
Metamorphic Viruses’ Detection Technique Based on the 

Equivalent Functional Block Search 

 

Oleg Savenko1, Sergii Lysenko2, Andrii Nicheporuk3 and Bohdan Savenko4 

Khmelnitsky National University, Khmelnitsky, Ukraine 
1 savenko_oleg_st@ukr.net  

3 sirogyk@ukr.net 
3 andrey.nicheporuk@gmail.com 

4 savenko_bohdan@ukr.net 

ki.khnu.km.ua 

Abstract. The article presents a new technique for metamorphic viruses 

detection based on the search of equivalent functional blocks. The method takes 

into account the obfuscation techniques of blocks reordering. 

The method involves the searching of the correspondences between the 

functional blocks of the metamorphic versions, and consists of two stages. On 

the first stage the equivalent functional blocks based on the statistical evaluation 

of the instructions appearance in the block are to be searched. The second stage 

involves the choice refinement of equivalent blocks and selection the most 

appropriate block, which will be used for the the forming of the feature vector 

of similarity for metamorphic viruses’ versions. The method carries out the 

classification of feature vectors with the involvement of fuzzy logic. The 

proposed method allows to reduce the number of false positives in comparison 

with the previous study. 

Keywords: metamorphic viruses, functional block, basic blocks, obfuscation, 

opcode. 

Key Terms: Model-Based Software System Develoment, SoftwareComponent, 

Software System. 

1 Introduction 

Today in the world the problem of the virus detection is very actual. The number 

of new malware is growing up rapidly. In particular, according to Symantec in the 

second half of 2016, there were about 96 million unique copies of the malicious soft-

ware [1]. The main profit concerning to the virus spreading is the stealing of confi-

dential information, damage the operation of computer systems, own ambitious mo-

tives, etc. 

mailto:andrey.nicheporuk@gmail.com


Among all set of virus programs the metamorphic viruses occupied one of the 

leading places. According to the Kaspersky company the metamorphic virus 

Virus.Win32. Sality.gen is in the top five of the most spread viral threats (5.53% of all 

local threats) [2]. The main difficulty of metamorphic viruses detection is due to us-

age of the techniques of reordering and replacement of its own instructions. Each new 

version created by the metamorphic virus varies from the existing ones. This feature 

downplays the signature analysis usage, which is the base of most antivirus tools [3]. 

This paper is devoted to solving the problem of the metamorphic viruses detec-

tion, where the similarities between its modified versions is more than 10%. In partic-

ular, researches presented in [4] have demonstrated that metamorphic versions’ simi-

larity at about 10% is characteristic for NGVCK metamorphic generators. Versions of 

code, generated by this tool, are considered to be one of the most obfuscated. Other 

classes of metamorphic viruses in the work are not considered because they are unappli-

cable and have a large computational complexity for the development and detection [5]. 

2 Related Works 

Research community pay particulat attention to the problem of the metamotphic 

viruses spread [6-10], however, the effectiveness of detection techniques is still unsuf-

ficient. 

In [6] authors involved the markov chain of instruction trace to make graph kernel 

and made similarity matrix based on transition probability between instructions. The 

classification is made by using the support vector machine. Approach is based on the 

usage of Ether malware analysis framework based on Xen Virtual machine for 

execution of binary. It is able to identify more then 100 basic instructions by the 

monitoring procedure. It also is ble to execute the similarity check, which is based on 

the usage of the Guassian and Eigen vector method. This approach showed efficiency 

of detection at the level of 96.41%, including polymorphic viruses, which is signifi-

cantly higher than the known antiviral tools, however, the authors didn’t take into 

account metamorphic viruses, which in many cases are similar to polimorphic. 

In [7] the aproach for metamorphic malware detection is presented. It is based on 

the evaluation of the the similarity of executables using the opcode graphs. Technique 

involved the opcodes extraction from the program, and a weighted opcode graph 

construction. As a node of the the graph is opcode and there is an edge from the node 

to a successor opcode. The edge is given a weight. It takes into accoutn the frequency 

of opcode occurrence. Proposed approach perform the comparison of the obtained 

graph with the known malware graph. This comparison is based on a scoring function 

presented in the paper. However, the executable file size increasing leads to the in-

creasing of the opcodes number and to the increasing of the graph size. In this case, 

the task can become the NP-complete. 

In the [8] method for metamorphic viruses which is based on machine learning 

approach like support vector machine with histogram intersection kernel is proposed. 

It involves such steps: the extraction of the feature histograms from each portable 

executable file, mapping them into the feature space using a histogram intersection 

kernel. Using the histogram intersection kernel maked it possible to find the optimal 



hyperplane for separating the metamorphic variants from benign programs in a feature 

space of very high dimension. 

In [9], metamorphic detection was carried out using a similarity index technique 

based on edit distance and pairwise sequence alignment. The edit distance between 

two opcode sequences extracted from files is computed by replacing each opcode 

with a corresponding symbol. Authors test these similarity measures on the challeng-

ing problem of metamorphic virus detection. The results from the edit distance and 

pairwise sequence alignment methods shows that the morphed viruses having random 

percentages of dead code and subroutine insertions (i.e., 5%, 15%, 25% and 30%) are 

still detectable within a certain error rate. However the approach does not consider the 

use of antiemulation technology that can use viruses. 

In [10], to detect metamorphic virus variants, authors presented an approach based 

the use of hidden Markov models (HMMs) to capture the statistical properties of vi-

ruses in the same family. They generated 200 NGVCK viruses, trained 25 models and 

used the trained models to classify 65 programs including both NGVCK viruses and 

other random non-viral programs. In most cases, presented models were able to have 

a detection rate of over 90% and a false positive rate of less than 10%. However, if 

the benign software’s fragment of code is inserted into the metamorphic virus’s body, 

approach will demonstrate the increase of false positives. 

The work [11] is based on the similarity matching techniques by mean of a 

statistical scanner employing feature-ranking methods. Approach investigated the 

feature-ranking methods such as Term Frequency – Inverse Document Frequency 

(TF-IDF), Term Frequency – Inverse Document Frequency – Class Frequency (TF-

IDF-CF), Categorical Proportional Distance (CPD), Galavotti – Sebastian - Simi 

Coefficient (GSS), Weight of Evidence of Text (WET), Term Significance (TS), 

Odds Ratio (OR), Weighted Odds Ratio (WOR), Multi Class Odds Ratio (MOR), 

Comprehensive Measurement Feature Selection (CMFS), and Accuracy2 (ACC2) as 

the base of metamorphic viruses detection. The classification of malware and benign 

programs is performed by considering top ranked features obtained using individual 

feature selection methods. In order to ascertain applicability in real time malware 

scanner, evaluation of feature ranking methods, were performed using McNemar test. 

However, the proposed approaches based on statistical evaluation of instruction 

are uneffective for metamorphic viruses, which are using the technique of the code’s 

blocks replacement, because the frequency of the instructions occurrence in a modi-

fied version of metamorphic virus will not be changed. 

A state of art demonstrates the necessity of the development of the new approach-

es for metamorphic viruses’ detection, which will be able to improve its efficiency. 

3 Previous Work 

In [12]presented a technique for metamorphic virus’s detection, based on the us-

age of the modified emulators in the corporate area network. In the proposed ap-

proach any program that comes from the Internet to the host is checked by the suspi-

cion program analyzer and is sent to every host on the network. If the file is defined 



as suspicious, it goes to the emulation unit in order to obtain the modified versions of 

the same file. On the next stage the comparison of the original version of file before 

the emulation with the modified file’s version aftter emulation is performed. In order 

to compare two versions of program, it is partitioned into functional blocks and the 

comparison is performed using the Damerau-Levenshtein metrics. The result of the 

comparison process is the feature vector of the similarity for the metamorphic viruses’ 

versions. In order to provoke the metamorphic properties of program, each host of the 

network was equipped with a modified emulator, which had different conditions for 

suspicious code execution. 

The similarity vectors for the versions of the metamorphic viruses, obtained from 

each host of the network, are sent to the server, where the conclusion about the mem-

bership of suspicious program to one of the metamorphic viruses’ classes is made. If 

such program is identified as a virus, information about it is sent to the host, which 

was infected by program, and the program is blocked.   

Experimental results presented in [12] demonstrated the efficiency of the meta-

morphic viruses’ detection at the level of 85%. However, the proposed technique 

showed a great number of false positives. The main reason was that the functional 

blocks which were compared in order to obtain the feature vector of the similarity for 

the metamorphic viruses’ versions in many cases were not equivalent. 

4 Metamorphic Viruses’ Detection Technique Based on the 

Equivalent Functional Block Search 

In order to eliminate the disadvantages of the technique described in [12] and in-

crease its efficiency, a new approach for unknown metamorphic viruses’ detection is 

proposed. It includes improvements in the term of the functional blocks choice for its 

comparison, which will reduce the rate of false positives and increase the efficienty of 

detection. 

The procedure of the equivalent functional blocks search for comparison consists of 

two steps. At the first stage, the equivalent functional blocks are determined. Such de-

termination is based on the statistical evaluation of the instructions appearance in the 

block. The second stage involves the choice refinement of equivalent blocks and selec-

tion the most appropriate block, which will be used for the purpose of the rating evalua-

tion of similarity between the program pF  before emulation and the program sF  after 

the emulation. 

Let us assume the functional block FB  as the maximal sequence of disassembled 

instructions },,...,,{ 21 jm IIII that is characterized by the following properties: 

- the control flow must enter the block from the first instruction; 

- the block must not contain the instructions of unconditional or conditional 

jumps;  

- the end of the block must have at most one control-flow instruction.  



For automatic generation of functional blocks that meets such properties,  the IDA 

Pro disassembler with Gaph view option was used. In order to simplify the analyzing 

and processing procedures, the operands of the instruction are ignored. 

Let us describe a program F  as a directed graph. Let us denote V – a set of func-

tional blocks of program F , that is },...,,{ 21 nFBFBFBV  . Thus 

},{ FalseTrueVVE   is the jump in the the control flow between the blocks, 

caused by the control transfer instructions, where True and False specify the condi-

tions of the jump, then },{ EVF   it will be a directed graph, where the nodes are 

functional blocks, and the edges – connections between the blocks in the control flow 

of the program.  

4.1  Search of the Equivalent Functional Blocks 

In order to avoid detection by antiviruses the metamorphic viruses use a wide 

range of evasion techniques, such as garbage instructions insertion (junk code), blocks 

reordering, usag of the equivalent instructions and registers [6-8]. The usage of these 

techniques allows creation of metamorphic versions with the same functionality, but 

using different instructions (table 1). It limits the advantages of the signature method. 

Table 1. The usage of obfuscation techniques: junk code insertion, blocks reordering and 

instruction replacement 

Original code  Junk code insertion  Block reordering  
Instruction re-

placemnt 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

push ecx 

push eax 
push eax 

sidt [esp-05h] 
pop ebx 

add ebx,1Ch 

cli 
mov ebp, [ebx] 

 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

nop 

xor ax,ax 
push ecx 

push eax 
inc eax 

push eax 

dec [esp-0h] 
dec eax 

sidt [esp-02h] 

pop ebx 
add ebx,1Ch 

cli 

mov ebp, [ebx] 

 

call 0h 

pop ebx 

jmp S2 

S3:   push eax 

push eax 
sidt [esp-02h] 

jmp S4 
add ebx, 1Ch 

jmp S6 

S2:   lea ecx, 
[ebx+42h] 

push ecx 

jmp S3 
S4:   pop ebx 

cli 

jmp S5 
S5:   mov ebp, [ebx]  

 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

sub esp, 03h 

sidt [esp-02h] 
add [esp], 1Ch 

mov ebx, [esp] 
inc esp 

cli 

mov ebp, [ebx]  

 

In order to decrease the computational complexity method involves no processing 

all executable but only single PE EXE section. 

Thus, on the step of determining the similarity of a suspicious program to the met-

amorphic virus, on the basis of search of the equivalent functional blocks, an im-

portant task is the localization of search. Because constituent units in the structure of 



executable files of the PE EXE format is sections, search of the equivalent functional 

blocks will be carried out only in certain sections. 

Selection of sections, in which should be searched equivalent functional blocks 

between the programs before and after the emulation is carried out according to the 

following rules: 

Determining the entry point of the program and section in which it located. 

- if the name of this section differs from the standard names of the sections (.text 

.data, etc) or the section has the attribute of the access as executable, then the section 

is defined as a labeled section for comparison; 

- if in a section in which is located the entry point,  has a call or a jump that con-

tains the address of the last section, then the section is defined as a labeled section for 

comparison; 

- else last section of executable is defined as a labeled section for comparison. 

After determining of PE EXE sections for the program before emulation and ap-

propriate section for the program after emulation, the next step is to search of the 

equivalent functional blocks between these programs. 

Let us assume the equivalent functional blocks of the programs A and B  two or 

more functional blocks, which perform the same functions and are modified using the 

code obfuscation. 

Let us denote the program before emulate as pF , and after emulation – sF . After 

the disassembly, performed by the interactive disassembler IDA Pro, two sets of func-

tional blocks are obtained: },...,,{
21

pppp F
m

FFF
fbfbfbFB  and

},...,,{
21

ssss F
n

FFF
fbfbfbFB  . Then in order to find the equivalent functional blocks 

the Term Frequency – Inverse Document Frequency statistical metric applied for each 

function block of programs pF
 
and sF , is used: 

)
0.1

log(*
jk i

i
FB

n

N

n

n
s





 (1) 

where, in  -  the number of occurrences of the і-th opcode into the functional 

block; 

akk ,1  – the number of opcode in functional block, where 
ak – total number of 

the assembler instructions; 

N – total number of function blocks, 
sp FF NN  ; 

jn – the number of functional blocks where the і-th opcode is placed. 

The result of the statistical evaluation of the presence opcode in FB for program 

before emulation pF and for the program after emulation sF  are the rating matrices 

)( pF
FBM  and )( sF

FBM . The rows of matrix contain the functional blocks of the 

program, and columns – the opcodes presented in the function block. Each cell of the 

matrix determines the appearance score of the i-th  opcode in the j-th functional block 

(fig. 1): 



 
       a)                  b) 

Fig.1. Rating matrix of the opcodes appearance in function bloks for the program: a) before 

emulation )( pF
FBM ; b) after emulation )( sF

FBM  

In order to evaluate the equivalent functional blocks, the next step requires the 

calculation of the similarity score between two functional blocks of the program pF

and sF . For this purpose, the squared Euclidean metrics was used: 

,)(),(

0,0

2



k

ji

ji
F
j

F

i ssFBFBE sp  (2) 

where, is  – evaluation of the opcode appearance in the і-th block for program pF , 

js  – evaluation of the opcode appearance in  j-th block of program sF . 

If the value of similarity score between two functional blocks is less the defined 

threshold  , ),( sp F
j

F

i FBFBE , then the recalculatio of similarity score between 

the functional blok of the program 
pF

iFB and the next block that follows the block

sF
jFB , ),(

1
ssp F

j
F
j

F

i FBFBFBE


 , is performed. Mentioned above steps are repeated 

until the value of the evaluation of the similarity is less than or equal to the threshold

 . Threshold value is defined in experimental way. 

It is possible that functional block of the program pF
 
may correspond to several 

functional blocks of the program sF  (Fig. 2). The reason is that the metamorphic 

virus may apply the technology of the code partitioning of its code into blocks. 

An example of a schematic presentation of the equivalent program’s functional 

block before and after emulation placed in the two-dimensional space is shown in Fig. 

2. For example, one block of program before emulation, can correspond to 5 

equivalent functional blocks of the program after the emulation. In ordr to to 

eliminate the uncertainty, it is necessary to carry out the choice refinement of 

equivalent functional blocks. 



 

Fig. 2. A schematic presentation of the equivalent program’s functional block before and after 

emulation placed in the two-dimensional space  

4.2  The Choice Refinement of Equivalent Functional Blocks 

The task of the choice refinement of equivalent blocks is to selection the most ap-

propriate block, obtained in the previous step. For this purpose, the minimum value of 

the similarity among the set of equivalent functional blocks is chosen: 

),,...,,min(
21

sssp F
n

FFF

i eFBeFBeFBFB   (3) 

where, sss F
n

FF
eFBeFBeFB ,...,,

21
 – equivalent functional blocks corresponding to 

the block 
pF

iFB . 

In order to perform the choice refinement of equivalent blocks let us define the 

probability of the opcodes sequence in the functional block. For this purpose for each 

equivalent functional blocks sss F
n

FF
eFBeFBeFB ,...,,

21
 and block

pF

iFB let us con-

struct a probability matrix for the opcodes sequence. Each cell of the matrix will con-

sist the ratio of the number of the opcodes pair appearance to the total number the 

opcodes in the row. 
 

For example, if functional block is defined by the following opcodes sequence: 

mov, push, lea, pop, mov, push, push, push, call,mov, then the probability matrix for 

opcodes sequence would be as shown in fig 3. 

 

Fig. 3.  Probability matrix for opcodes sequence in the functional block 

The last step of the equivalent functional blocks’ determination is comparing of 

the probability matrices of opcodes sequence for the program before and after 

emulation (4) and choice of the minimum similarity: 



2
1

1,

,,2
)||(

1






N

ji

jiji ba
N

R

, 

 (4) 

where, jia ,  the matrix cell for the functional block 
pF

FB , jib ,  – the matrix cell 

for the functional block sF
eFB , N – total number of opcodes  for  the 

pairs  of  blocks.  

The obtained estimate for pairs of blocks allows determining the equivalent func-

tional blocks with high probability. 

4.3 Biulding the Feature Vector of Similarity for Metamorphic Viruses’ Ver-

sions 

After receiving the pairs of the equivalent functional blocks, the next step is to 

pairwise compare them using Damerau-Levenshtein metrics and to construct the fea-

ture vectors of the metamorphic viruses’ samples’ similarity using the algorithm of 

Wagner-Fisher.  

Let us present the the feature vectors of the metamorphic viruses’ samples’ simi-

larity as a tuple: 

Y
MRIDXL

MRIDXL
V

nnnnnn
m ,

)(),(),(),(),(),(

)(),(),(),(),(),( 111111














, 

 (4) 

where n ,...,1  pairs of the equivalent functional blocks between the program be-

fore and after the emulation, n – a number of the equivalent blocks; L – the Damerau-

Levenshtein distance between the equivalent blocks і  of the program before and 

after emulation; X – the number of the required opcode exchange operations; D – the 

number of the required opcode removal operations; I – the number of the required 

opcode insertion operations; R – the number of the required opcode replacement op-

erations; M – the number of matches between opcodes in the equivalent functional 

blocks of the program before and after emulation; Y – the danger degree of the pro-

gram’s behavior. 

The danger degree of the program’s behavior is estimated on the basis of the anal-

ysis of API calls that describe the potentially dangerous behavior of the metamorphic 

virus. Let us present the behavior of the known metamorphic virus as a pattern (as bit 

strings) rublknP  ,...,,...,,...,,...,,...,,..., 111111  , where 




K
nn 0

}{

– a set of file functions; 





K

kk 0
}{  – a set of API functions that check whether the 

program execution is performed in the virtual environment; 





K

ll 0
}{ – a set of 

functions needed to implement the installation of the new components to the system; 





K
bb 0

}{ – a set of functions that provide access to the Internet; 



K
uu 0

}{ – a 

set of processes’ and threads’ functions; 





K

rr 0
}{ – a set of API calls for infor-



mation system definition;  KKKKKK ,,,,,  – a number of the corresponding 

to API calls; f  - function of the destructive commands execution, which demon-

strates the construction of the pattern for the metamorphic virus behavior P, 

P
f
 . 

Thus, the monitored suspicious program’s behavior we can present as the string

paaR ,...,1 , where ia – a sequence of the API-calls of the observed program. 

Let us assume the boolean function of the string matching ),( RP  between the 

known behavior pattern and the behavior of the observed program which indicates 

matching or mismatching.  

Let us divide the set of behavior patterns },,{
lowmediumhigh YYYY PPPP   into the 

three groups, which indicate the suspicious degree: high, medium and low.  

Each group contains a set of patterns that describe the fullness of viruses’ lifecycle 

implementation. The example of patterns that belong to three different groups are 

given below: 

ConnectSocket  sOpenProcesileAFindFirstFirectoryAGetSystemD: highY

 sOpenProcesileAFindFirstFirectoryAGetSystemD: mediumY

ileAFindFirstFirectoryAGetSystemD: lowY  

Thus, having the behavior of the monitored program (formed pattern on the modi-

fied emulator of the host), it is to be compared with the set of with patterns of known 

malware. If there is a matching between the behavior of the monitored program and 

one malicious pattern, we are interesting in the suspicious degree Y of this pattern. It 

will be used in the procedure of the making the conclusion about the system infection 

with the metamorphic virus. 

Note. In order to solve the string comparison problem the approximate string 

matching algorithm was used. It deals with the k differences problem solving. If we are 

given two strings, the sequence T = t1t2...tm and the pattern Φ=y1y2…yn in some 

alphabet Σ, and an integer k, the algorithm enables finding all substrings Φ' of T with 

the edit distance at most k from Φ. The edit distance intends the minimum number 

operations for editing (the differences) which are required for converting Φ' to Φ. 

[13]. The patterns preprocessing needs time O(mn). 

4.4  Making the Conclusion About the System Infection with the Metamorphic 

Virus 

In order to make a conclusion about the systems infection, the obtained feature 

vectors of the metamorphic viruses’ samples’ similarity from each host are to be clas-

sified by the means of the fuzzy inference system [14,15] (fig. 4). 

The input linguistic variables of the FIS are: «the similarity degree of the suspi-

cious program with its modified version based on the Lowenstein distance » (L), «the 

similarity degree of the suspicious program with its modified version based on the 

number of insert operations» (I), «The similarity degree of the suspicious program 

with its modified version based on the number of removal operations» (D ), «the simi-



larity degree of the suspicious program with its modified version based on the number 

of replace operations» (R), «The similarity degree of the suspicious program with its 

modified version based on the number of permutation operations» (X) , «The similari-

ty degree of the suspicious program with its modified version based on the number of 

match operations»  ( M) and  «the danger degree of the program» ( Y ). 

Let us assume the output linguistic variable as «the similarity degree to the meta-

morphic virus» (SM). 

Each input and output linguistic variables are defined by the term set: Low, Medi-

um, High. As the membership functions for inputs the trapezoid was chosen, for the 

output - triangular. In order to determine the program’s similarity to metamorphic 

virus 87 rules are involed. For example, one of the rules can be presented as follows: 

HighisSMthenHighisYandMediumisMandLowisRand

andHighisIandMediumisDandHighisXandMediumisLif

)()()(

)()()()(
 

Having the result obtained by the fuzzy inference system, the suspicious program 

is blocked or continue its execution. 

 

Fig. 4. The scheme of fuzzy inference system for the determination of the membership degree 

for each virus version to one of the metamorphic viruses’ class 

5 Experiments 

In order to determine the efficiency of the proposed technique series of experi-

ments was conducted. To do this, the set of metamorphic virus versions’ were gener-

ated. For this purpose three types of metamorphic generators: Next Generation Virus 

Creation Kits (type NGVCK), Second Generation Virus Generator (type G2) and 

Virus Creation Lab for Win32 (type VCL32)[16] were used. Thus, the 228 programs 

with the features of the metamorphic viruses (76 programs of each NGVCK, VCL32 

and G2 type) were generated. The set of all generated metamorphic viruses were di-



vided into two groups: one group for training set (set of prototypes) and another for 

testing (38 instances in each). 

Each program (from both sets) was executed in the emulator (Qemu [17]) for the 

purpose of its new version obtaining [12]. Each program was disassembled and parti-

tioned into the functional blocks using the interactive disassembler IDA Pro [18]. In 

order to choose the equivalent functional blocks of the program, a new software that 

allows the similarity evaluation for a pair of functional blocks for the program before 

and after emulation was developed.  

The similarity evaluation for a pair of functional blocks for the testing's programs 

before and after emulation and set of behavior patterns (as discussed above in Section 

4.3 ) are the basis of the knowledge base for fuzzy classification.  

Experimnts include the investigation of the number of correctly chosen equivalent 

functional blocks. Table 2 shows the average size of tested programs and the results 

correctly chosen functional blocks of the program before and after emulation in com-

parison with the approach [12], described in section 3, where the block reordering is 

not taking into account.  

Table 2. Correctly chosen functional blocks for the program before and after emulation  

Metamorphic 

viruse’s class 

Number of correctly 

chosen FB, % (ap-

proach [12]) 

Number of correctly 

chosen FB, % (new 

approach) 

The average 

programs size, bytes 

NGVCK 85 96 8241 

VCL32 88 100 6123 

G2 91 100 2564 

In order to evaluate the efficiency of the metamorpchic viruses’ detection, we cal-

culated the true positive and false positive rates. In the experiments, the value of 

similarity score between two functional blocks was defined as the threshold  =0.6 . 

In addition, the efficiency of the proposed approach with taking into account the 

obfuscation degree of the generated metamorphic viruses’ versions was investigated. 

For this purpose, each metamorphic virus was obfuscated by the insertion of the junk 

code – 10%, 20% and 30% of the total number of opcodes of the metamorphic virus. 

In Fig. 5 the ROC curves for metamorphic versions without and with obfuscation and 

for different values of the obfuscation degrees for NGVCK, VCL32 and G2 types of 

the metamorphic viruses are presented. Fig. 5 shows that a minimum level of false 

positives without additional obfuscation is observed in all cases (the number of false 

positives for G2 – 0). The highest value of false positives is observed for metamor-

phic versions of NGVCK with 30% of additional code obfuscation (5% false positives 

while 85% true positives). 

     



   
a) b) c) 

Fig. 5. ROC curves for metamorphic versions without and with obfuscation and with different 

values of the obfuscation degrees: a) NGVCK, b)VCL32, c) G2 

6 Conclusions 

The paper presents a new technique for metamorphic viruses detection based on 

the search of equivalent functional blocks. It takes into account the obfuscation tech-

niques of blocks reordering. 

The method involves the searching of the correspondences between the functional 

blocks of the metamorphic versions, and consists of two stages. On the first stage the 

equivalent functional blocks based on the statistical evaluation of the instructions 

appearance in the block are to be searched. The second stage involves the choice re-

finement of equivalent blocks and selection the most appropriate block, which will be 

used for the the forming of the feature vector of similarity for metamorphic viruses’ 

versions. The method carries out the classification of feature vectors with the in-

volvement of fuzzy logic.  

The proposed technique allows metamorphic viruses detection in which the simi-

larities between versions are more than 10%. The technique demonstrates the low 

level of the false positives and high level of true positives of the metamorphic viruses 

detection.  

References 

1 Security Response Publications. Monthly Threat Report. Availabe: https ://www.syma- 

ntec.com/security_response/publications/monthlythreatreport.jsp 

2 Kaspersky Security Bulletin 2015. Overall statistics for 2015. Availabe: https://  secu- 

relist.com/analysis/kaspersky-security-bulletin/73038/kaspersky-security-bulletin-

2015-overall-statistics-for-2015/ 

3 Raiyn, J.: A survey of Cyber Attack Detection Strategies. International Journal of Secu-

rity and Its Applications, 8(1), pp. 247-256 (2014) 

https://www.symantec.com/security_response/publications/monthlythreatreport.jsp
https://www.symantec.com/security_response/publications/monthlythreatreport.jsp


4 Desai, P., Stamp, M.: A highly metamorphic virus generator. Int. J. Multimedia Intelli-

gence and Security, Vol. 1(4), pp. 402-427 (2010) 

5 Podlovchenko, R.I., Kuzyurin, N.N., Shcherbina V.S., Zakharov V.A.: Using algebraic 

models of programs for detecting metamorphic malwares. Journal of Mathematical 

Sciences, Vol. 172 (5),  pp. 740-750 (2011) 

6 Anderson, B., Quist, D., Neil, J., Storlie C., Lane, T.: Graph-based malware detection 

using dynamic analysis. Journal in Computer Virology, 7, pp. 247-258 (2011) 

7 Runwal, N., Low, R.M., Stamp, M.: Opcode Graph Similarity and Metamorphic Detec-

tion. Journal in Computer Virology, 8, pp. 37-52 (2012) 

8 Nagaraju, A.: Metamorphic malware detection using base malware identification 

approach.  Journal Security and Communication Networks, 7, pp. 1719-1733  (2014) 

9 Patel, M.: Similarity tests for metamorphic virus detection. Master’s thesis, San Jose 

State University (2011) 

10 Wong, W.: Analysis and Detection of Metamorphic Computer Viruses.  Master’s  the-

sis, San Jose State University (2006) 

11 Kuriakose, J., Vinod, P.: Unknown Metamorphic Malware Detection: Modelling with 

Fewer Relevant Features and Robust Feature Selection Techniques, IAENG 

International Journal of Computer Science, Vol. 42(2), p139-151 (2015) 

12 Pomorova, O., Savenko, O., Lysenko, S., Nicheporuk, A.: Metamorphic Viruses Detec-

tion Technique Based on the Modified Emulators. ICT in Education, Research and 

Industrial Applications, Integration, Harmonization and Knowledge Transfer, Vol. 

1614, Kyiv, June 2016. – PP. 375-383 (2016) 

13 Tarhio, J., Ukkonen, E.: Approximate BoyerMoore String Matching. SIAM Journal on 

Computing. - 1993, Vol. 22, No. 2, pp. 243-260 

14 Drozd, J., Drozd, A., Antoshchuk, S., Kharchenko, V.: Natural Development of the 

Resources in Design and Testing of the Computer Systems and their Components. In: 

7th IEEE International Conference on Intelligent Data Acquisition and Advanced 

Computing Systems: Technology and Applications, pp. 233--237. Berlin, Germany 

(2013) 

15 Kondratenko, Y., Kondratenko, N.: Soft Computing Analytic Models for Increasing 

Efficiency of Fuzzy Information Processing in Decision Support Systems. Chapter in 

book: Decision Making: Processes, Behavioral Influences and Role in Business 

Management, R. Hudson (Ed.), Nova Science Publishers, New York, 41-78 (2015) 

16 VX Heavens Computer virus collection. Availabe:http://vx.netlux.org 

17 Qemu. Open source processor emulator [online] Available: http://wiki.qemu.org/Main_ 

Page  

18 Hex-Rays, S.A.:IDA Pro 5.5 Hex-Rays, S.A.:IDA Pro 5.5 https://www.hex-

rays.com/products/ida/ 

https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/

