
Game Theoretic Analysis of Multi-Processor Schedulers:

Matrix Multiplication Example

 Oleksii Ignatenko

1 Institute of Software Systems NAS Ukraine

o.ignatenko@gmail.com

Abstract. This paper deals with a game model of users performing parallel

computing in a heterogeneous multiprocessor system. The proposed approach is

applied to the problem of matrix multiplication on the system with the sched-

uler of min-min type. The user’s action is to choose the size of the blocks into

which the matrix is cut. Each user tries to optimize own finish time, which leads

to conflict. Using the game theoretic approach, we build game model and found

the conditions of Nash equilibrium existence in the scheduling game of two us-

ers. We developed simulation model to verify the results.

Keywords. parallel computing, schedulers, game theory, Nash equilibrium, Pa-

reto efficiency.

Key Terms. MathematicalModel, MultiAgentSystem, Infrastructure

1 Introduction

Modern scientific problems require significant computing resources, so the problem

of resource optimization in multiprocessor environments is very important. Nowa-

days, computing algorithms operate in complex heterogeneous environments. It is

common to have a distributed computational unit with many simultaneous programs

from different users competing for computing and network resources. In most cases,

the user is unable to control the distribution of resources. The allocation algorithms

may contain defects and inefficiency and this can lead to a significant increase in

processing time. That is why distributed computing requires efficient algorithms

providing a flexible and stable allocation of resources. The problem is to deal with

unfair and uneven access to resources, caused by heterogeneity of users and their

tasks where each user is a rational agent that tries to increase its share of resources.

This could bring the system to the inefficient equilibrium. A key element is an effi-

cient algorithm for load distribution – scheduler, providing services to users.

The idea of this work is to apply the game-theoretic approach to the problem of

scheduling and allocation of computing resources in a dynamic heterogeneous envi-

ronment with many competitive users.

2

In this work we consider heterogeneous multi-processor computing system and asso-

ciated constraint set a finite pool of processor resources (for each node), and limited

link capacity. Our goal is to specify work schedule for each node in the way that the

computing time (the time when the latest task is finished) is the smallest. This sched-

ule also should satisfy all defined constraints. This is the classical multiprocessor

scheduling problem, investigated in many works starting from [1]. It is well known

that this problem is NP-hard. One possible solution is to reduce scheduling complexi-

ty by using fluid model setup [2]. Another approach to this problem is to consider a

game-theoretic approach, which is the current trend in networks and computing sys-

tems [3]. In this work we construct static non-cooperative game for load balancing

problem in single-class job distributed systems. This problem is investigated by many

authors in cooperative (optimal) and game-oriented settings (see [4 - 7] for refer-

ences). Here, we propose a new analysis of scheduler for matrix multiplication prob-

lem in game setup. The proposed approach is applied to the problem of matrix multi-

plication on the scheduler of min-min type. The user’s action is to choose the size of

the blocks into which the matrix is cut. Each user tries to optimize own finish time,

which eventually brings the system to an equilibrium state. This equilibrium is de-

fined by scheduler’s type, so characteristic of equilibrium is important for scheduling

policy analysis.

As a result, we presented conditions for the existence of Nash equlibrium end proved

Pareto inefficiency. Finally, we implement simulations using CloudSim package [8]

and provide experiments on a heterogeneous multi-processor system to verify simula-

tion and theoretic models.

2 Matrix Multiplication Model

We consider an analytic computational model of parallel matrices multiplication

developed in papers [9, 10]. It is assumed that computation nodes cannot interact and

share data. Every node is connected with scheduler. Scheduler receives computational

tasks from users and sends them to an available processor (according to its resource

allocation algorithm). Every single processor works on its task and returns result. Let

us fix notation. Consider the heterogeneous multi-processor system of m computa-

tional elements, and every element has capacity 𝑝𝑖 , 𝑖 = 1, … , 𝑚. Tasks are translated

by network lines, which are assumed to be identical and have capacity 𝑞.

In this work it is assumed that:

1. All processors start to work at the same time;

2. Scheduler makes assignments instantly;

3. Scheduling is deterministic.

We will proceed by building simple fluid model for matrices multiplication ignoring

transfer delays. Secondly, we provide generalization by including data transfer into

model. Finally, we consider discrete model, which is the closest to practice.

3

2.1 Simplified Fluid Model

First, let us consider parallel multiplication of two square matrices 𝑁 × 𝑁. Using

Block matrix multiplication algorithm user specifies block size 𝑛. Let the size of

block 𝑛 be a natural number such that 𝑘 =
𝑁2

𝑛2 is a natural number too. The algorithm

will produce 𝑘 tasks, each with the complexity of 𝑂(𝑛2). Let 𝑇(𝑁, 𝑛) be the time

when all user’s tasks are finished. The problem of time optimal matrix multiplication

is the minimization function problem:

𝑇(𝑁, 𝑛) → 𝑚𝑖𝑛

Function 𝑇(𝑁, 𝑛) has in general many local extremes, so searching for global

minimum could be resource demanding problem.

Promising direction of research is the fluid model analysis [2]. Let the user

choose vector 𝑥(𝑘) ∈ 𝑅𝑚 with components 𝑥𝑖(𝑘), where 𝑥𝑖(𝑘) ≥ 0, 𝑥𝑖(𝑘) ≤ 𝑘, 𝑖 =
1, … , 𝑚, ∑ 𝑥𝑖(𝑘)𝑚

𝑖=1 = 𝑘. Denote 𝑋(𝑛) as the set of all vectors 𝑥(𝑛). Every compo-

nent 𝑥𝑖(𝑘) is the amount of computation designed for execution on i-th processor.

Firstly, we take into account only multiplication operation. This is a simplification but

it allows us to understand basic properties of the computation process.

Finish time was found in [9] and is defined by the following formulae

𝑇(𝑥, 𝑋(𝑛)) = max
𝑖=1,..,𝑚

{
𝑥𝑖𝑁𝑛2

𝑝𝑖
}.

The idea of the proposed approach is a fluid approximation to the problem. For the

approximation, we assume that work is composed of homogeneous fluid rather than

discrete jobs.

Proposition 1. [9] Minimal task finish time (excluding transmit time) for a fluid

model with one user is equal 𝑇 = 𝑁3(∑ 𝑝𝑖
𝑚
𝑖=1)−1 and 𝑎𝑟𝑔𝑚𝑖𝑛(𝑇(𝑥)) =

𝑁(𝑝1, … , 𝑝𝑚).

In this work we employ general approach using convex analysis functions, which

we expect to be a promising direction for future investigation of more complex sys-

tems.

Define Minkowski functional for set 𝑋 and vector 𝑝 ∈ 𝑅𝑚 as:

𝜇𝑋(𝑝) = 𝑖𝑛𝑓{𝜆 > 0: 𝑝 ∈ 𝜆𝑋}.

It is known that Minkowski functional is convex for convex 𝑋. Let us define the

set of capabilities of the computation system 𝑅 = {𝑟 ∈ 𝑅𝑚: 𝑟𝑖 ∈ [0, 𝑝𝑖]} and rescale it

as following: 𝑅(𝑛) =
𝑅

𝑁𝑛2

Proposition 2. The following equality is true 𝑇(𝑥, 𝑋(𝑛)) = 𝜇𝑅(𝑛)(𝑋).

Proof. Consider right-hand side. It is clear that𝜇𝑅(𝑛)(𝑥) = 𝑖𝑛𝑓{𝜆 > 0: 𝑥 ∈

𝜆𝑅(𝑥)}. A Vector 𝑥 belongs to the set 𝑅 if and only if max
𝑖=1,..,𝑚

{
𝑥𝑖

𝑝𝑖
} = 1, so 𝜇𝑅(𝑛)(𝑥) =

𝑖𝑛𝑓 {𝜆 > 0: max
𝑖=1,..,𝑚

{
𝑥𝑖

𝑝𝑖
} =

𝜆

𝑁𝑛2}. This is equivalent to equality 𝜆 = max
𝑖=1,..,𝑚

{
𝑥𝑖𝑁𝑛2

𝑝𝑖
}.

Note. There is exists minimum 𝑇𝑚𝑖𝑛 = min
𝑥∈𝑋(𝑛)

𝜇𝑅(𝑛)(𝑥) and this minimum is

unique.

4

2.2 General Fluid Model

To take into account transfer time we note, that block algorithm sends 2𝑥𝑖𝑁𝑛 el-

ements on each node and receives 𝑥𝑖𝑛2 elements. So, summary time is equal to

𝑇𝑠(𝑥, 𝑋(𝑛)) = max
𝑖=1,…,𝑚

{
𝑥𝑖𝑁𝑛2

𝑝𝑖
+

𝑥𝑖(𝑛2+2𝑁𝑚)

𝑞
}.

Proposition 3. There is minimum of 𝑇𝑠(𝑥, 𝑋(𝑛)) with respect to 𝑥 ∈ 𝑋(𝑛)

Proof. X(n) is convex compact. Function Ts(x, X(n)) is continuous and convex,

so there is the minimum point.

2.3 Discrete Model and Schedulers

Time minimization should be performed on finite net:

𝑌(𝑛) = {𝑦 ∈ 𝑅𝑚: 𝑦𝑖 ∈ {0,1, … , 𝑘}, ∑ 𝑦𝑖𝑖 = 𝑘, 𝑖 = 1, . . , 𝑚}.

It is clear that 𝑌(𝑛) ⊂ 𝑋(𝑛).

Now we consider the notion of a scheduler.

The user chooses the size of the block 𝑛 and 𝑌(𝑛). The scheduler is an algorithm

responsible for specifying concrete point 𝑦∗ ∈ 𝑌(𝑛). In this work, we will consider

only simple scheduler of extreme – extreme type and perform simulations and inves-

tigation for min-min scheduler only. The min-min algorithm is quite popular and

simple. The idea of min-min is following.

1. The scheduler receives 𝑘 tasks, every task has complexity 𝑁𝑛2;

2. The scheduler chooses task with minimal computation complexity (in the

case of equal tasks the choice is random);

3. The scheduler sends chosen task on the free processor with maximal capaci-

ty or waits in the case of no free resources.

4. If the queue is not empty then return to 2.

The result of algorithm is the pair of vector 𝑦 and finish time (finish time of the last

task)

Fix the size of block 𝑛 and consider finish time.

Proposition 4. For arbitrary 𝑛 following inequalities are true:

𝑇𝑑(𝑛) = min
𝑦∈𝑌(𝑛)

𝑇(𝑦, 𝑋(𝑛)) ≥ min
𝑥∈𝑋(𝑛)

𝑇(𝑥, 𝑋(𝑛))

𝑇𝑚𝑖𝑛𝑚𝑖𝑛(𝑛) ≥ 𝑇𝑑(𝑛)

Proof. Here we give a sketch of proof. The first inequality is true because

𝑌(𝑛) ⊂ 𝑋(𝑛). The second inequality holds since 𝑇𝑑(𝑛) is minimum by definition.

3 Non-Cooperative Scheduling Game Formulation

We will deal with non-cooperative games in strategic or normal form. A non-

cooperativeness here does not imply that the players do not cooperate, but it means

that any cooperation must be self-enforcing without any coordination among the play-

ers. The strict definition is as follows.

A non-cooperative game in strategic (or normal) form is a triplet 𝐺 =
{𝑁, {𝑆𝑖}𝑖∈𝑁 , {𝑢𝑖}𝑖∈𝑁} , where:

• 𝑁 is a finite set of players;

5

• 𝑆𝑖 is the set of admissible strategies for player i.

• 𝑢𝑖: 𝑆 → 𝑅 is the utility (payoff) function for player i.

A game is said to be static if the players take their actions only once, inde-

pendently of each other. In some sense, a static game is a game without any notion of

time, where no player has any knowledge of the decisions taken by the other players.

Based on the assumption that all players are rational, the players try to maximize

their payoffs when responding to other players’ strategies. Generally speaking, the

final result is determined by non-cooperative maximization of integrated utility. In

this regard, the most accepted solution concept for a non-cooperative game is Nash

equilibrium [3], introduced by John F. Nash. Loosely speaking, Nash equilibrium is a

state of a non-cooperative game where no player can improve its utility by changing

its strategy if the other players maintain their current strategies. Formally, pure-

strategy Nash equilibrium (NE) of a non-cooperative game 𝐺 is a strategy profile 𝑠∗ ∈
𝑆 such that for all 𝑖 ∈ 𝑁 we have the following:

𝑢𝑖(𝑠𝑖
∗, 𝑠−𝑖

∗) ≥ 𝑢𝑖(𝑠𝑖 , 𝑠−𝑖
∗) for all 𝑠𝑖 ∈ 𝑆𝑖 .

Here 𝑠−𝑖 denotes the vector of strategies of all players except i. In other words, a

strategy profile is a pure-strategy Nash equilibrium if no player has an incentive to

unilaterally deviate to another strategy, given that other players’ strategies remain fixed.

Let us formulate scheduling game for matrix multiplication problem. Players are

users of distributed system. Define the set of players as {𝑢𝑖}𝑖∈𝐿, where 𝐿 is set of

indexes. Users have available multi-processors system with 𝑚 computational elements.

Each element has capacity 𝑝𝑖 , 𝑖 = 1, . . , 𝑚. We assume every user has two square

matrices with dimension 𝑛𝑙, 𝑙 ∈ 𝐿. The set of admissible strategies for player l is a

conjunction of all possible cuts 𝑘𝑙 ∈ 𝐾𝑙 , , 𝑙 ∈ 𝐿. After the player chooses his strategy

blocks are translated to a scheduler, which sends them to processors.

Define finish time for l-th player as the time of finishing of last task 𝑇𝑙 , 𝑙 ∈ 𝐿.

Every player wants to minimize his finish time.

In current work we consider problem when:

1. The min-min scheduler is used.

2. The set of admissible sizes {𝑛𝑗}
𝑗=1,..,𝑠

 is sorted in ascending order.

3. If players choose the same sizes, their finish times are the same. Finish time

in this case is equal to double individual time for this size.

4. There is unique minimum 𝑇𝑑(𝑛𝑗), 𝑗 = 1, … , 𝑠. Denote argminimum index as

𝑗∗.

5. There are two players in the system.

In order to use game theory methods, we build the game matrix, using following

rules. Let players choose strategies 𝑛1, 𝑛2. Denote their payoffs as 𝑇1(𝑛1, 𝑛2) and

𝑇2(𝑛1, 𝑛2) respectively.

1. If 𝑛1 < 𝑛2, then 𝑇1(𝑛1, 𝑛2) = 𝑇𝑑(𝑛1), 𝑇2(𝑛1, 𝑛2) = 𝑇𝑑(𝑛1) + 𝑇𝑑(𝑛2).

2. If 𝑛1 = 𝑛2, then 𝑇1(𝑛1, 𝑛1) = 𝑇2(𝑛1, 𝑛1) = 2𝑇𝑑(𝑛1).

Proposition 5. If there is exists 𝑗∗ such that inequality 2𝑇𝑑(𝑛𝑗∗) ≤

𝑇𝑑(𝑛𝑗∗−1) holds, then (𝑛𝑗∗ , 𝑛𝑗∗) – Nash equilibrium.

Proof. By definition (𝑛𝑗∗ , 𝑛𝑗∗) is Nash equilibrium if:

𝑇1(𝑛𝑗∗ , 𝑛𝑗∗) ≤ 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗), 𝑇2(𝑛𝑗∗ , 𝑛𝑗∗) ≤ 𝑇2(𝑛𝑗∗ , 𝑛𝑗∗−1).

Using rules, defined above we obtain:

6

𝑇1(𝑛𝑗∗ , 𝑛𝑗∗) = 2𝑇𝑑(𝑛𝑗∗), 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗) = 𝑇𝑑(𝑛𝑗∗−1).

The same is valid for the second player. If inequality 2𝑇𝑑(𝑛𝑗∗) ≤

𝑇𝑑(𝑛𝑗∗−1) holds, (𝑛𝑗∗ , 𝑛𝑗∗) – Nash equilibrium.

Proposition 6. If there is exists 𝑗∗ such that inequality 2𝑇𝑑(𝑛𝑗∗) ≥

𝑇𝑑(𝑛𝑗∗−1) holds, then (𝑛𝑗∗−1, 𝑛𝑗∗−1) – Nash equilibrium.

Proof. By definition (𝑛𝑗∗−1, 𝑛𝑗∗−1) is Nash equilibrium if:

𝑇1(𝑛𝑗∗ , 𝑛𝑗∗) ≥ 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗), 𝑇2(𝑛𝑗∗ , 𝑛𝑗∗) ≥ 𝑇2(𝑛𝑗∗ , 𝑛𝑗∗−1).

Using rules, defined above we obtain:

𝑇1(𝑛𝑗∗ , 𝑛𝑗∗−1) = 𝑇𝑑(𝑛𝑗∗−1) + 𝑇𝑑(𝑛𝑗∗), 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗−1) = 2𝑇𝑑(𝑛𝑗∗−1).

The same is valid for the second player. If inequality 2𝑇𝑑(𝑛𝑗∗) ≥

𝑇𝑑(𝑛𝑗∗−1) holds, then 𝑇1(𝑛𝑗∗ , 𝑛𝑗∗−1) ≥ 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗) and (𝑛𝑗∗−1, 𝑛𝑗∗−1) – Nash equi-

librium.

Note. Nash equilibrium is always Pareto-inefficient, in other words

𝑇1(𝑛𝑗∗ , 𝑛𝑗∗) ≤ 𝑇1(𝑛𝑗∗−1, 𝑛𝑗∗), 𝑇2(𝑛𝑗∗ , 𝑛𝑗∗) ≤ 𝑇2(𝑛𝑗∗−1, 𝑛𝑗∗). This is common situation

in games of considered type.

4 Simulations

We have implemented simulations using CloudSim package and real multi-

processing system of Institute of Software Systems NAS Ukraine. The experiments

were designed to optimize finish time for one user. Matrices of 1200 on 1200 dimen-

sion were used. The experiment was performed on the node with two processors Quad

Core Intel Xeon E5405 2GHz and 16 GB DDR2 @667 Mhz RAM (making 7 slave

servers and 1 scheduler node).

The graph of Time-Size dependency is shown in the Fig. 1.

Fig. 1. Finish time – size of task graph

7

Using estimation of the main parameters from experiments we have built the simu-

lation model for scheduling game with two players (1200x1200 matrix, strategies –

size of tasks) and min-min scheduler. Results are shown in the Fig 2.

Fig. 2. Finish time surface for scheduling game of two players. Real experiments

approximation (left) and simulation using theoretic construction (right)

5 Conclusions

In this paper, we have presented the approach to deal with problems of scheduling

and load balancing using a game-theoretic framework. The general objective was to

identify and address the efficiency problems, where game theory can be applied to the

model and evaluate user conflicts problems and consequently to design efficient solu-

tion. We consider the fluid model of computations to calculate the "ideal" finish time,

which gives the lower bound of possible real time. We propose the game model of

user's interaction on the example of matrix multiplication problem. We use simulation

environment GridSim to obtain experimental data and validate theoretical results.

We investigate the interaction model's users performing parallel computing in a

heterogeneous multiprocessor system. The proposed hike is applied to the problem of

matrix multiplication using the scheduler min-min. Resolving this case is the size of

the blocks into which the matrix is cut. The experimental system characteristics have

been used to adjust the simulation model, allowing to measure the time estimate for

completion of all possible combinations of partitioning tasks to processors and end

time to build finish time surface for each user. The findings were substantiated and

summarized based on the game approach, in particular, found the conditions of Nash

equilibrium point existence in the game interaction between two users.

References

1. Srinivasa Prasanna G.N., Musicus B. Generalized Multiprocessor Scheduling Using Opti-

mal Control // Proc. SPAA. – 1991, P. 216 – 228.

2. Nazarathy Y., Weiss G. A Fluid Approach to Large Volume Job Shop Scheduling // Jour-

nal of Scheduling, 13(5), 509-529, (2010).

3. Han, Zhu, et al. Game theory in wireless and communication networks. Cambridge Uni-

versity Press, 2012.

8

4. S. Penmatsa, A. T. Chronopoulos. Game-theoretic static load balancing for distributed

systems. Journal of Parallel and Distributed Computing 71, no. 4 (2011): 537-555

5. Wei, Guiyi, et al. A game-theoretic method of fair resource allocation for cloud computing

services. The journal of supercomputing 54.2 (2010): 252-269.

6. Siar, Hajar, Kourosh Kiani, and Anthony T. Chronopoulos. An effective game theoretic

static load balancing applied to distributed computing. Cluster Computing 18.4 (2015):

1609-1623.

7. Li, Kai, Yong Wang, and Meilin Liu. A non-cooperative game model for reliability-based

task scheduling in cloud computing. arXiv preprint arXiv:1403.5012 (2014).

8. https://en.wikipedia.org/wiki/CloudSim

9. Anatoly, Doroshenko, Ignatenko Oleksii, and Ivanenko Pavlo. One model of optimal

resource allocation in homogeneous multiprocessor system // Problems in programming 1

(2011): 29-39.

10. Andon, F. I., and O. P. Ignatenko. "Modeling conflict processes on the internet." Cyber-

netics and Systems Analysis 49.4 (2013): 616-623.

11. Ignatenko, O., Synetskyi, O. (2014). Evolutionary Game of N Competing AIMD Connec-

tions. In Information and Communication Technologies in Education, Research, and In-

dustrial Applications (pp. 325-342). Springer International Publishing.

