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Abstract. The analysis of existing methods of construction of prime numbers is 
carried out in the presented paper. New concepts related to pseudoprime 

numbers are introduced. Theorems are formulated and proved on the basis of 

which such numbers are constructed. Using pseudoprime numbers can 
significantly reduce the number of candidates viewed as primes. The proposed 

corollaries of the theorems allow to significantly increase the ranges of 

unambiguous determination of such candidates. The results of the conducted 

experiments are presented, their analysis is carried out. The most important 
result of applying pseudoprime numbers is the estimation of the number of 

numbers to be checked. For large numbers with a size of more than 200 decimal 

signs, they make up less than 8 percent of the numbers on a given interval, and 

as the size of the numbers increases, this percentage decreases. Based on 
experimental data, basic properties of pseudoprime numbers are formulated. 
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1 Introduction  

The development of infocommunication technologies has led to a decrease in the 

protection of all high-tech systems. Particularly acute is the issue of ensuring 

functional safety in such systems as the Internet of Things, Cloud storages, big data. 

Any computer that performs the functions of managing, processing or storing data, 

becomes available from anywhere in the world. Ensuring information security, as an 

integral part of the functional safety, is extremely reluctant, because it costs a lot of 

money, but there is no profit. Numerous materials in the press confirm the necessity 

of such works, the most famous became an example of the virus Stuxnet, which 

paralyzed the Iranian nuclear program [1].  

One of the areas of information security is ensuring the confidentiality of 

information circulating in the system. As the most general way to solve this problem 

is cryptographic protection. As is a well-known resistance of cryptosystems is 

determined by the secrecy of the key. In asymmetric encryption systems, this secrecy 

depends on the size of the key. One of the most general public key systems is the 



RSA system, which is based on the factorization problem, which belongs to the class 

of NP-complete tasks [2]. At the time of writing of this paper, the size of the used 

keys is 2048 or more bits. And here another problem of finding a prime number of 

large dimension arises. 

In number theory, the problem of finding and proving the primality of a number is 

one of the main. The complexity of finding prime numbers is due to the fact that there 

is no function of their distribution on the number axis. 

To build large prime numbers the following method is used in many sources [3-5]. 

A sequence of primes p1 < p2 < p3 < . . . is constructed until the prime number of the 

required quantity will be found. The prime odd number p1 is selected randomly. After 

the prime number pi−1 is constructed, a random number r, 1≤r≤pi−1 – 1 need to be 

selected. Let r = 2s · t,  t is odd. Then, as a candidate for the next prime number pi is 

taken n = 2rpi−1 + 1 = 2
s+1

 *pi−1 · t + 1. Further, n is checked for primality by known 

methods. The disadvantage of this approach is obvious - the probability of guessing at 

large prime numbers (> 200D) is too small.  

Another group of methods [4,5] is based on the choice of the arithmetic sequence 

or the sum of products of primes with unity. The main disadvantage of all considered 

methods is obtaining predictable prime numbers, which are easy enough to repeat. If 

the thus obtained prime number is used as keys in encryption systems, then it 

becomes possible to build a pool of keys most usually used by users [6]. This leads to 

a fairly quick compromise. This problem is already openly stated by specialists in the 

field of information security [7].  

In papers [6, 8, 9] the practical, theoretically grounded possibility of determining 

the minimum distance between two adjacent prime numbers is shown. This is 

achieved through pseudo-prime numbers that can be used to determine the possible 

location of prime numbers. With the proposed approach, it is possible to sharply 

reduce the number of checked numbers by the primality with no single prime number 

being skipped.  

The next step in the search for a prime number is the definition of the primality of 

the number being checked. As mentioned above, none of the existing exact algorithms 

can solve this problem within an acceptable time. It should be noted that in [10] the 

deterministic polynomial algorithm AKS of the definition of the primality of numbers 

is given, but its complexity is O(log
18

n) [11]. This fact makes this algorithm 

inconvenient for practical application. 

2 Terminology  

Let us consider the concept of a pseudoprime number. This concept was introduced 

for numbers successfully passing the Fermat test. Depending on the primality tests 

that check numbers for primality, there are different types of pseudo-prime numbers. 

These types include pseudoprime numbers of Fermat, Fibonacci, Lucas, Euler-Jacobi. 

What is common to all these numbers? All these numbers, being composite, 

successfully pass the corresponding tests for primality. 



Definition of the pseudoprime number. The pseudoprime is a number N whose 

primality is not proved. 

Definition of a cardinality of the pseudoprime number. Let us introduce the 

concept of the cardinality of the pseudoprime number. The cardinality P of a 

pseudoprime number N is the guaranteed number of prime numbers that is not 

divisible by a given number. Obviously, the greater cardinality of such number, the 

greater the probability that this number will be prime. 

Definition of a prime number. Based on the cardinality of the pseudoprime 

number, we can formulate the concept of the prime number. The pseudoprime number 

N will be proved as prime if and only if its cardinality is equal to P = (N
1/2

) on the 

interval of natural numbers from 1 to N
1/2

. In this definition, a (N) refers, as in the 

theory of numbers, the number of primes on the interval of natural numbers from 1 to 

N.  

Definition of a factorial of the prime number. Let us introduce the concept of the 

«factorial of the prime numbers» and denote it as follows π(n)!. This entry denotes the 

product of all primes not greater than n. For example, π(7)!= π(8)!= π(9)!= 

π(10)!=2*3*5*7=210. In fact, the π(n)! means the number of prime numbers in the 

product. This term in its meaning coincides with a term primorial, introduced by H 

Harvey Dubner in 1987 and received pn# designation [11]. In the author's opinion, the 

proposed designation π(n)! is more obvious, therefore in this paper, such designation 

form is used. 

3 Basic Theorems Of The Theory Of Pseudoprime Numbers  

Theorem 1. The sum (difference) of products of two disjoint sets of prime numbers is 

a prime number with each of the elements of these sets. 
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P – a set of prime numbers. 

Proof of the theorem 1. 

Consider any element а belonging to the set А (а  А). It is obvious that for any a, 

the following expressions are true:  
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Therefore, based on the above arguments,  
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A similar proof can be given for any element b belonging to the set В (bВ) and, 

as a result, we get that 
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Since the element х belongs to the union of two disjoint sets of primes A and B, 

then it can be stated that 
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The theorem is proved. 

A corollary of Theorem 1. If we take π(n)! and add 1 to it, the resulting number will 

be relatively prime with all prime numbers not greater than n. As a matter of fact, this 

formulation almost completely repeats Euclid's theorem on the infinity of primes. On 

the basis of the Theorem 1, the next relatively prime is the number obtained as the 

sum of π(n)! and the first prime number that is greater n. If to π(n)! Add the next 

prime number, and then we get a number that is relatively prime to numbers, taking 

part in this action.  

Repeating this procedure, we can get a set of relatively prime numbers. Given that 

the obtained numbers are not guaranteed to be divisible by the first π(n) prime 

numbers, it can be argued that these numbers are pseudoprime with the cardinality 

π(n) +1.  

Theorem 2. On the interval between π(n)! +1 and added to π(n)! prime numbers All 

numbers will be composite, except for those that have turned out as a result of 

addition, And the maximum added prime number must be less than the square of the 

first prime number to be added.  

Proof of the theorem 2. 

We begin the proof by considering the restrictive part of the theorem. Let us 

consider a prime number аi, that belongs to the set of primes А.  

,)n(B;BA;Aai       

where В – the cardinality of the set А.  

If we consider a number equal to the sum of π(n)! and the product of two primes 

greater than n, then, according to Theorem 1, it will be a pseudoprime number. The 

resulting number can be a prime number. Suppose that the minimal prime number, 

greater than n, is equal to a. Then the minimum product of two prime numbers, 

greater than the n, the number will be greater а
2
. Thus, the maximum prime number 

that can be used to uniquely define a pseudo-prime number must be less than а
2
. The 

restrictive part of the theorem is proved. 



Consider the interval between numbers π(n)!+1 and π(n)!+а, where а is the nearest 

to n prime number. The smallest number on this interval is π(n)!+2. It is quite 

obvious that this number is divided by 2. Similarly with the following number π(n)!+3 

that is divided by 3. In the general case, all numbers that are not greater than π(n)!+ n 

have at least one common divisor with π(n)!. If we consider the following number 

π(n)!+n+1, then it will always be even, like all the others, which result from the 

addition of two odd numbers n and k. If we consider numbers of the form π(n)!+n+2k, 

then they can be either prime or composite.  

If the number is composite, then it can be represented, in accordance with the main 

theorem of arithmetic, in the form of a product of primes, and at least one of the 

factors is not greater than the number n.
 
If the number π(n)!+n+2k is prime, then it 

will correspond to the number а. This means that on the interval between the numbers 

π(n)!+1 are π(n)!+а all numbers are composite. 

Let us consider the whole interval indicated in the Theorem 2. Since we consider 

we consider numbers less than а
2
, then similar arguments can be applied to all the 

numbers of the interval under consideration. Thus we can conclude That on the 

interval between the numbers π(n)!+1 and π(n)!+а
2  

All numbers will be guaranteed 

composite, except for those obtained as the sum between π(n)! and prime numbers in 

the interval from а to а
2
. 

The theorem is proved. 

It should be noted that the Theorem 2 can be formulated as follows: «On the 

interval between π(n)!-1 and subtracted from π(n)! prime numbers, all numbers will 

be composite except those obtained as a result of subtraction, and the maximum 

deductible prime number must be less than the square of the first subtrahend prime 

number». The proof is similar to the above. 

A corollary of Theorem 2. The above range concerns the unique definition of 

pseudoprime numbers. If the added prime number аj is greater than а
2
, part of 

numbers which will be within the range between π(n)! + аj
 
and π(n)! + аj+1 can be 

prime numbers. In order not to miss such locations of prime numbers, It is necessary 

to construct all possible combinations of primes greater than n, including the value of 

their degrees. At the same time, these combinations should not be included among 

which are the factors of π(n)!.  

As it is proved in the Theorem 2, to uniquely define a pseudoprime number, the 

value of the prime number to be added must not exceed the square of the first prime 

number greater than  n. Is this large or small? When considering large numbers n > 

200 D this will be a relatively small number. For example, π(1000)! will correspond 

to the number 416 D. The interval of numbers on which it will be necessary to search 

for a prime number will be 1018081. There are 79682 pseudoprime numbers on it, 

which is less than 8 percent of all numbers in this interval. It should be noted the 

possibility of increasing the checked interval. According to the Theorem 1, by 

subtracting a prime number from π(n)! it is possible to increase its size to 2036162, 

and the number of checked numbers to 159364. It is obvious that with the increase of 

n, the interval will increase rapidly. 

Any number can be represented as a sum of two numbers. Proceeding from the fact 

that all pseudoprime numbers are odd, any of them can be represented as a sum of 



even and odd numbers. Obviously, there are a lot of variants of representation and the 

larger the number are, the more such options are. 

Each of the terms, according to the main theorem of arithmetic, can be represented 

as the product of primes. 

Theorem 3. If at least in one of the variants of representing a pseudoprime number in 

the form of two terms, these terms turn out to be not mutually prime numbers, then 

the considered number is a composite. 

Proof of the theorem 2. Let us take two disjoint sets of prime numbers A and B. 

А ={ai}, B = {bj}. 

ai, bj ϵ N. 

A∩B = Ø. 

Let us consider the products of the set A and B. Obviously, these are two relatively 

prime numbers. 

gcd  (∏ai, ∏ bj) = 1. 

To ensure that the numbers are not relatively prime, they must have a common 

divisor. Введем в каждое из произведений по множителю С. In this case 

gcd (С*∏ai, С*∏ bj) = С. 

The sum of these two numbers can be represented in the form 

С*∏ai + С*∏ bj = С (∏ai + ∏ bj). 

In this case, the number under investigation will be the composite. As it should be 

proved. 

4 Using Pseudoprime Numbers  

When using primes, two problems usually occur: finding a prime number and 

checking the selected number for primality. The main disadvantage of the known 

algorithms for finding prime numbers is a simple search of candidates. In the best 

case, the numbers multiples of two are discarded. Using pseudoprime numbers, only 

the numbers that are obtained as a result of applying theorems 1 and 2 are checked. 

Organizing the checking of a number for primality, both deterministic and 

probabilistic methods are used. Both groups are well known and described in many 

sources [3, 13, 14]. 

The range of single-valued definition of pseudo-simple numbers will be denoted 

as the step of the definition (SD). An SD size can be easily calculated using the 

theorem 2. Table 1 presents a data that allows evaluating the performance of the 
proposed method for finding pseudoprime numbers. The table contains the following 

data: 

 the π(n)! size – Number of decimals in the product; 

 the highest factor (HF) – the greatest prime number in π(n)!; 



 the number of primes (NP) – number of primes on SD; 

 the percentage of the checked numbers (% checked) – ratio of the number of prime 

numbers in SD to the total number of numbers on the SD. 

As can be seen from Table 1, the growth rate of a quantity of the size π(n)! 

Exceeds the growth rate of the factorial dependence that once again emphasizes the 

complexity of the problem of finding prime numbers of large dimensions. The most 

interesting data, which are given in the table, in the opinion of the author, is the 

percentage of the numbers being checked. For large numbers (D> 200), this index is 

less than 9% of the total number of numbers on the interval being checked. If you take 

any algorithm that will only check for numbers ending in 1,3,7,9, then the percentage 

of the checked numbers will be 40. When the cardinality of a pseudoprime number 

increases, the percentage of the numbers being checked decreases. 

Table 1. 

π(n) Size HF SD NP % checked 

10 9 29 961 152 22 

20 25 71 5329 685 13 

30 46 113 16129 1847 11,5 

40 68 173 32041 3396 10,6 

50 91 229 54289 5472 10 

60 115 281 80089 7782 9,7 

70 140 349 124609 11631 9,3 

80 166 409 175561 15873 9 

90 191 463 218089 19361 8,9 

100 218 541 299209 25836 8,6 

110 246 601 368449 31310 8,5 

120 274 659 436921 36594 8,4 

 

To increase the SD size, it is necessary to multiply the obtained product of prime 

numbers before their summation with the corresponding prime numbers by all the 

numbers less than the next prime number for π(n). The obtained results for π(11) are 

presented in Table 2. 



Table 2. 

Calculating the 

beginning of the 

interval 

Begin of the 
interval 

Number of 
checked PN 

Number 
of PN 

π(11)! 2310 34 23 
2* π(11)! 4620 34 21 

3* π(11)! 6930 34 19 

4* π(11)! 9240 34 18 

5* π(11)! 11550 34 16 
6* π(11)! 13860 34 18 

7* π(11)! 16170 34 16 

8* π(11)! 18480 34 14 

9* π(11)! 20790 34 15 
10* π(11)! 23100 34 14 

11* π(11)! 25410 34 15 

12* π(11) 27720 34 21 

 

Based on the theorem 3, a method of checking numbers for simplicity is proposed. 

1. From the given number, the square root is calculated and the result is rounded 

down.  

2. Calculates the difference between the target number and the number obtained. 

3. These numbers are decomposed into factors. 

4. If the factors have at least one the same number, then go to step 8. 

5. From a smaller number, one is subtracted. 

6. If the result is bigger than 1, then go to step 2. 

7. The number is prime. 

8. The number is composite. 

By its idea, the presented method is similar to a quadratic sieve. The difference is 

that the number obtained as a result of the extraction of the square root in the 

proposed method decreases. This is due to the fact that more than one square root can 

have a maximum of one efficient, while the remaining ones will be less than the 

resulting root. 

As an example, consider the number 996533. The square root of this number 

rounded down will be equal to 998. In Table 3t there are numbers equal and less than 

998 and their decomposition, according to the main theorem of arithmetic, in columns 

one and two are. There are the numbers obtained as the difference between the 

checked number for primality and the numbers in the first column, in the third 

column. There is the decomposition of numbers from the third column in the fourth 

column. There is the greatest common divisor in the fifth column.  



Table 3. 

I number 
Decomposition 

of the I-st 

number 

II number 
Decomposition of the 

II -nd number 
gcd 

998 2*499 995535 3*3*5*22123 1 

997 PN 995536 2*2*2*2*43*1447 1 

996 2*2*3*83 995537 17*157*373 1 

995 5*199 995538 2*3*277*599 1 

994 2*7*71 995539 PN 1 

993 3*331 995540 2*2*5*7*13*547 1 

992 2*2*2*2*2*31 995541 3*29*11443 1 

991 PN 995542 2*497771 1 

990 2*3*3*5*11 995543 19*151*347 1 

989 23*43 995544 2*2*2*3*3*3*11*419 1 

988 2*2*13*19 995545 5*199109 1 

987 3*7*47 995546 2*497773 1 

986 2*17*29 995547 3*7*47407 1 

985 5*197 995548 2*2*248887 1 

984 2*2*2*3*41 995549 PN 1 

983 PN 995550 2*3*5*5*6637 1 

982 2*491 995551 PN 1 

981 3*3*109 995552 2*2*2*2*2*53*587 1 

980 2*2*5*7*7 995553 3*3*13*67*127 1 

979 11*89 995554 2*7*17*47*89 89 

 

How effective is this way of confirming the number primality? Obviously, a 

sufficiently long time will be spent on decomposing a large number into multipliers. 

Proceeding from the stated problem of finding a common factor, it makes sense to use 

the well-known Euclidean algorithm for finding the greatest common divisor. 

Before proceeding to the use of the Euclidean algorithm, it is necessary to note one 

more regularity. Most of the pairs under consideration have in their composition the 

first ten primes from 2 to 29. If we multiply these numbers, the result is 6469693230.  

Define gcd of numbers 6469693230 and 996533. gcd (6469693230, 996533) is 1. 

This means that our investigated number is not divisible without a remainder by any 

prime number less than or equal to 29, that cardinality of a number 996533 is proved 

(Р= 10). This means that as soon as the remainder of the division in any iteration 

becomes equal to or less than the number 29, it is possible to assert unequivocally, 

that gcd of this numbers will be equal 1. Using the product of the following 10 prime 

numbers from 31 to 71, it is possible to calculate the gcd of this pair of numbers. 



If we consider table 3, then gcd should be searched between the I and II numbers 

represented in the first and third columns respectively. The result is presented in the 

fifth column. 

The possibility of applying gcd detection methods is quite productive. Although 

this is nothing more than a method of trial division, but the speed of the proposed 

method is much higher. This can be achieved by first calculating the products of 

prime numbers, and their number in the product can be quite large. For example, if we 

multiply all the prime numbers that are less than 1000, and there are 169 such 

numbers, and gcd = 1, then the probability that the test number is composite, will be 

equal 2
-169

[15,16]. It should be noted the fact that the results of the preliminary 

calculation can be stored in a database that will be constantly updated.  

Quite interesting results, from the point of view of parallelization of the calculation 

process, is presented in Table 4. If you take the same number 996533 and repeat the 

process, the results of which are presented in Table 3, having previously increased the 

number several times. Table. 4 shows the number steps NS on which the desired 

result is obtained, depending on the multiplication factor MF. 

Table 4.  

MF 1 2 3 4 5 6 7 8 9 10 

NS 20 79 40 40 8 43 62 66 59 43 

Obviously, the obtained result will depend on the ratio of the two terms and the 

greatest common divisor. 

5 Properties Of Pseudoprime Numbers  

At this moment, the complexity of constructing prime numbers is due to the absence 

of the distribution laws of this numbers. Unlike prime numbers for pseudoprime 

numbers, based on the considered examples, it is possible to reveal some regularities 

conditioned by the properties of these numbers and the method for their construction. 

The first property is repeatability of pseudoprime numbers. This is because it is 

possible to reuse prime numbers in the product of prime numbers. The cardinality of 

the pseudoprime number remains unchanged, and its size increases. This property is 

clearly seen from Table. 2. 

The second property is specularity or symmetry. This property follows from the 

theorem 1. Pseudoprime numbers are symmetric with respect to kπ(n)!. 

6 Conclusions 

The presented paper is the result of three years works on creating the theory of 

pseudoprime numbers. In this paper for the first time a definition of some terms is 

given, some theorems on pseudoprime numbers are formulated or slightly modified, a 



correct proof is given. All the above theoretical calculations are confirmed by the 

carried out experiments, which confirm their correctness. 

The use of pseudoprime numbers significantly reduces labor costs searching for 

prime numbers by specifying a location on the numeric axis where they can be 

located. As the size of the generated number increases, the relative number of the 

considered options decreases. 

Based on the above theorems, it is possible to state quite reliably the possible 

numbers of twins, although this requires additional studies. 

The use of a variety of combinatorial methods for the use of pseudoprime numbers 

makes it possible to assert a high potential for their use in finding prime numbers. 
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