
The Canonical Forms of Logical Formulae over the Data

Types and Their Using in Programs Verification

Michael Lvov1, Vladimir Peschanenko1, Oleksandr Letychevskyi2,

Yuliia Tarasich1

1Kherson State University, Universitetskaja St. 27, 73000, Kherson, Ukraine
2Glushkov Institute of Cybernetics of NASU, Glushkov ave., St., 03187, Kyiv, Ukraine

Lvov@ksu.ks.ua, vpeschanenko@gmail.com, lit@iss.org.ua,

YuTarasich@gmail.com

Abstract. A brief review and the results of working with tools for the formulae

simplifying are presented. The algorithm for constructing the canonical forms

of linear semi-algebraic formulae over the enumerated and multiple types is de-

scribed.

Keywords: System of linear inequalities, canonical forms, logical formulae,

linear semi-algebraic formulae, trapezoids.

1 Introduction

A software quality is one of the main tasks of software developers. Therefore, soft-

ware developers are increasingly focusing on the verification which gives them possi-

bilities to search errors before writing a source code of the system and also to prove

various properties of models that were built on the already written code.

In general, methods of the formal models proof can be divided into static and dy-

namic, specific and symbolic. The main problem of static methods for proving prop-

erties of a model is the work with the fairly complex formulae, the complexity of

which can be increased step by step (the construction of invariants, etc.). The main

problem of dynamic methods is a well-known problem in specific modeling - the

exponential explosion of the number of passed states in the model.

On the other hand, there is a lot of number of the well-researched algorithms for

proving properties of models (static and dynamic methods). The problem, which aris-

es in the modeling of specific models is that we get a big numbers of results as a re-

sult of proving their properties. The symbolic modeling is deprived of such problems.

Each state in it is the certain formula that covers a set of specific states. But despite

the fact that the number of states of the symbol model which is given by a formula is

less than in the specific model, in the symbolic modeling the difficult questions of

determining the reachability of passed states in the process of using dynamic methods

and the fairly complex formulae are raised. The complexity of these formulae can

grow step by step if the canonical or normal form is lacking. This implies that the

mailto:YuTarasich%7d@ksu.ks.ua

problem of construction of the canonical and normal forms is one of the most im-

portant problems in the symbol modeling.

In the first part of the article we give a brief review and the analysis of results of

working with the tools for simplifying formulae. In the second part we describe the

algorithm for constructing the canonical forms of linear semi-algebraic formulae off

the enumerated and multiple types.

2 Tools for the Formulae Simplification

There are a lot of tools for prove. All of them can be divided into several types:

- The tools that are based on the extensions of the propositional logic or of the

first-order logics. In this category, the very known tools are: ACL2, E (and E-

SETHEO), KeY, Vampire, Waldmeister, Darwin.

- The tools that are based on the high order logic. The most famous and widely

used of them are: PVS, HOL, Isabelle, Coq.

In this paper, we consider such systems as CVC4, MathSAT5, QEPCAD, Singu-

lar, COCOA, MiniZinc, STP, RedLog, Satallax, Isabelle, E-SETHEO, Minisat,

SMTInterpol, TPS / ETPS, Paradox, Gandalf, Z3, Vampire. The main attention in the

analysis of the considered systems was paid to the availability of tools for the formu-

lae simplifying. The brief characteristics of these systems and the results of their tests

are given below.

CVC4 1.4. CVC4 is an efficient open-source automatic theorem prover for satisfi-

ability modulo theories (SMT) problems. It can be used to prove the validity (or, dual-

ly, the satisfiability) of the first-order formulae in a large number of built-in logical

theories and their combinations [1]. To simplify the formulae in the prover the

TRANSFORM method is used. To obtain normal results, it is necessary to put the

formulae in brackets which determine a problem with the implementation of the prior-

ity of operations. Moreover, the application of the simplification method makes the

formulae more cumbersome (the existence quantifier is always replaced by a generali-

ty quantifier; many symbols of negation appear; can't to remove the quantifiers in an

unclosed formula). Positive characteristics of the prover – it’s the ability to use it in

projects that are developed under C ++, the availability of its documentation and the

user-friendly syntax.

MathSAT5 5.3.10 - is an efficient SMT solver. MathSAT 5 is the successor of

MathSAT 4, supporting a wide range of theories (including e.g. equality and uninter-

preted functions, linear arithmetic, bit-vectors, and arrays) and functionalities (includ-

ing e.g. the computation of Craig interpolants, the extraction of unsatisfiable cores,

the generation of models and proofs, and the ability of working incrementally) [2, 3].

As an input formats it supports SMT-LIB 2, SMT-LIBv1.2, DIMACS. Works with

GMP (Gnu Multiprecision library) and GNU C Library. Can be used in C / C ++ pro-

jects. There is a verification of SAT. The input format is limited to the libraries that it

uses as the input format. It is easy to install and has good documentation, but, unfor-

tunately, the prover doesn't have the tools for the formulae simplifying, which means

that it isn't suitable for solving our problem.

http://mathsat4.disi.unitn.it/

QEPCAD Version B 1.69 - is an interactive command-line program written in

C/C++, which is based on the SACLIB library [4]. One of the most important features

of QEPCAD is its ability to produce the simple quantifier-free equivalent formulae

[22], which points out the possibility of its using to simplify formulae.

This is a very good system for the formulae simplifying. In addition to the stand-

ard quantifiers it includes the existence quantifier "E" and the generality quantifier

"A". Also it supports the additional quantifiers: "F" - for infinitely many; "G" - for all

but certainly many; "C" - for the connected set, "xk" – for the exact number of k dif-

ferent values. Its shortcomings, in our opinion, is the following: 1) The QEPCAD

does not understand the priority of the usage of logical operators; 2) It doesn’t support

the functional symbols (You need to use the algorithms for replace of functionals on

the variables, that makes the formula more cumbersome); 3) It uses the different pa-

rentheses (() – for numeric operations, [] – for logical operations); 4) The negative

numbers must be enclosed in the parentheses and there is no sign of multiplication (5

* x => 5x), which isn't always convenient.

Singular 4.0.3 is the computer algebra system for polynomial computations with

the special emphasis on commutative and non-commutative algebra, algebraic geome-

try, and singularity theory. It is free and open-source under the GNU General Public

Licence [5,6]. The system is easy to install, well documented and has a good syntax.

There is a calculation of invariants. Can be used as the computer algebra system, but

it isn't suitable for solving our problem, since it isn't developed as a system for work-

ing with the mathematical logic (quantifiers are absent, inequalities for logical formu-

lae can't be used, there are no checks for SAT proofs).

COCOA 5.1.3. CoCoA (Computations in Commutative Algebra) [7] is the free

computer algebra system to compute with numbers and polynomials. The CoCoA

(CoCoALib [8]) is available under GNU General Public License. Like as Singular,

the CoCoA system doesn't have the functionality for working with the mathematical

logic (it does not support the quantifiers, it does not simplify the formulae), and

therefore it can not be used to solve our problems.

MiniZinc (WIndows) – is the medium-level constraint modelling language. It is

designed for an easy interaction with the various server solvers. In particular, MiniZ-

inc allows the specification of global constraints by decomposition [9].

MiniZinc is written in C ++. The system works only with integer and rational

numbers. It is a very good tool for modeling and programming. It is easy to install and

has a good documentation. It also has an IDE which makes it easier to work with it.

Unfortunately, it is not suitable for solving our problem. In the model with the help of

such functions as solve satisfy, solve maximize, solve minimize, we set the constraints

on variables (constraint programming) and then we find the solution that satisfies

these constraints.

STP 2.1.2. - is the constraint solver that can solve many kinds of problems includ-

ing those by program analysis tools, theorem provers, automated bug finders, crypto-

graphic algorithms, intelligent fuzzers and model checkers [10]. Supports the CVC,

SMT-LIB1, and SMT-LIB2 data input formats. It is recommended to use the SMT-

LIB2 (although not all features are used in STP). Works with bit vectors and arrays.

Can't work with quantifiers. There is a SAT. As stated in the description, it has a sim-

https://en.wikipedia.org/wiki/CoCoA#cite_note-1
https://en.wikipedia.org/wiki/CoCoA#cite_note-2
https://en.wikipedia.org/wiki/GNU_General_Public_License

plifier that includes containing simplification algorithms, but in the sense in which we

need simplifications (we gave a formula → at the output we got a simplified one) it

does not work.

RedLog (Reduce _2015_10_20 Windows) – is an integral part of the interactive

computer algebra system Reduce. It supplements Reduce's comprehensive collection

of powerful methods from symbolic computation by supplying more than 100 func-

tions on first-order formulae [11]. The system has a good syntax, a detailed documen-

tation and it is simple in installation. It supports the functions, quantifiers and priority

of operations. But, it simplified only two formulae. The remaining formulae were

rewritten in a different form. The minuses of the system are: the absence of factoriza-

tion; the absence of SAT and the proof of formulae. The system is written in LISP, so

its integration with C ++ systems is complicated.

Satallax 2.8 - Satallax is the automated theorem prover for higher-order logic Sa-

tallax progressively generates higher-order formulae and corresponding propositional

clauses. These formulae and propositional clauses correspond to a complete tableau

calculus for higher-order logic with a choice operator. Satallax uses the SAT solver

MiniSat as an engine to test the current set of propositional clauses for unsatisfiabil-

ity [12]. It supports the high-order logic. As a data entry format it uses the THF lan-

guage in the TPTP library. There is no documentation of the system; there is only a

brief description. The program isn't oriented on the simplifying of the predicate for-

mulae. It performs its SMT-prover tasks, proves the satisfactories or unsatisfactories

of the problem, but does not simplify the formulae.

Isabelle2016 (Windows) is the generic proof assistant. It allows mathematical

formulae to be expressed in a formal language and provides tools for proving those

formulae in a logical calculus. The main application is the formalization of mathemat-

ical proofs and in particular formal verification, which includes proving the correct-

ness of computer hardware or software and proving properties of computer languages

and protocols. The most widespread instance of Isabelle nowadays is Isabelle/HOL,

which provides a higher-order logic theorem proving environment that is ready to use

for big applications [13]. It is easy to install and has a good documentation. It sup-

ports the work with the first and high order logic. It is a good system in terms of sim-

plifying the formulae. The rules for formulae simplifying are defined by users. In this

regard, it works as a system of rewriting rules. Therefore, the responsibility of simpli-

fications rests with the user. Written in SML, so the integration of this system with C

++ is very difficult.

E-SETHEO. E-SETHEO is the strategy-parallel compositional theorem prover

for the first-order logic with equality. It combines a variety of high-performance theo-

rem provers and specialized decision procedures into one of the most powerful ATP

systems currently available. The core idea of the E-SETHEO framework is to let dif-

ferent proof search procedures compete for resources for solving the given prob-

lem [14].

Unfortunately, we can't install this system. The main problem is that the project

was abandoned for many years, and besides this the system is written on many pro-

gramming languages such as C, Eclipse Prolog, Perl, Bigloo Scheme.

Minisat 2.2.0 – is the minimalistic, open-source SAT solver [15]. The solver is

written in C ++. It has MIT license. It accepts the input data in DIMACS format

(CNF - data input format). There is no simplification of the formulae; therefore the

data input format should be in the conjunctive normal form. Therefore, it can’t be

used to solve our problem.

SMTInterpol 2.1. SMTInterpol is the SMT Solver that can compute Craig inter-

polants for various theories. The current version of SMTInterpol supports interpola-

tion for the combination of the quantifier-free fragments of the theories of uninter-

preted functions, linear real arithmetic, linear integer arithmetic, and arrays [16]. It

uses a SMT-LIB as the input data format. It is written in Java and can be adapted for

C ++. It has an experimental tool for the formulae simplifying. It does not work with

quantifiers. As a result it could not simplify any of the proposed formulae.

TPS/ETPS. TPS and ETPS are, respectively, the Theorem Proving System and

the Educational Theorem Proving System [17]. Unfortunately, there is no access to

download the system, and the available sources do not work. The system is written in

Common Lisp, so their integration into the C ++ system is complicated.

Paradox 3.0. – Paradox is the automated theorem proving system developed by

Koen Lindström Claessen and Niklas Sörensson at the Chalmers University of Tech-

nology. The software is written in the Haskell programming language and is released

under the terms of the GNU General Public License and is free [18]. It is only in the

public folder of the provers of previous CASC tests. It doesn’t work like the previous

systems.

Gandalf c-2.6.r1 - is the first-order automated theorem prover applied to several

domain-specific tasks such as Semantic web. It is programmed in the Scheme pro-

gramming language which is then compiled to the C programming language using

Hobbit from SCM [19]. The access to the prover and its documentation is closed to

those who do not have an access to the account of the University of Tallinn. The last

design date of the work over this prover was the 2003. Since the Gandalf did not take

part in the competitions recent years and we did not get any answers to the letters to

the authors, we can assume that its development stopped.

Vampire 2.6 (Vampire 4.0) is the automatic theorem prover for the first-order

logic. It was used in a number of academic and industrial projects [20]. Vampire im-

plements the calculi of the ordered binary resolution and the superposition for the

handling equality. Internally, Vampire works only with a clausal normal form. Prob-

lems are classified during preprocessing. Vampire implements many useful prepro-

cessing transformations including the Sine axiom selection algorithm [21]. It is said in

the official website that it will be possible to download the prover, after the release of

the 3rd version (although the 4.0 version is already participating in the CASC). The

previous versions cannot be downloaded also. Source codes with CASC contain er-

rors. So, the prover could not be tested.

Z3 is a state-of-the art theorem prover from Microsoft Research. It can be used to

check the satisfiability of logical formulae over one or more theories. Z3 offers a

compelling match for software analysis and verification tools, since several common

software constructs map directly into supported theories [26]. Z3 is a low level tool. It

is best used as a component in the context of other tools that require solving logical

formulae. Consequently, Z3 exposes a number of API facilities to make it convenient

for tools to map into Z3, but there are no stand-alone editors or user-centric facilities

for interacting with Z3. The language syntax used in the front ends favor simplicity in

contrast to linguistic convenience [41, 42].

As it can be seen from the material described above, not all considered systems

were launched and analyzed. The Isabelle2016 is only one system that can completely

done our task. But, in turn, as was mentioned above, it doesn't contain a set of rules

for simplification (the rule process is set by the user himself).

As for QEPCAD ver. B 1.69 then from the point of view of simplifying of the

formulae – the system works well, but it has a fairly complex and cumbersome syntax

and does not have a good documentation.

The most used languages for creating such systems are C / C ++ and ML-

languages (OCaml, SML).

In all systems, we are faced with the problem of the need for rewriting the formu-

lae in a certain format. It is very difficult to rewrite formulae and bring them to the

required format, especially if parentheses are to be placed everywhere, such as in

SMT-LIB. Accordingly, the development of systems for the formulae simplifying,

which would allow the posed tasks is an open problem. In addition, no less important

is the need to implement appropriate algorithms that make it possible to simplify for-

mulae at the more efficient level.

3 The Canonical Forms of Linear Semialgebraic Formulae

Introduce the basic notation:

},...,1{ nxxX - is a n - dimensional vector of variables.

Q - is a constructive linearly ordered field, called as the coefficient field.

nQ - is a vector space over Q .

n
Qnaaa),...,1(- is a vector of numerical coefficients,

Qb - is a numerical coefficient.

),(XaLF -is a linear form from aX , : nxnaxa

df

XaLF ...11),(

The linear inequality (LI)),,(cXaE has a form cXaLF),(b and is denoted

by),,(cXaE . To shorten the record, the linear inequalities will be written in the

form)(XE , indicating only the variables on which it depends.

Definition 1. A linear semialgebraic formula (LSF) over Q from X is a quanti-

fier-free logical formula)),,(),...,1,,1(1()(mcXmamEcXaEFXF of linear

inequalities)(),...(1 XmEXE in the signature of logical connectives &, . The linear

semialgebraic set)(FM is a set)(|))(VF
n

QVFM .

Definition 2. Let x - be a variable that is on the left-hand side of LI with nonzero

coefficient and }{xXY . Then the LI can be transformed to the form

cYbLFx),(or cYbLFx),(. (1)

Such form of LI will be called resolved with respect to or -resolved. If each LI of a

linear semi-algebraic formula is depending on x , is represented in the allowed form,

then the LSF will be called represented in the x-allowed form. Is represented in the

allowed form, then the LSF will be called represented in the x -allowed form.

By transforming the formula),...,1(mEEF according to the rules of proposition-

al algebra of a disjunctive normal form, one can obtain its representation in the form

of a set of LI systems. However, such representation is not the only one and is there-

fore poorly suitable for computer algebra algorithms. The main result of this work is

the definition of the canonical form of a LSF that is possessing by the property of

uniqueness and by the other useful properties, and the description of its construction

algorithm. The proposed canonical form of a LSF is the direct generalization of the

canonical form of the LI system representation and the algorithm for its construction,

those where presented in [29, 30]. The algebraic programming methodology used in

[29] lies in a constructive definition of a multisorted algebraic system [31] whose

objects are represented in the form of expressions, and algorithms compute values of

these expressions, i.e., construct their canonical forms [32–37]. The basic canonical

form of an SLI is the polyhedron of solutions to the SLI in the form of the union of a

finite number of trapezoids. This canonical form uses the idea of projection (elimina-

tion of a quantifier) from the Fourier-Motzkin [38,39] and Tchernikov [40] methods.

Definition3. The formula of a x -segment)](,),([YRxYLs over a set of varia-

bles YxY , , is a double linear inequality in the form.)()(YRxYL .

If },....,1{ myyY , then the formula)](,),([YRxYLs is interpreted on the

space
1m

Q as an elementary dihedral area

)](0)(|
1

),0()(qRqqL
m

QqqsM

 - x - segment.

Inequalities that are represented in the x -resolved form of the form)(YRx or

)(YLx , can be transformed in x -segments:)](,,[YRxs or

],),([xYLs .

Let
m

QM and)](,),([YRxYLs . Define the restriction Ms of segment s

on M as follows::)(&))()(()](,),([MYYRxYL
df

MYRxYLMs .

Ms if and only if the condition is satisfied))()(()(qRqLMqq . This

condition will be written in the form)()(xRxL M . It is obvious that there is a property

'],,['],,['],,[MRxHMMHxLMMRxLM . (2).

The relation (2) defined on the set of segments the operation of reduction and the

inverse operation of partitioning the set on the part. The exact definition of the parti-

tion is given below.

2.1. Systems of Linear Inequalities and Trapezoids

On the vector variables },...,{ 1 nxxX defined the order nxx ...1 and denoted

},...,{ nj

df

j xxX

Let 1,...,1)],(,),([11 njXRxXLs jjjjjj ,

QRLRxLs nnnnnn ,],,,[.

Definition 4. The set T , defined by the formula nsssT ...21 (the parentheses

are grouped by default to the right), is called a trapezoid in space nQ .

Denote by jT the trapezoid njj sss ...1 . Then

1TT , 1,...,2,1,1 njTsT jjj ,

And 1jT - is the projection jT on the subspace
1 jnQ , that are determined by

the coordinates },...,{ 1 nj xx .

Thus, the trapezoid T is defined by a sequence of projections onto a decreasing

sequence of subspaces
11 ... QQQ nn

, and each projection is also a trapezoid.

The representation of a trapezoid T in the form of a sequence of its projections

will be denoted by the formula
)1()1()(... TTTT nn
.

A convex set
nQP , that is representing the solution of a system of linear ine-

qualities is called a polygon.

Definition 5. By a partition of a set
nQA we mean its representation in the

form of a union of subsets kAAAA ...21 , that

nAADimji ji)(.

This means that different elements of the partition cross over a set whose dimen-

sion is less than the dimension of the space (only a common boundary can exist).

The polygon P can be represented in the form of a partition mTTP ...1

into trapezoids mTT,..., . The algorithm for this representation is described in [29].

Definition 6. The partition mTTP ...1 will be called irreducible if for any

pair of trapezoids ji TT , can’t be applied the operation (2).

Arrangement of elements of polygon partitioning on trapezoid. The irreducible

partition of the polygon into trapezoids is unique up to permutations of the trapezoids

of the partition.

The sequence can be ordered in accordance with the following properties. If
)()(

1 ,..., n
m

n
ss then the sequence of projections of an irreducible partition of a polygon

mTTP ...1 onto the axis nOx , then or
)()(n

j
n

i ss , or 0)(
)()(

n
j

n
i ssDim ,

i.e.
)()(

,
n
j

n
i ss either coincide, or don't intersect, or are adjacent. Therefore,)()(

1 ,..., n
m

n
ss

can be represented so that they are located on the axis nOx in ascending order. If

)()(
,...,

1

n

i

n

i l
ss are pairwise distinct numerical segments, then the ordering will have the

form

...],...,,,[...],,,[...
)(

132
)()(

121
)()(

1
1211

n

in
n

i

n

in
n

i

n

l
sLxLssLxLss

],,[1
)(

 lnl
n

m LxLs ,

where 121 ... lLLL . Then the polygon P can be represented in the form

)...(...)...()...(111 211 miiii TTTTTTP
l

or

...)...()...(
)()1()1(

1

)()1()1(
1 22111

 n

i

n

i

n

i

n

i

n

i

n
sTTsTTP

)()1()1(

1
)...(n

m
n

m
n

i
sTT

l

.

Denote the partitions of trapezoids in parentheses through
)1()1()1(

...,,,
21

 n
m

n

i

n

i
PPP .

Then
)()1()()1()()1(

...
2211

n
m

n
m

n

i

n

i

n

i

n

i
sPsPsPP

.

The property of polygon partitioning that are described above holds for projec-

tions of any dimension. Namely, let lTTP ...1 - is a irreducible partition of a

polygon with common 1k - th projection)1(kT :
)1()()1()1()(

1
)1(

11 ...,...,... kk
lll

kk
TTTTTTTT .

Then lTT,..., can be ordered in such a way that the canonicity property is ful-

filled:

...],...,,,[...],,,[...
)(

132
)()(

121
)()(

1
1211

k

ik
k

i

k

ik
k

i

k

l
sLxLssLxLss

],,[1
)(

 lkl
k

m LxLs , (2.1)

121 1(1(1(... lTTT
LLL kkk . (2.2)

An irreducible partition of the polygon into trapezoids ordered in accordance with

the canonical property will be called the canonical decomposition or the canonical

sum.

Since
)(j

iT = projection)1(j
iT onto a subspace

jQ , the Definition 5 means that

in the canonical sum any projections of trapezoid summands can intersect only along

their boundary. Relation (2) can be called an operation of bringing of similar.

Theorem 1. Let be a system of linear inequalities and
nQP ia a polygon (a

convex set in
nQ), defined by this system. Then P can be represented in the form of

the canonical sum of trapezoids kTTP ...1 .

Algorithm 1 (intersection of trapezoids). On the set of trapezoids in space
nQ it

is natural to define the operation of intersection 21 TT . As shown in [29], this inter-

section can be represented as the canonical sum of trapezoids. Consider the algorithm

for computing the intersection ''
121 ... kTTTT . Let 21, TT in the form

n
n

n
n

sTTsTT 2
)1(

221
)1(

11 ,

. Then 21 TT is evaluated recursively "from below-

up".

Recursion basis:

),()(21
)1(

2
)1(

1212121 nn
nn

nn ssTTTTelseTTss

,),,[max()],min(),max(121212121 xLLssRRLL nnnnnnTnn

 nnnn sselseRR 2121)],min((3)

Recursion step:

Suppose that
)(

2
)(

22
)(

1
)(

11 ,
kknkkn

TTTTTT

 and
)(

2
)(

1
kk

TT has already

been calculated, and ''
1

)(
2

)(
1 ... l

kk
TTTT . Then, due to the distributive mark

«++»with respect to a mark «», the computation reduces to the calculation
')(

2
)(

1)(j
knkn

TTT

, and this calculation, in turn, reduces to calculation

.,...,1,)('
21 ljTss jknkn The result of the operation must satisfy the conditions

in (3).

Since),min(),,max(2121 RRLL are not linear combinations, the result of the op-

eration of intersection of segments knkn ss 21 on
'
jT depends on the mutual ar-

rangement of these segments on the trapezoid
'
jT .

The relation)()(YRYL T is defined as follows:)()(YRYL T , if for any vector

TY 0 the inequality)()(00 YRYL k holds. In the canonical form of a representation

of a trapezoid T , these relations must be satisfied for any value 1,...,1, nnk on

subspaces
kQ .

Let us first consider the problem of calculating the intersection 21 ss on T in

general terms.

Let],,[],,,[222111 RxLsRxLs , TsTTsT 2211 , , and

2211 , RLRL TT .

Let)(jTiij LLTLL ,)(jTiij RRTRR , jTi

df

ij RLLR ,

2,1,],,,[][jiRxLLR ji

df

ij (4)

And we list the relations in the form of rewriting rules for all variants of the mutu-

al arrangement of the lower and upper caps 21, TT , writing formulae (3) in terms of

(4):

(12 RR // variants 1-6

1. 2112 TTLR ,

2. 2121211212][&)(LRLRTTLLRL T ,

3.
211121

2121211212

][

&][)(&)(

LLLRLR

LLLRTTLLRL TT

4. TLRTTLLLR 21211221][& ,

5. 21111221212121][][)(& LLLRLLLRTTLLLL T ,

6. 22112 TTTLL

);

(&)(1212 LRRR T // variants 7-11

1.
2122

122121211212

][

&][&)(

RRLR

RRLRLRTTLLRL T

2.
211221121121

1221211212

][&][

&][)(&)(

RRLRLLRRLRLR

LLLRTTLLRL TT

,

3. 12222121211221][][& RRLRRRLRTTLLLR ,

4.
212112

1221111221212121

&][

&][][))(&

LLRRLR

RRLLLRLLLRTTLLLR T

5.

211212112121][][RRLRRRLRTTLL

);

()(&)(1212 TT LRRR // variants 12-14

1.
,&][&][,

&][)(&)(

21211221122212

1221212121

LLRRLRLLRRLRLL

RRLRTTLLLR TT

2.
,&][&

][&][)(&

2121122112

11121221212121

LLRRLRLLRR

LRLRRLRTTLLLR T

3. 21122121][RRLRTTLL

);

(& 1221 LRRR // variants 15-17

1. 22112 TTTLL ,

2. 211212222121][][LLLRLLLRTTLL T ,

3. TLRTTLL 122121][

);

()(& 2121 RLRR // variants 18-19

1. 211212222121][][LLLRLLLRTTLL T ,

2. 21122121][LRLRTTLL

);

1. 2121 TTRR . // variant 20

Algorithm 2 (Variant recognition) is described in [30].

Algorithm 3 (Intersection of polygons). The operation of polygons intersection

21 PP is described by a system of ratio - rewriting rules. Let

21 222212112111 ...,... kk TTTPTTTP .

Represented 21,PP as HhPGgP 21 , , where

2111, ThTg ,
21 222112 ...,... kk TTHTTG .

The basic rule is:

HGhGgHghHhGg)())(((5)

Let],[''],,[' hhgg rlThrlTg . Then, if hg rr gH , and if

gh rr hG . This makes it possible to simplify rule (5). We introduce the follow-

ing access functions: for sTT ' , sTBase
df

)(, for],,[RxLs

RsRPLsLP)(,)(. Then (4) simplify:

HGhGghHhGghBaseRPgBaseRP))(())(())((

HGgHghHhGgelse))(((6)

Derivatives rules are derived from (5) for special cases G or H :

)()())(())((HhgelseghHhggBaseRPgBaseRP gHgh (7)

hGghhGghBaseRPgBaseRP)())(())((

ghhGgelse)((8)

The rewriting system (6) - (8) represents an algorithm for polygons intersecting.

2.2. Linear Semi-Algebraic Formulae and Polytrapezoids

Definition6. Let m
m QTYxyyY ,),,...,(1 . The algebra of x - poly-

segments (polysegments) over the base T is a constructive extension of the algebra

of x - segments which elements of carrier have a

form: ikk LTRxLRxLRxLTS ,]),,[...],,[],,([2211 ,

)(),(YRRYL iii (9)

with the following conditions:

1. kTkTTMTT RLRLRL ...2211 , 1 ii LR ; (10)

2. if for some i 1 ii LR , the record (3) is reduced in accordance with (2):

],,[],,[],,[111 iiiiii RxLRxLRxL .

On the algebra of polysegments defined set-theoretic operations of intersection

and union. It's obvious that

TRxLTRxLTRxLRxL kkkk],,[...],,[]),,[...],,([1111 .

Definition7. Let),...,(1 jj xxX , nj ,...,2,1 . Define the sequence jS recur-

sively:

1.
11111111,...,1,,],,,[kjjiii ssSkiQbabxas - Basic, 1x - poly-

sergment, 11 ST
df

 .

2. For any 1,...,1 nj 1jS - 1jx is a polysergment over jT , and

jj

df

j TST 11 .

A set nT (or simply T) is called a polytrapecoid in space nQ . Obviously,

11 ... SSST nn , and jT - projection 1jT onto the subspace
jQ , defined by the

coordinates jxx ,...,1 .

The polytrapecoid T is defined by a sequence of projections onto a decreasing se-

quence of subspaces 11 ... QQQ nn , with each projection also a polytrapezoid.

Algorithm 4 (intersection of polytrapecoids). Let 21,PTPT be a polytrapecoid

and 21 PTPTP . Obviously, P can be represented as a canonical sum of poly-

trapecoids. The algorithm for intersecting polythracoids computes P recursively

"bottom-up".

Basis of recursion.

Let nn SSPTSSPT 22121111 ...,... . Then

)()(21
)1(

2
)1(

121 nn
nn

SSPTPTPTPT

 (11)

The relation (11), in accordance with Definition 6, 1 defines a recursion basis -the

calculation algorithm of nn SS 21 , which is defined by the rewriting rules (6) - (8)

and represents the sum of the segments of the numerical axis xOx , satisfying (10).

Step of recursion.

Let for some k)(
2212

)(
1111 ...,... k

kn
k

kn STSSPTSTSSPT , , where

)(kST is the sum of polythracoids, representing)...()...(2211 nknnkn SSSS , i.е.

)...()...(2211
)(

nknnkn
k SSSSST ,

)(
22111121))...()...((k

knkn STSSSSPTPT (12)

Then we rewrite (12) in the form
)(

211221111121)))(...()...((k
knknknkn STSSSSSSPTPT ,

reducing the problem to the step of recursion - computing)(
21)(k

knkn STSS .

Since
)(kST is the sum of polytrapecoids,)()(

1
)(...

k
l

kk PTPTST

)(
21

)(
121

)(
21)(...)()(

k
lknkn

k
knkn

k
knkn PTSSPTSSSTSS For

the calculation,
)(

21)(
k

jknkn PTSS algorithms 1-3 described above are applied.

Algorithm 5 (unification of polythracoids). Let 21,PTPT are the polythrape-

zoids and 21 PTPTP . P can be represented in the form of a canonical sum of

polytrapecoids. Let

n
n

n
n

SPTPTSPTPT 2
)1(

221
)1(

11 ,

.

Let nnnnnnnnn SSSSSSSSS 122
'
2121

'
12112 ,,

Then nnnnnn SSSSSS 12
'
2212

'
11 , and

)1(

1
1
2

)1(
2

'
1

)1(
121 ((

n
n

n
n

n
PTSPTSPTOrdPTPT n

n
SPT 12

)1(
2)

 (13)

where the function ()Ord orders the summands. The calculation algorithm

nnn SSS 12
'
2

'
1 ,, in (13) computes nS12 , using algorithms 1-3 and recursively computes

)1(
2

)1(
1

nn
PTPT . The calculation algorithm nnnnnn SSSSSS 122

'
2121

'
1 , is

similar to algorithm (3).

In conclusion, we note that the algebra of linear semialgebraic sets is constructed

as a chain of extensions of the algebras of trapezoids, polygons and polytrapezoids by

an overload of set-theoretic operations &,

Theorem 2. Every linear semialgebraic set M (see Definition1) can be uniquely

represented as a sum of polytrapecoids: kGTGTGTM ...21

4 The Canonical Forms of Logical Formulae off the

Enumerated Type

An enumerated data type we have defined as a finite ordered set

},...,,{ 21 maaaA with logical operations that are order predicates and equality pred-

icates. We restrict the consideration with the predicate of non-strict order, because the

strict order obviously is expressed by non-strict order, order is denoted as "," and

equality is denoted as "" .

Consider unquantified formulae of applied logic of predicate over the type Exam-

ine unquantified formulae of applied logic of predicate off the type A in the signature

of logical connectives &, to determine their canonical forms that are analogous

to the canonical forms of linear semi-algebraic formulae which were mentioned

above.

The algorithm for the canonical form calculation of the logical formulae off

the enumeration type

Suppose that },...,{ 1 nxxX , nxx ...1 - is an ordered set of object variables

and);,...,(1 XPPF k is a formula of the applied predicate logic off A by the atomic

predicates kPP ,...1 and by the object variables from the set X . The atomic predicates

kPP ,...1 have the form yxyxyx ,, , where yx, are/or the object variables with

the aim of defining A , or the elements A .

The preliminary simplification);,...,(1 XPPF k is the elimination of the equalities

and the bringing of atomic equalities to the form yx or yx , where Xx ,

AXy , and if Xy , then .yx

Submit the x - segments],,[RxL as double inequalities RxL , and trapezoids

in a form nssT ...1 ,],,[iiii RxLs . Each inequality can be represented as a trap-

ezoid. Stand for maa max,min 1 . Then, by convention of an enumerated type, for

Xx a priori we have the representation

max],[min,)0(xsx , (*)

and for inequalities yxyx , = accordingly

max],,[],,[min, xysyxs yxyx . (**)

In accordance with this, each atomic inequality yxP
ijj or yxP

ijj of

the formula);,...,(1 XPPF k can be presented in the form of an atomic trape-

zoid njj
j ssT ...1
)(

,
ij

x - the segment of which has the form (**), and the other

segments have the form (*). We replace the logic ligaments &, by operations , .

As a result, the calculation of the canonical form);,...,(1 XPPF k is reduced to the

calculation of values);,...,()()1(XTTF k .

Algorithms for computing of the canonical forms of trapezoid intersections, poly-

gons, polytrapezoids and of linear semialgebraic formulae off an enumerated type are

essentially represented by the foregoing algorithms. Point out, that due to the simple

of right part of inequalities the algorithm 2 of the option recognition has simpler form

than in the general case.

5 The Canonical Forms of Logical Formulae off the Multiple

Type

Multiple data type)(USet is defined as the algebra of subsets off a finite set –

universum },...,,{ 21 muuuU , signature set-theoretic operations ,, and

affiliations operations Aa , equality ba and negation of equality ba . Consid-

er the unquantified formulae of applied predicate logic off the type)(USet of varia-

bles),...,(1 nxxX of type Var in the signature of the logical connectives

 ,&, to determine their canonical forms, which are analogous to canonical

forms of linear semi-algebraic formulae, which were mentioned above.

First of all, give consideration the logical product of the form

 &&0 , where

ljl

j

j

kik

i

i

nn zx

zx

zx

yx

yx

yx

Ax

Ax

Ax

.
,

.
,

.

22

11

22

11

22

11

0 (1)

elementary conjunctions of which have the appropriate form zxyxAx ,, ,

where XzyxUA ,,, . It can be assumed that the conditions are met in (1):

1. In the part 0 all conjuncts are included in the form njAx jj ,..,1, . (In

particular, the conjunct can be in the form Ux j or ax , i.e. }{ax .

 2. If in is a conjunct in the form yx , then the conjunct of the form yx

will be absent in (otherwise, a conjunction is false).

The following relation can be used for the simplification of (1):

)(&)()(&)(&)(yxBAxyxByAx (2)

After this transformation we obtain the conjunction of the form

 &&0

ljl

j

j

knn

k

k

kk zx

zx

zx

yx

yx

yx

Ax

Ax

Ax

.
,

.
,

.

22

11

22

11

22

11

0 , (3)

where },...{},...,{ 11 kkn xxyy . Analyze the),...,(),,...,(110 nkk xxXxxX .

So, if we consider only the parts ,0 of the (3) conjunction, variables of the sub-

set 0X will be considered as independent, and the variables X as correlate relations

of equalities of the part of the formula (3). Thus, we have received the canonical

form &0 of formula (1) with up to the order of elementary conjuncts. The

uniqueness is ensured by the ordering of variables in the left part of the elementary

conjuncts: nkkk xxxxxx ...;... 2121 .

To simplify &0 the formula (3) define a mapping baseXX : :

equ

base

Fy)x(,

X,
)(

ify

хifx
x

Apply the relation to the of formula (3)

))()(()(yxyx (4)

as a rewriting rule. As a result, in we obtain the equalities canonized system

of negations, in which 0101 },...,{,},...,{ XzzXxx ljlj . If in this system is an

equation in the form xx then the formula (3) is false.

Theorem 3. Formula (3) which is obtained as a result of above transformations, to

the formula (1) is the canonical form of (1).

On the analogy of the terminology used above, the canonical form (3) of the for-

mula (1) is designated as a trapezoid off the multiple type. On the analogy of the

presentation of the trapezoid off the type Rat , formula of trapezoid off the multi-

ple type will be written in the form

 lnkk &...&,...... 111 ,

lnkk &...&,...,... 1110 .

Label the trapezoid lnkk &...&,...... 1111 by)1(n . Then

we can write n
n)1(.

Operations of union and intersection by trapezoid off the multiple type

Let 21, be the trapezoids off the multiple type. Then the canonical form

21 is calculated as the algorithm described above, applied to

)(&)(2,2,01,1,0 .

The calculation algorithm of 21 is the modification of the algorithm of pol-

ytrapezoids union. Supposing that

2,2,2,021,1,1,01 &&,&& . The projection of the trap-

ezoid on the coordinate set nOx of variable nx is equal or nA , if equality

nn Ax is an elementary conjunct 0 , or jA , if)(,)(0 jnjj xxAx .

Let us assume that the
nn ,2,1

, are the projections 21, on nOx . Then

32121 , (5)

where

nnnnnnn
nn ,2,12,1,23,2,1,1 ,, ,, , (6)

1,1,1.1,
)1(

1,0
)1(

1,0 ,,

nn

,

 3,1,2,3,
)1(

2,0
)1(

3,0 ,,

nn

, (7)

)1(
2

)1(
1

1(
2

nnn
. (8)

The formulae (5) - (8) represent a recursive algorithm for the computing

21 .

6 Conclusions

The development of systems for the formulae simplifying, which would allow the

posed tasks remains an open problem. In addition, no less important is the need to

implement appropriate algorithms that makes it possible to simplify formulae at the

more efficient level.

The main result of this work is the definition of the canonical form of a linear

semi-algebraic formulae that is possessing by the property of uniqueness and by the

other useful properties, and the description of its construction algorithm.

In the next article authors plan to describe the implementation of the proposed al-

gorithms by the method of insertion modeling and results of their using in tasks of

programs verification.

References

1. CVC4, http://cvc4.cs.nyu.edu/web/

2. Mathsat, http://mathsat.fbk.eu/

3. Cimatti A. et al. The mathSAT5 SMT solver //International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems. – Springer Berlin Heidelberg,

2013. – С. 93-107.

4. QEPCAD, https://www.usna.edu/CS/qepcadweb/B/WhatisQEPCAD.html

5. Greuel G. M., Pfister G., Schönemann H. Singular 2.0: A Computer Algebra System for

Polynomial Computations. University of Kaiserslautern (2001).

6. Singular, https://www.singular.uni-kl.de/

http://cvc4.cs.nyu.edu/web/
http://mathsat.fbk.eu/
https://www.usna.edu/CS/qepcadweb/B/WhatisQEPCAD.html
https://www.singular.uni-kl.de/

7. COCOA, http://cocoa.dima.unige.it/

8. COCOA, http://cocoa.dima.unige.it/cocoalib/

9. MINIZINC, http://www.minizinc.org/

10. STP constraint solver, http://stp.github.io/

11. Redlog, http://www.redlog.eu/

12. Satallax, http://www.ps.uni-saarland.de/~cebrown/satallax/

13. Isabelle, https://isabelle.in.tum.de/

14. E-SETHEO, http://www4.informatik.tu-muenchen.de/~schulz/WORK/e-setheo.html

15. MiniSat, http://minisat.se/

16. SMTInterpol, http://ultimate.informatik.uni-freiburg.de/smtinterpol/

17. About SMTInterpol, http://gtps.math.cmu.edu/tps-about.html

18. Theorem-proving system, http://dic.academic.ru/dic.nsf/eng_rus/793528/theorem

19. Gandalf, http://deepthought.ttu.ee/it/gandalf/

20. Vampire, http://www.vprover.org/download.cgi

21. Vampire 4.1-SMT System Description, http://smtcomp.sourceforge. net/

2016/systemDescriptions/ Vampire.pdf

22. QEPCAD - The Solution Formula Construction Phase,

https://www.usna.edu/CS/qepcadweb/B/user/Solution.html

23. The E Theorem Prover, http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html

24. iProver, http://www.cs.man.ac.uk/~korovink/iprover/

25. LEO-II, http://page.mi.fu-berlin.de/cbenzmueller/leo/

26. Z3Prover, https://github.com/Z3Prover/z3

27. ABOUT WALDMEISTER, http://www.waldmeister.org/

28. SPASS, http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-

workbench/

29. M. S. Lvov, “Algebraic approach to the problem of solving systems of linear inequalities,”

Cybernetics and Systems Analysis, 46, No. 2, 326–338 (2010).

30. Lvov, M. S., and V. S. Peschanenko. "Trapezoid method for solving systems of linear ine-

qualities and its implementation in insertion modeling." Cybernetics and Systems Analy-

sis 48, No. 6, 931-942. (2012)

31. J. Goguen and J. Meseguer, “Ordered-sorted algebra I: Partial and Overloaded Operations,

Errors and Inheritance,” Computer Science, 105, No. 2, 217–273 (1992).

32. J. A. Goguen, J. W. Thatcher, and E. Wagner, “An initial algebra approach to the specifi-

cation, correctness and implementation of abstract data types,” in: R. Yeh (ed.), Current

Trends in Programming Methodology, Prentice Hall, NJ (1978), pp. 80–149.

33. M. S. Lvov, “Synthesis of interpreters of algebraic operations in extensions of multisorted

algebras,” Visn. Khark. Nats. Un-tu, No. 847, 221–238 (2009).

34. M. S. Lvov, “Verification of interpreters of algebraic operations in extensions of multisort-

ed algebras,” KhUPS, No. 3(21), 127–137 (2009).

35. M. S. Lvov, “Method of inheritance in implementing algebraic computations in mathemat-

ical systems of educational destination,” Syst. Upravl., Navigats. 3 Zv’yazku, TsNDINiU,

No. 3 (11), 120–130, (2009).

36. M. S. Lvov, “Method of morphisms in implementing algebraic computations in mathemat-

ical systems of educational destination,” Systemy Obrobky Informatsii, No. 6 (80), 183–

190 (2009)

37. M. S. Lvov, “An approach to the implementation of algebraic computations: Computations

in propositional algebra,” Visn. Khark. Nats. Un-tu, Information Technologies:

Mathematical Modeling, No. 863, 157–168 (2009).

http://cocoa.dima.unige.it/
http://cocoa.dima.unige.it/cocoalib/
http://www.minizinc.org/
http://stp.github.io/
http://www.redlog.eu/
http://www.ps.uni-saarland.de/~cebrown/satallax/
https://isabelle.in.tum.de/
http://www4.informatik.tu-muenchen.de/~schulz/WORK/e-setheo.html
http://minisat.se/
http://ultimate.informatik.uni-freiburg.de/smtinterpol/
http://gtps.math.cmu.edu/tps-about.html
http://dic.academic.ru/dic.nsf/eng_rus/793528/theorem???history=0&pfid=1&sample=1&ref=2
http://deepthought.ttu.ee/it/gandalf/
http://www.vprover.org/download.cgi
https://www.usna.edu/
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
http://www.cs.man.ac.uk/~korovink/iprover/
http://page.mi.fu-berlin.de/cbenzmueller/leo/
https://github.com/Z3Prover/z3
http://www.waldmeister.org/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/
http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/

38. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall “The double description

method” in: Matrix Games, Fizmatgiz, Moscow (1961), pp. 81–109.

39. G. L. Zeidler, Lectures on Convex Polytopes, Springer, Berlin–New York (1994).

40. S. N. Tchernikov, Linear Inequalities [in Russian], Nauka, Moscow (1968).

41. Z3, http://rise4fun.com/z3/tutorial/guide

42. De Moura, Leonardo, and Nikolaj Bjørner. "Z3: An efficient SMT solver." International

conference on Tools and Algorithms for the Construction and Analysis of Systems.

Springer Berlin Heidelberg (2008).

http://rise4fun.com/z3/tutorial/guide

