) are rational expressions of 𝑤 so if 𝑃𝛼 is the corresponding parameter to the
solution 𝛼, then 𝜎(𝑃𝛼) = 𝑃𝛽 . For example, for the Hubble parameters we have
𝜎(𝐻𝛼) = 𝐻𝛽 . Hence, not only solutions (isomorphic via 𝜎) come into the pairs
but the sets of all cosmological parameters come as well. At this point one may
speculate about two dual universes having the same time 𝑡 and the constant 𝛤
and the conjugated parameters 𝑤𝛼 and 𝑤𝛽 connected by the relation (20).

Of course, there is a question what are the values of the constants appearing
in cosmological parameters, for example of 𝑤 = 𝑤𝛼. Most results in the liter-
ature see e.g. [25], are consistent with the w = -1 cosmological constant case.
Results from experimental cosmology, such as the Baryon Oscillation Spectro-
scopic Survey (BOSS) of Luminous Red Galaxies (LRGs) in the Sloan Digital
Sky Survey (SDSS) are consistent with w = -1, the dark energy equation of
state, [1]. However, the value 𝑤 = −1 yields singularity in (18). For such 𝑤 there
is no corresponding 𝛼 neither 𝛤 . Equation of state is 𝑝 = −𝜌𝑐2 and then by
fluid equation we have �̇� = 0, i.e 𝜌 is a constant. This case corresponds to the
cosmological constant, so 𝜌 = 𝜌𝛬 = 𝛬

8𝜋𝐺 . In the absences of 𝛼 and 𝛽 for dual
𝑤𝛽 of 𝑤 = 𝑤𝛼 we may take (20) for defining relation . Putting 𝑤𝛼 = −1 in
this identity we obtain 𝑤𝛽 = −1. Hence, dual universe is also equipped with a
cosmological constant and its expansion is governed with the dark energy.

The other values of 𝑤 are also considered. For example if 𝑤 = 1/3 then
𝛼 = 𝛽 = 1/2, 𝛤 = 1/4 and in this case Howard-Marić theorem cannot be
applied since functions 𝐿1(𝑡) and 𝐿2(𝑡) from this theorem are not fundamental
solutions. But there is a variant of this theorem appropriate for this case [16],
and applying it one can show that 𝑎(𝑡) is regularly varying of index 1

2 if and
only if 𝑤 ∼ 1

3 as 𝑡 → ∞, i.e. 𝑝 ∼ 1
3𝑐

2𝜌 holds asymptotically. This is the second
classic cosmological solution. For more details one can consult [18].

4 Conclusion

A detailed analysis of Friedmann equations and cosmological parameters from
the point of view of regular variation is presented. The central role in this analysis
has the acceleration equation since it can be considered as a linear second order
differential equation and that the theory of regularly varying solutions of such
equations is well developed [16]. We introduced in a formal way certain constants
such as the threshold constant 𝛤 and the equation of state parameter 𝑤. Both
constants have the fundamental role in describing asymptotics of cosmological
parameters and evolution of the Universe. We also inferred formulas that might
represent the cosmological parameters of the dual universe.
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