
Technology Oriented Assessment of Software Reliability:

Big Data Based Search of Similar Programs

Vyacheslav Kharchenko1, Svitlana Yaremchuk 2

1 Computer networks and systems department of, National Aerospace University “KhAI”

 17, Chkalov St. Kharkiv, 61070, Ukraine,

v.kharchenko@csn.khai.edu

2 Department of General Scientific Disciplines, Danube Institute of National University

"Odessa Maritime Academy", 9, Fanagoriyskaya St. Izmail, 68600, Ukraine,

svetlana397@yandex.ru

Abstract. The work contains a review of concept, tasks and some solutions for

the Methodology of Technology Oriented Assessment of Software Reliability

(TOAStRa) methodology. Implementation of the methodology, in particular,

prediction of software system (SWS) reliability can be based on processing in-

formation about software with similar attributes and metrics, which is extracted

from big data storages. The technique to search of similar programs has been

suggested. The similarity principle is based on complexity and structure SWS

metrics and metrics of program language similarity. The work represents for-

mulas for calculation of group and average deviation rates describing the SWS

similarity. Software Agent for Search of Similar programs and data processing

(ASS) is developed. Case study related to search programs with the same com-

plexity metrics in data storage is described.

Keywords. Reliability, software system, technology oriented assessment, big da-

ta storages, search of similar programs.

Key Terms. KnowledgeEngineeringMethodology, Metric, Agent, Data.

1 Introduction

1.1 Motivation

Growing customer’s demands to SWS is a cause of their continuous sophistication

[1]. Consequently, cost of verification, number of undetected design faults and charg-

es to cover consequences of failures increase [2]. Available methods are insufficient

to encompass variety and specific features of business processes in the SWS develop-

ing and require substantial expenditures for their adaptation and implementation.

Quality analysis (QA) managers of the IT companies check results of testing and en-

courage correction of a set of test units to ensure correctness of specified functions “at

http://isrg.kit.znu.edu.ua/icteriwiki/index.php/KnowledgeEngineeringMethodology
http://isrg.kit.znu.edu.ua/icteriwiki/index.php/Metric
http://isrg.kit.znu.edu.ua/icteriwiki/index.php/Agent
http://isrg.kit.znu.edu.ua/icteriwiki/index.php/Data

the moment” and don’t take into account actual level of software reliability during

and after finalization of the project. In fact, they don’t apply software reliability

growth model (SRGM) and assessment techniques based on the SRGM, since they

require additional time and resources. In critical domains the required level of soft-

ware reliability and safety is ensured due to multi-step and resource-intensive proce-

dures without measurement and analysis of software reliability indicators to optimize

them. The enlisted factors prevent to implement available models and techniques for

reliability assessment into working practice of software and software-based systems

development companies.

Thus, one of the key challenges for model-based software reliability assessment is a

limited use of mathematical methods, SRGMs and SRGM-based techniques to ana-

lyze and control reliability indicators. To decrease this gap between theory and

practice such methods and procedures of reliability assessment must be embedded

into software life cycle by means of applying special tools and processes. Such tools

should be “envisioned” for developers and applied by QA service for analysis and

feedback for current and prospective software projects assessment.

Besides, there are a lot of software projects having similar functional and complexi-

ty characteristics. Reliability related information (testing, operation data) about such

projects located in data storages may be used to predict corresponding indicators for

“new” SWS to take into account reliability assurance processes as well, as business

processes in general. Hence, technology of big data should be developed, adapted,

and applied to find and to use data for such goals.

1.2 Work Related Analysis

In the course of the SWS development necessity arises to estimate achieved relia-

bility and make a predicting reliability indicators dynamics in future by means of

SRGMs described in works [3-9]. Great number of various SRGMs, SWS types, spe-

cifics of development processes creates difficulties in choice of an optimum model for

individual system. SRGM selection method based on matrix of their allowances has

been proposed in the work [10]. However, the matrix in question should be supple-

mented with newer models. Further development of the method is possible on the

basis of priority setting for allowances with numerical evaluation of their level of

implementation in the course of the SWS development. Such an approach may enable

to obtain more precise numerical evaluations of SRGM adequateness for particular

SWS.

Practical SRGM application requires substantial resources and experts’ qualifica-

tion. Therefore models should be simplified and form a basis for software tools de-

velopment. Their flexibility allows to adapt tools to specific systems and development

processes without substantial expenditures and resources consuming. Embedding

tools into software corporations business processes allows developers to evaluate

reliability of their products in restricted resources conditions. Nowadays multiple

software reliability assessment tools [11] are available for different stages of the SWS

life cycle.

1. At the stage of requirements development: Matrix Requirements Medical, Modern

Requirements Suite, Orcanos Requirements Management, Polarion Requirements,

RequirementsHub, Test Requirements Agile Metric, Visure Requirements, etc.

2. At the stage of software architecture design: GenieBelt, Bluebeam PDF Revu,

progeCAD 2010 Professional, ArchiCAD, AutoCAD, Praesto AE, SketchUp Pro,

MicroStation, SmartDraw, Chief Architect, Clearview InFocus, Newforma PIM so-

lution, Arcon Evo, ConceptDraw PRO, SoftPlan, CorelCAD, Envisioneer, Easy

Blue Print, etc.

3. At the testing stage: Issue Tracking, Software - Asset Bug, BUGtrack, Booking-

Bug, Bug-Track.com, BugApp360, BugAware, BugHerd, BugHost, etc.

However, these tools don’t take into account complexity of developed artefacts (re-

quirements, architectural elements, and modules), preventing developers to concen-

trate their efforts on the most complicated and defective, or exposed to defects, arte-

facts. Development and generation of newer tools taking into note the artefacts’ com-

plexity may enable to overcome existing gap between theory and practice of the SWS

reliability.

Experts of software corporations need experimental data to review and forecast

SWS reliability indicators. Processes of data accumulation run intensely in modern

digital world. From 2005 to 2020, the digital universe will grow by a factor of 300,

from 130 to 40,000 Exabytes, or 40 trillion gigabytes (more than 5,200 gigabytes per

each man, woman, and child in 2020). From now until 2020, the digital universe will

be increasing almost twice every two years [12]. This data includes data necessary for

reliability evaluation from SWS demands management systems, configuration control

systems, defects control systems, and prototypes, initial software code, metrical data,

test-cases, temporary rows of defects’ identification, code analyzers reports, system

logs, users’ reports on SWS failures, etc. They may include audio, visual, graphical,

text and numerical data either structured, or partially structured, or non-structured.

However, such data is not normalized and convenient for direct application. Big data

should be used for its processing.

Big data [13] is an umbrella term that often refers to a process of applying comput-

er analytics to massive quantities of data in order to discover new insights and im-

prove decision-making. It often describes data sets that are so large in volume, so

diverse in variety, and moving with such a velocity that it is difficult to process it

using traditional data processing tools. Big data construes a basis for Business intelli-

gence. Business intelligence refers to the set of technologies and applications that

transform crude data into operational insights that may improve business performance

and decision-making.

The SWS development is a manufacturing sector. It stores more data than any other

sector. As a result, manufacturers have a lot to gain from better use of data to boost

efficiency, drive quality, and improve the way products are designed, composed, and

distributed. According to estimation made in [14], better use of data in manufacturing

may yield up to a 50 percent decrease in product development time and assembly

costs. In fact, International Data Corporation estimates that manufacturing companies

that take full advantage of their data are poised to achieve a $371 billion data dividend

http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=1&click_data%5Bproduct_id%5D=143557&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=143557
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=2&click_data%5Bproduct_id%5D=125390&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=125390
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=2&click_data%5Bproduct_id%5D=125390&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=125390
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=3&click_data%5Bproduct_id%5D=135949&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=135949
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=4&click_data%5Bproduct_id%5D=156884&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=156884
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=5&click_data%5Bproduct_id%5D=142454&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=142454
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=6&click_data%5Bproduct_id%5D=131934&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=softtest&click_data%5Btype_of_listing%5D=spotlight&id=131934
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=7&click_data%5Bproduct_id%5D=146581&click_data%5Bsearch_id%5D=3557856&click_data%5Bshort_name%5D=reqman&click_data%5Btype_of_listing%5D=spotlight&id=146581
http://www.capterra.com/architecture-software/spotlight/148623/GenieBelt/GenieBelt
http://www.capterra.com/architecture-software/spotlight/121586/Bluebeam%20PDF%20Revu/Bluebeam%20Software
http://www.capterra.com/architecture-software/spotlight/103010/progeCAD%202010%20Professional/progeCAD%20USA
http://www.capterra.com/architecture-software/spotlight/2018/ArchiCAD/Graphisoft
http://www.capterra.com/architecture-software/spotlight/80152/AutoCAD/Autodesk
http://www.capterra.com/architecture-software/spotlight/50791/Praesto%20AE/Base%20Builders
http://www.capterra.com/architecture-software/spotlight/80074/SketchUp%20Pro/Trimble
http://www.capterra.com/architecture-software/spotlight/2013/MicroStation/Bentley%20Systems
http://www.capterra.com/architecture-software/spotlight/78945/SmartDraw/SmartDraw
http://www.capterra.com/architecture-software/spotlight/80035/Chief%20Architect/Chief%20Architect
http://www.capterra.com/architecture-software/spotlight/130633/Clearview%20InFocus/Clearview%20Software
http://www.capterra.com/architecture-software/spotlight/118349/Newforma%20PIM%20solution/Newforma
http://www.capterra.com/architecture-software/spotlight/118349/Newforma%20PIM%20solution/Newforma
http://www.capterra.com/architecture-software/spotlight/146638/Arcon%20Evo/Eleco%20Software
http://www.capterra.com/architecture-software/spotlight/131903/ConceptDraw%20PRO/Computer%20Systems%20Odessa
http://www.capterra.com/architecture-software/spotlight/2021/SoftPlan/SoftPlan%20Systems
http://www.capterra.com/architecture-software/spotlight/92736/CorelCAD/Corel
http://www.capterra.com/architecture-software/spotlight/2015/Envisioneer/Cadsoft
http://www.capterra.com/architecture-software/spotlight/124426/Easy%20Blue%20Print/EZblueprint%20com
http://www.capterra.com/architecture-software/spotlight/124426/Easy%20Blue%20Print/EZblueprint%20com
http://www.capterra.com/search-result?class_name=Category&click_data%5Blevel_in_result%5D=1&click_data%5Bposition%5D=2&click_data%5Bproduct_id%5D=&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=isstra&click_data%5Btype_of_listing%5D=directory&id=30675
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=1&click_data%5Bproduct_id%5D=135033&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=cmms&click_data%5Btype_of_listing%5D=spotlight&id=135033
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=2&click_data%5Bproduct_id%5D=144796&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=plmxbug&click_data%5Btype_of_listing%5D=spotlight&id=144796
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=3&click_data%5Bproduct_id%5D=122354&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=apptsched&click_data%5Btype_of_listing%5D=spotlight&id=122354
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=3&click_data%5Bproduct_id%5D=122354&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=apptsched&click_data%5Btype_of_listing%5D=spotlight&id=122354
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=4&click_data%5Bproduct_id%5D=20563&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=plmxbug&click_data%5Btype_of_listing%5D=spotlight&id=20563
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=5&click_data%5Bproduct_id%5D=152312&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=pestcont&click_data%5Btype_of_listing%5D=spotlight&id=152312
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=6&click_data%5Bproduct_id%5D=20169&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=ccarexhelp&click_data%5Btype_of_listing%5D=spotlight&id=20169
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=7&click_data%5Bproduct_id%5D=129027&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=plmxbug&click_data%5Btype_of_listing%5D=spotlight&id=129027
http://www.capterra.com/search-result?class_name=Product&click_data%5Blevel_in_result%5D=&click_data%5Bposition%5D=8&click_data%5Bproduct_id%5D=97631&click_data%5Bsearch_id%5D=3557908&click_data%5Bshort_name%5D=plmxbug&click_data%5Btype_of_listing%5D=spotlight&id=97631

within four years. Companies that use data-based decision-making report about 5% to

6% boost in productivity [15]. Using big data, companies may also better track and

manage global supply chains, and reduce product defects.

The improvement of software reliability is investigated in [16]. This research pro-

poses data mining techniques and studies two bug detection methods, including CP-

Miner that detects copy pasted code and related bugs, and PR-Miner that extracts

application-specific programming rules and detects violations that indicate potential

bugs. Although this study has shown that data mining techniques is efficient for static

analysis, it still requires further efficiency improvement by means of the code com-

plexity accounting. In works [17, 18] the achieved results and numerous problems of

research directions for engineering big data analytics software are reviewed.

Data located in the big data storages is a great and insufficiently used resource for

SWS reliability evaluation, forecasting and management. At the same time big data

based software reliability assessment may be applied using methods of data filtering

and processing, as described in [19], such as: Data cleaning, Classification, Cluster-

ing, Frequent Pattern Mining, Probabilistic & Statistical Methods, Anomaly & Outlier

Detection, Feature Extraction, Selection and Dimension Reduction, Mining with Con-

straints, Mining Unstructured and Semi Structured Data, Mining Complex Datasets.

Review of processed data enables to evaluate and predict reliability indexes and adopt

efficient solutions aimed to improve SWS reliability. The solutions enable to answer

such questions as which artefacts should be verified, applicable sequence and duration

of verification, what modules should be exposed to re-factoring, what test-cases

should be applied, where the required reliability should be admitted as obtained,

number of technical support experts to be assigned, etc.

Necessity arises to find similar data with already known reliability indexes in big

data storages. They include research data [20], open data of major public bodies [21],

corporative data [22], data of internet communities of developers [23]. Accumulation

and systematizing of required data enable an individual software corporation to form

a data field for reliability assessment and forecasting. The essential problem is to find

data for reliability evaluation of particular SWS being under development in huge

storages. This work proposes a common approach and techniques to solve this prob-

lem.

1.3 Aim and Tasks

Strategic aim of the research consists is the SWS reliability improvement in restricted

resources conditions by means of embedding methods and tools of reliability evaluation

and control into lifecycle processes. The work is aimed to develop concepts, principles,

tasks and elements of methodology for technologically oriented evaluation of the

SWS reliability.

The tasks of the research are, as follows:

1. Review of available models and methods evaluation of the SWS reliability;

2. Development of concepts, principles, tasks and elements of methodology for tech-

nologically oriented evaluation of the SWS reliability;

3. Development of search method in big data storage to find experimental data of

similar SWS to evaluate reliability indexes.

2 The TOAStRa Methodology

The proposed approach is titled as Methodology of Technology Oriented Assessment of

Software Reliability (TOAStRa). This methodology is based on general concept and a

few principles (Fig. 1).

Fig. 1. The structure of methodology TOAStRa.

2.1 The Principles

Principle 1. Embedding evaluation procedures and reliability management proce-

dures into SWS life cycle processes and models.

The principle means embedding into processes of requirements analysis, architec-

tural design, realization, verification, and maintenance, as specified in the

ISO/IEC 15288:2015, Systems engineering — System life cycle processes.

The principle further supposes embedding models, as enlisted: V-model, XP,

SCRUM, Rapid Application Development, Dynamic Systems Development Method,

Rational Unified Process, Microsoft Solutions Framework, Kanban Development,

Cleanroom Software Engineering, Waterfall model into SWS life cycle processes.

This principle implements Processing Aspect of solving problems of SWS reliabil-

ity evaluation and control. It enables to evaluate and control reliability of generated

artefacts at various stages of SWS life cycle.

Principle 2. Embedding project-oriented selection, complexion and parameteriza-

tion of models to evaluate achieved reliability indexes at the final stage of the SWS

development. Implementation of this principle supposes applied models’ base expan-

sion and their allowances; development of models selection, complexion and parame-

terization methodology. This principle reflects the Project Aspect.

Principle 3. Embedding reliability evaluation methods and instrumented aids into

instrumental tools of implementation and supporting processes of SWS life cycle. This

principle supposes design and development of software reliability evaluation aids for

their flexible embedding in design environment and control systems in artefacts oper-

ating within SWS life cycle. The principle also supposes usage of existing standard

software applications for functional reliability evaluation. This principle reflects In-

strumental Aspect.

Principle 4. Embedding methods and aids of data search, accumulation, storage,

processing and analysis applied in similar projects and systems into SWS under de-

velopment reliability evaluation processes using big data storages, principles and

technologies. Realization of this principle supposes search of necessary data in big

data storages, generation of broad corporative data field for reliability evaluation, data

accumulation and storage in cloud storage, big data processing and review applying

specialized techniques, using resulting data for reliability assessment (software relia-

bility big data), and, finally, making data usage convenient (software reliability big

data usability). This principle implements Parametrical Aspect.

A sequence of tasks is proposed below for realization of above principles.

2.2 The Tasks

Tasks implementing principle 1:

Task 1 – Requirements correctness improvement (method taking into account pri-

orities and complicatedness of requirements embedded into SWS LC);

Task 2 – Building reliable architecture (UML-models, mathematical models, meth-

od of “bottleneck” search in architecture, embedding into SWS LC processes);

Task 3 – Defect-free code generation (simulating models, defective clusters search

method within code, embedding into SWS LC processes);

Task 4 – Achievement of efficient verification (method of software modules rank-

ing taking into account their complicatedness, embedding into SWS life cycle pro-

cesses);

Task 5 – Efficient support («rear bench technique» - bringing changes only into es-

sential functions, putting support off obsolete SWS functions).

Tasks implementing principle 2:

Task 6 – Expanding applicable models’ base and their allowances;

Task 7 – Development model selection method based upon setting priorities for al-

lowances and numeric evaluation of their practical implementation extent. The pro-

posed evaluation technique enables to obtain more precise numeric evaluation for

various models meeting the needs of individual project.

Task implementing principle 3:

Task 8 – Development and embedding instrumental aids of reliability assessment

into technologies of SWS life cycle development and support.

Tasks implementing principle 4:

Task 9 – forming search criteria, methods and software aids in big data storage of

SWS experimental data similar to SWS being developed; processing and review of

this data; generation of corporative data field for reliability evaluation based on this

data;

Task 10 – Creating data mega-patterns to assess reliability (unified data pattern and

necessary context data); placement of this data in unified data storage for common

access.

Authors offer big data search technique for similar system to assess reliability of

SWS being in development within the framework of proposed concept for 9th task.

3 Software Reliability Assessment Based on Big Data

3.1 General Approach

Let us suppose that a certain software corporation is developing a software system.

Initial software code is partly developed. SWS development process is restricted in

time and funding. Scope and costs of works associated with forthcoming tests should

be evaluated to meet the imposed restrictions. Reliability estimated indexes should be

calculated. For example, quantity of defects in particular modules, total quantity of

defects in developed code and defects’ density should be assessed prior the testing

process commencement. Corporation may use experimental data on defects identified

in previously developed SWS for such preliminary assessment. They may be further

referred to as historical data. As another example, the case may be when limited

funds, terms or personnel resources prevent the corporation from accumulation and

reasonable usage of such data. Even with available data the system being designed

may have nothing common or similar with previously developed systems.

With available historical data found in big data storage the corporation may use

them for verification or updating preliminary assessment obtained on the basis of

historical data. In any case, it may be feasible to search SWS experimental data from

other developers applicable for reliability assessment of own SWS in big data storag-

es with free access. These data storages are well known in global data field. They

may be, for instance, software reliability data depositories [20] of international con-

ferences, NASA data portal [21], services of code testing and statistic analysis [22],

software sport services [23] and other sources.

The abovementioned big data storages contain gigabytes of codes and experimental

reliability data on multiple SWS by different developers. This data may be called

“associated”. It may consist of artefacts – requirements, initial code, tests, artefacts

evaluations and processes of their development under various metrics (e.g. known

object-oriented metrics RFC, WMC, LCOM, LOC, NPM, CE, CBO, CA, NOC, DIT).

This data includes actual quantity of defects identified in modules, temporal series of

defects detection. This data enables to evaluate, forecast or verify reliability indexes

of systems at various stages of development.

Thus, there are both necessity and possibility to evaluate, predict and control relia-

bility of SWS being developed using big data storages. To do it, it is necessary to find

a system similar by a number of criteria to particular system in development. There-

fore a method should be developed to perform big data based search for similar pro-

grams.

3.2 Search for Similar Programs

SWS development consists of a number of technological stages (requirements out-

lining, design, code writing and verification). Artefacts are generated at each of such

stages. The artefacts contain defects and affect the SWS reliability. Majority of de-

fects is located in the initial code. Initial codes with various SWS possess different

objective features, such as structure, dimensions, complicatedness, and programming

languages. In view of such differences the task of search for suitable associated data

for reliability indexes assessment and forecasting may be formulated, as follows:

SWS should be found in big data storage with initial code of the greatest resemblance

with that of the SWS under development in structure, dimension, complicatedness and

programming language.

In view of the above the necessity arises to formulate a SWS initial code similarity

principle.

Software systems’ similarity principle

Structure, dimensions and complicatedness of the SWS may be assessed by means

of metrics. The proposed SWS code similarity principle bases upon metrics enlisted

below:

1. Initial code dimension in thousands of lines (KLOC);

2. Total quantity of code modules;

3. Complicatedness assessment metrics for code modules;

4. Total, average and maximum evaluation for each metric.

It is worthwhile to mention here, that numerical evaluations of these metrics reflect

not only system’s dimensions and complicatedness, but also number of system’s

modules/classes and their links, i.e. system structure. The possibility to assess compli-

catedness of system being developed and associated system by means of uniform set

of metrics guarantees resemblance of programming languages of the systems in ques-

tion.

In general, proximity of ratings under certain metrics for system under develop-

ment and system taken for comparison provides similarity of dimensions, complicat-

edness, structure and programming language. System similar to the system under

development should be defined as a system having minimum deviations of ratings by

nominated metrics. Selection a similar SWS can be made via relative deviations of

each of appropriate metrics for system under development and system taken for com-

parison.

1. Relative deviation of initial code dimensions

d f
size

d

KLOC KLOC
RD 100%

KLOC


  . The bottom index “d” corresponds to rat-

ing of the system under development. The bottom index “f” corresponds to rating

of a system taken for comparison.

2. Code modules quantity relative deviation
d f

mod
d

MC MC
RD 100%

MC


  , with

МС – number of modules;

3. Summarized rate relative deviation
d f

sum
d

Sum Sum
RD 100%

Sum


  , average

rate relative deviation
d f

avg
d

Avg Avg
RD 100%

Avg


  , maximum rate relative

deviation
d f

max
d

Max Max
RD 100%

Max


  for each metric of complicatedness.

At the next stage calculated deviations should be grouped into three groups. The

first group indicates dimensions deviation rate, the second group indicates structure

deviation rates, and the third group indicates code complication deviation rates. Aver-

age deviation rate should be calculated for each group. Deviations within a group are

feasible to apply with unequal priority indexes for SWS similarity assessment. Under

certain circumstances, priority indexes for SWS similarity assessment may be either

dimension, or structure, or complicatedness of the system. Common general average

deviation rate for all the rates should be also calculated. This value is feasible to apply

for indexes with equal significance.

So, search for comparative SWS being similar or the most proximal to the SWS

under development requires to know code dimensions, number of modules, estimated

complicatedness evaluated applying unified set of metrics, calculated metrical rates’

deviation and, finally, system selection with minimum deviations.

The authors state a hypothesis that a similar system may be found in big data stor-

age among available multiplicity. This hypothesis, however, should be checked. Big

data storage contains experimental data of multiple various systems. For example,

storage [20] contains data relevant to metrics and defects of sixty one SWS. Manual

processing of such data may take too much time and labor. Specialized software

Agent for Search of Similar programs could be helpful in the aspect of automation of

such a process.

The agent for search of similar programs

ASS performs the following functions:

1. Downloading of metrical rates of system under development as a reference point

for comparison with other systems.

2. Downloading of other SWS data (metrical indexes and defects quantity from big

data storage into local corporative or cloud storage. This step is necessary to gener-

ate a corporative data field for multiple reliability assessment.

3. Data transformation into appropriate format for processing (*.db, *.xml, *.xlsx,

etc.);

4. Transformed SWS data import into ASS memory.

5. Data processing – calculation of deviation rates within a group and total average

deviation of all the rates.

6. Entering deviations for each system into resulting account.

7. Accounted deviations sorting to ground similar SWS choice.

ASS creates the resulting account with group and average deviations for multiple

involved SWS. After the deviation values are sorted the SWS with minimum devia-

tions form metrics of SWS under development are placed into the top of account. The

account enables to make a well-grounded choice of SWS with the highest similarity

index to the SWS under development. Experimental data on defects of the chosen

similar SWS may be used to assess and predict similarity of the SWS under develop-

ment. The proposed ASS is a program for processing flat (not linked) tables and for

calculation of statistic indexes.

If to compare the offered ASS to the known software of the statistical analysis it is

necessary to notice that he has two advantages. The first advantage it is lack of excess

functionality for this concrete case of application. The second advantage it is support

of all technological stages of data processing.

Search of the similar programs

The procedure of similar programs search based on big data consists of seven steps.

Step 1. Calculate metrical rates for SWS structure, dimensions and complicated-

ness under development.

Step 2. Activate ASS, consistently download identical metrical rates and data of

defects of other SWS from big data storage.

Step 3. Transform downloaded data of other SWS into appropriate format for pro-

cessing.

Step 4. Calculate internal deviation rates and general average deviation rate.

Step 5. Record deviation rates for each SWS into resulting account. Sort indexes in

the account.

Step 6. Select similar system with minimum deviation rates in the account.

Step 7. Use actual data on defects of the selected SWS to assess reliability of the

SWS under development.

4 Case Study

The above declared hypothesis stating that a system similar to the SWS under de-

velopment in structure, dimensions and program language may be found in big data

storage requires experimental checking. Such a check was performed in a manner

described below. Metrical data and defects data for twenty one SWS have been ran-

domly selected and downloaded from big data storage [20] into local computer disc.

One of these systems has been taken as a reference point. Other twenty systems have

been explored for similarity of their features (structure, dimensions and complicated-

ness) to the reference system. Programming language similarity of the systems in

question has been supported by unified set of metrics for complicatedness assessment.

They are rather common metrics of object-oriented code complicatedness assessment

RFC, WMC, LCOM, LOC, NPM, CE, CBO, CA, NOC, DIT.

ASS designed by authors transformed data from *.txt or *.csv format into *.dbf

format. Further calculations of relative deviations for metrical rates had been per-

formed by means of SQL instructions for each system. Data processing applying ASS

took about two working hours. Group and average deviation rates have been stored in

resulting account, as shown in Table 1.

Table 1. Metric rates relative deviations of SWS compared with reference system.

№ SWS
Metrical rates deviations, %

Structure Dimensions Complicatedness Average rate

1 0,0 0,0 0,0 0,0

2 5,1 9,0 5,4 6,5

3 12,2 20,6 41,8 24,9

4 12,7 51,3 35,7 33,2

5 12,8 19,0 28,7 20,2

6 14,4 42,1 46,7 34,4

7 22,4 87,7 34,9 48,3

8 23,6 57,4 33,6 38,2

9 24,5 82,3 29,2 45,3

10 27,4 56,0 43,9 42,4

11 28,6 40,5 40,5 36,5

12 28,6 51,9 44,5 41,7

13 29,9 68,0 20,9 39,6

14 30,3 70,9 26,0 42,4

15 30,9 83,6 45,1 53,2

16 31,4 78,9 38,6 49,6

17 46,0 24,7 44,3 38,3

18 71,8 52,5 24,5 49,6

19 74,6 59,0 25,4 53,0

20 270,1 815,7 52,5 379,4

21 350,6 660,9 66,9 359,5

Indexes in the account have been sorted in increasing order. Reference SWS has

number 1. Naturally, deviation rates in corresponding line are zero. SWS No 2 fol-

lows directly after it with minimum deviation from reference SWS (highlighted line

in Table 1). System with increasing deviation rates are placed downwards. The result-

ing account enabled to choose SWS with the highest level of similarity to the refer-

ence SWS.

5 Conclusions

The paper describes a concept, tasks and some solutions for the TOAStRa method-

ology. Implementation of the methodology, in particular, prediction of SWS reliabil-

ity can be based on processing information, which is extracted from big data storages

by using the software agent ASS. The technique has been suggested to search and

analyse similar programs. The similarity principle is based on complexity and struc-

ture SWS metrics and metrics of program language similarity. Calculation formulas to

assess group and average deviation rates describing the SWS similarity have been

suggested.

Case study allowed to obtain some experimental results. A system has been identi-

fied with minimum (5,1 – 9,0 %) and average 6,5% relative deviation of metrical rates

among twenty explored systems. Obtained results confirm the allegation that systems

with known reliability indexes similar to the SWS under development may be found

from great quantity of experimental data kept in big data storage to assess, verify and

predict its reliability.

Data processing for twenty SWS by means of ASS took about two hours. The

search of similar programs represents practical value for a project manager and per-

sonnel of the SWS testing group. The ASS may be adapted by software companies to

take into account specifics of developed SWS.

Further research will be focused on formal definition of similar programs-software-

SWS including functionality, applied technology, costs, etc. Special interest presents

application of big data swapping technique to multi-dimensional matrix of SWS met-

rical rates. ASS and technique can be integrated with procedures of SWS decompos-

ing, similar software components separated search, results processing, and obtaining

integrated reliability assessment. Future researches will be directed to process of

software reliability management basing assessment technique and results.

References

1. Schmidt, R., Kaufmann M.: Software Engineering: Architecture-Driven Software Devel-

opment. Elsevier, pp. 376 (2013)

2. Papows, J.: Glitch: The Hidden Impact of Faulty Software. Prentice Hall, pp. 208 (2010)

3. Musa, D.: Software Reliability Engineering: More Reliable Software Faster and

Cheaper (2nd Edition), Author House (2004)

4. Littlewood, B., Strigini, L.: Software Reliability and Dependability: A Roadmap. Proceed-

ings of the 22nd International Conference on Software Engineering (ICSE’2000), Limer-

ick, pp. 177 -- 88 (2000)

5. Shooman, M.L.: Reliability of Computer Systems and Networks: Fault Tolerance, Analy-

sis and Design. Wiley, New York (2002)

6. Chen, M., Lyu, M., Wong E.: Effect of Code Coverage on Software Reliability Measure-

ment. IEEE Transactions on Reliability, vol. 50, no. 2, pp.165--170 (2001)

7. Malaiya, Y., Li, N., Bieman, J., Karcich, R.: Software Reliability Growth with Test Cov-

erage. IEEE Transactions on Reliability, vol. 51, no. 4, pp. 420--426 (2002)

8. Swamydoss, D., Nawaz, K.: Enhanced version of growth model in web based software re-

liability engineering. Journal of Global Research in Computer Science, vol. 2, no. 12,

p. 44--46 (2011)

9. Purnaiah B., Rama Krishna V.: Fault removal efficiency in software reliability growth

model. Advances in Computational Research, vol. 4, Issue 1, pp. 74—77 (2012)

10. Kharchenko, V. S., Tarasyuk, O. M., Sklyar, V.V.: The Method of Software Reliability y

Growth Models Choice Using Assumptions Matrix. Proceedings of 26-th Annual Int.

Computer Software and Applications Conference, COMPSAC, Oxford, England, pp. 541--

546 (2002)

11. The Smart Way to Find Business Software, http://www.capterra.com/

12. Gantz, J., Reinsel D.: The digital universe in 2020: Big Data, Bigger Digital Shadow s, and

Biggest Grow in the Far East, http://www.emc.com/collateral/analyst-reports/idc-the-

digital-universe-in-2020.pdf

13. BSA | The Software Alliance. What’s the Big Deal With Data? https://www.bsa.org

14. Manyika, James et al: Big Data: The Next Frontier for Innovation, Competition, and

Productivity. McKinsey Global Institute,

https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf (2011)

15. Economist Intelligence Unit. The Deciding Factor: Big Data & Decision Making. Point Of

View, http://bigdata.pervasive.com/Solutions/Telecom-Analytics.aspx

16. Zenmin, L.: Using Data Mining Techniques to improve Software Reliability. Dissertation

for the degree of Doctor of Philosophy in Computer Science, p. 153 (2006)

17. Carlos, O., Adrian, P.: Research Directions for Engineering Big Data Analytics Software.

Florida Institute of Technology. Published by the IEEE Computer Society, pp. 13--19,

DOI: 10.1109/MIS.2014.76 (2015)

18. Rademakers, F.: ROOT for Big Data Analysis. Workshop on the future of Big Data man-

agement, London, UK (2013)

19. Leskovec, J., Rajaraman, A., Jeffrey D.: Mining of Massive Datasets. Stanford Univ., Mil-

liway Labs., p. 495 (2014)

20. Tera-PROMISE Home, http://openscience.us/repo/defect/ck/

21. NASA'S DATA PORTAL, https://data.nasa.gov/

22. Software Testing and Static Code Analysis, http://www.coverity.com/

23. Topcoder | Deliver Faster through Crowdsourcing, https://www.topcoder.com/

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.bsa.org/
https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf
../../../../../../../../../../../../../AppData/Local/Temp/Tera-PROMISE%20Home
http://openscience.us/repo/defect/ck/
https://data.nasa.gov/
../../../../../../../../../../../../../AppData/Local/Temp/Software%20Testing%20and%20Static%20Code%20Analysis
http://www.coverity.com/
https://www.topcoder.com/
https://www.topcoder.com/

