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Abstract. Minimal Cut Vectors (MCVs) and Minimal Path Vectors (MPVs) are 

one of the principal tools of reliability engineering. MCVs represent situations 

in which repair/improvement of any system component results in functioning/ 

improvement of the system. MPVs coincide with circumstances under which 

failure/degradation of any system component causes system failure/degradation. 

MCVs and MPVs allow us to compute a specific measure known as Fussell-

Vesely’s Importance (FVI), which is used to evaluate importance of system 

components for system operation. The FVI has originally been developed for 

analysis of binary-state systems. In this paper, we propose several 

generalizations of this measure for multi-state systems. Furthermore, we 

summarize results from several papers focusing on identification of the MCVs 

and MPVs in multi-state systems and combine them with the proposed 

measures to develop a complex procedure for importance analysis of multi-state 

systems. The tool used for identification of the MCVs and MPVs is logical 

differential calculus. 
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1   Introduction 

One of the basic tasks of reliability analysis is investigation of importance of 

individual system components for system activity. Generally, two approaches can be 

used for solving this task. The first one is based on identification of critical state 

vectors that describe circumstances under which a change of a component activity 

results in a change of system performance. Another possibility is to detect minimal 

scenarios that ensure that the system can accomplish its mission or minimal scenarios 

whose occurrence causes that the system cannot satisfy the requested objectives. 

These scenarios are known as Minimal Path Sets (MPSs) and Minimal Cut Sets 

(MCSs) respectively [1], [2], [3], [4]. 



MCSs and MPSs or their equivalents known as Minimal Cut Vectors (MCVs) and 

Minimal Path Vectors (MPVs), respectively, have been introduced in reliability 

analysis of Binary-State Systems (BSSs). In [5], the terminology of MCSs and MPSs 

has been generalized for Multi-State Systems (MSSs). One of the principal tasks in 

the analysis based on MCSs or MPSs is their identification. In case of BSSs, a lot of 

algorithms have been developed for this task, e.g. [6], [7], [8]. Using MCSs and 

MPSs, several approaches have been proposed to perform the quantitative analysis of 

BSSs. These approaches allow estimating system availability or computing 

importance of individual system components [9], [10], [11], [12]. In case of MSSs, 

MCVs and MPVs are more frequently used than MCSs and MPSs respectively. They 

have primarily been used in the qualitative and quantitative analysis of network 

structures, e.g. distribution networks and, therefore, most of the algorithms developed 

for their identification in MSSs, e.g. [13], [14], [15], have been based on the 

assumption that the structure of a MSS can be expressed in the form of a network. 

However, not every MSS can be expressed as a graph structure. Because of that, more 

general algorithm has been proposed in [16], [17]. This algorithm permits detection of 

MCVs or MPVs in a MSS of any type. This allows us to apply the concept of MCVs 

and MPVs not only in the analysis of network systems but also in the investigation of 

other types of MSSs. This idea has been considered in [18] where one of the typical 

measures investigating importance of system components in BSSs known as Fussell-

Vesely’s Importance (FVI) [9], [10] has been generalized for investigation of 

importance of individual states of components in a MSS. The generalization has been 

done based on the concept of MCVs and using logical differential calculus. 

In this paper, we summarize results presented in [16], [17], [18] and propose an 

approach for investigation of MSSs using MCVs and MPVs. We define some more 

general types of FVI that allow us to investigate importance of the entire component 

(not only of a specific component state). The achieved results are illustrated based on 

the analysis of the service system considered in [18], but this approach could also be 

applied in reliability analysis of information systems, especially in the analysis of 

distributed systems, such as distributed temporal database systems studied in [19]. 

2   Reliability Analysis 

The principal step in investigation of system reliability is creation of its model. As a 

rule, two types of mathematical models are used in reliability analysis: BSSs and 

MSSs. A BSS allows defining only two states in system/components performance – 

functioning (presented as number 1) and failure (represented by number 0). These 

models are useful in the investigation of consequences of system failure, but they do 

not allow us to study processes that gradually results in system failure. For this 

purpose, MSSs are more suitable because they permit defining more than two states to 

describe system/components performance – from perfectly functioning to complete 

failure. The dependency of system state on states of its components is defined by a 

map known as structure function. For MSSs, this function has the next form [2]:  

(x): {0,1,…, m1 -1}×{0,1,…, m2 -1}×…×{0,1,…, mn -1}{0,1,…, m -1} , (1) 



where n denotes number of system components, m agrees with the number of system 

states (state 0 means that the system is completely failed, while state m -1 agrees with 

perfect functioning), mi denotes number of states of component i (state 0 corresponds 

to complete failure and state mi -1 to perfect functioning), for i = 1,2,…, n, xi is a 

variable defining state of component i, and x = (x1, x2,…, xn) is a vector defining states 

of the system components (state vector). Specially, if m1 = m2 =…= m, then the 

system is identified as homogeneous [2], [3]. Special type of homogeneous systems is 

a BSS for which m1 = m2 =…= m = 2 [1]. 

Based on the properties of the structure function, two basic classes of systems can 

be recognized – coherent and noncoherent. A system is coherent if its structure 

function is non-decreasing in all its variables, i.e. there exist no circumstances under 

which a degradation of a system component can result in system improvement. If this 

assumption is not satisfied, then the system is noncoherent. In what follows, only 

coherent systems will be considered. 

The structure function describes layout of the system components and, therefore, it 

allows us to investigate topological properties of the system. However, this function 

carries no information about state probabilities of individual system components and, 

therefore, only its knowledge is not sufficient for the analysis of system reliability. 

So, the state probabilities of the system components represent other information that 

has to be included in the model [2], [3]: 

pi,s = Pr{xi = s}, s = 0,1,…, mi -1 . (2) 

For BSSs, pi,0 is denoted as qi, and it is known as component unavailability because it 

coincides with time during which the component is unavailable (failed). Similarly, pi,1 

is denoted only as pi, and it is known as component availability because it agrees with 

proportion of time during which the component is available (working). 

If a system model is known, the analysis can be performed. Some of the basic 

characteristics evaluating reliability of a system under consideration are system states 

probabilities, system availability and unavailability. For BSSs, system availability 

agrees with the probability that the system is in state 1, while the unavailability 

corresponds to the probability that it is in state 0. This is not true for MSSs where 

system availability (unavailability) is defined as the probability that the system can 

(cannot) satisfy a specific requirement. If we know a minimal system state, e.g. state j, 

that allows satisfying the requirement, then system availability (unavailability) is 

defined as the probability that the system is at least in (below) state j [2]: 

.}1,,2,1{for},)(Pr{},)(Pr{   mjjUjA jj xx   (3) 

2.1   Minimal Path Sets and Minimal Path Vectors 

MPSs have been introduced in reliability analysis of BSSs. They represent minimal 

sets of components whose simultaneous functioning ensures system functioning [1], 

[12]. In terms of state vectors they can be expressed as so-called MPVs that agree 

with situations in which a failure of any working component causes system failure. 

More formally, a state vector x is a MPV if (x) = 1 and (y) = 0 for any y < x. Please 

note that relation y < x between state vectors x = (x1, x2,…, xn) and y = (y1, y2,…, yn) 



means that yi ≤ xi for all i{1,2,…, n} and there exists at least one i such that yi < xi. 

Specially, if only the first part of the definition is satisfied for a state vector x, i.e. 

(x) = 1, then the state vector is known as a path vector.  

The concept of MPSs and MPVs has been generalized for homogeneous MSSs in 

[5]. Using that paper, we can generalize this concept on nonhomogeneous systems in 

the following way. 

Let us consider a nonhomogeneous MSS of n components and denote 

 ini mM },,2,1{max  . Next, let us denote a set of all system components that are in 

state s as Ns for s = 0,1,…, M -1 (please note that if no system component is in state s, 

then the set Ns is empty). Using this, we can define a partition η = (N0, N1,…, NM) of 

n system components into M sets such that i  Ns  s < mi (this implies that 

component i can occur in set Ns if and only if its maximal possible state is not less 

than s). Clearly, there exist  

n

i im
1

 different partitions, and every partition 

corresponds to a state vector of the system structure function. Moreover, there is one-

to-one correspondence between state vectors of the structure function and partitions of 

the system. This correspondence is based on the rule that the i-th system component is 

present in set Ns of partition η if and only if a state vector corresponding to the 

partition η has the form of (si, x) = (x1, x2,…, xi -1, s, xi +1,…, xn). The state vector that 

agrees with partition η will be denoted as x(η). Using these conventions, a MPS for 

level j of system availability is defined as a partition η for which ϕ(x(η)) ≥ j and 

ϕ(y) < j for any y < x(η). Please note that this definition implies that MPSs can be 

recognized with respect to m -1 different states of the system, i.e. for j = 1,2,…, m -1. 

The previous definition of a MPS for level j of system availability uses vectors 

corresponding to MPSs. As in the case of BSSs, these state vectors are known as 

MPVs [2], [5]. More formally, a state vector x is a MPV for level j of system 

availability if ϕ(x) ≥ j and ϕ(y) < j for any y < x. Specially, if only the first part of the 

definition is satisfied by a vector x, then it is known as a path vector for level j of 

system availability. Clearly, MPVs for system availability level j correspond to 

situations in which a degradation of any system component that can degrade, i.e. that 

is not completely failed, results in decrease in system state below value j. Please note 

that the definitions of MPSs and MPVs are very similar but the latter is not based on 

term “partition” and, therefore, it is probably clearer. 

2.2   Minimal Cut Sets and Minimal Cut Vectors 

Another concept that is closely related to MPSs and MPVs is a concept of MCSs and 

MCVs. These terms have also been introduced firstly in the analysis of BSSs. For a 

BSS, a MCS represents a minimal set of components whose simultaneous failure 

results in system failure. A state vector that corresponds to a MCS is known as a 

MCV. Unlike a MCS, a MCV describes a situation in which a repair of any failed 

component causes system functioning. Mathematically, a state vector x is a MCV if 

(x) = 0 and (y) = 1 for any y > x. Please note that relation y > x between two state 

vectors x = (x1, x2,…, xn) and y = (y1, y2,…, yn) has a similar meaning as in the case of 

MPVs, i.e. it means that yi ≥ xi for all i{1,2,…, n} and there exists at least one i such 



that yi > xi. Specially, if only the first part of the definition is satisfied for a state 

vector x, i.e. (x) = 0, then the state vector can be recognized as a cut vector. 

In case of MSSs, we can generalize definition of a MCS introduced in [5] for 

nonhomogeneous systems in the similar way as in the case of MPSs. However, this 

has no practical sense for the purpose of this paper and, therefore, we only introduce 

definition of a MCVs presented in [2]. So, a state vector x is a MCV for level j of 

system availability if ϕ(x) < j and ϕ(y) ≥ j for any y > x. Furthermore, every state 

vector x satisfying ϕ(x) < j is known as a cut vector for level j of system availability. 

This definition implies that a MCV for level j of system availability represents a 

situation in which an improvement of any system component that can be improved, 

i.e. that is not perfectly working, causes that the system reaches at least state j. 

3   Reliability Analysis based on Minimal Path and Cut Vectors 

MPVs (MCVs) are very useful in both – qualitative and quantitative analysis. In the 

qualitative analysis of BSSs they describe circumstances under which a failure of any 

working (repair of any failed) component results in system failure (functioning). For 

MSSs, they correspond to situations in which a minor degradation (improvement) of 

any functioning (non-perfectly working) component causes that the system will not be 

able (will be able) to accomplish its mission. In the quantitative analysis, they can be 

used to estimate some global characteristics, e.g. system availability, system state 

probabilities [1], [2], [3], or to quantify importance of individual system components 

(or their states in case of MSSs) [9], [10], [11], [12], [18]. 

Firstly, let us focus on the global reliability characteristics. For MSSs, system 

availability and unavailability can be calculated based on MPVs and MCVs in the 

following way [20]: 
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where Np
≥j

 (Nc
≥j

) agrees with the number of MPVs (MCVs) for system state j, j

l

MPV  

 j

l

MCV  denotes the l-th MPV (MCV) for level j of system availability, and event 

 jl

 MPVx    j

l

 MCVx  means that an arbitrary state vector x is greater (less) 

than or equal to the l-th MPV (MCV) for level j of system availability. Please note 

that relation “≥” (“≤”) between two state vectors has similar meaning as relation “>” 

(“<”) used in definitions of MPVs and MCVs, and the only difference is that it admits 

equality of state vectors. 

Using system availabilities or unavailabilities, the system state probability can be 

computed as follows: 
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Another possibility how MPVs and MCVs can be used is investigation of influence 

of individual components (or their states in case of MSSs) on system activity. For this 

task, a lot of measures have been proposed. One of them is FVI. 

The FVI has been introduced in reliability analysis of BSSs as the probability that a 

failure of a given component contributes to system unavailability [9], [10], [12]. This 

agrees with the probability that at least one MCS containing the considered 

component is failed given that the system is failed. (Please note a MCS is failed if all 

components forming the MCS are failed.) Another option is to define the FVI in such 

a way that it allows us to identify contribution of functioning of component i to 

system availability. This idea has been presented in [11] where this measure has been 

defined as the probability that at least one MPS containing component i is working 

given that the system is functioning. (A MPS is working if all components forming it 

are functioning.) In [20], these measures have been defined using MCVs and MPVs 

instead of MCSs or MPSs respectively. 

Definitions in [20] can be generalized for MSSs in several ways, which allow us to 

define several types of FVI measures. Firstly, let us focus on FVI measures based on 

MCVs. In this case, we can define jc

si





,

,
FVI  for state s of component i with respect to 

level j of system availability as the probability that a degradation of a given 

component state contributes to system unavailability U
 ≥ j

 [18]: 
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where MCVs
 ≥ j

 is a set of all MCVs for level j of system availability, MCV
 ≥ j

((s -1)i) 

denotes a MCV for level j of system availability in which xi = s -1, and event 

    i

jj

i

j ss )1(MCV;MCVs)1(MCV  
x  means that there is at least one 

MCV with xi = s -1 that is greater than or equal to an arbitrary state vector x. The 

previously introduced meaning of this definition results from the fact that if state 

vector ((s -1)i, x) = (x1, x2,…, xi -1, s -1, xi +1,…, xn) is a MCV for level 𝑗 of system 

availability, then it follows that degradation of component i from state s to lower one 

contributes to level j of system unavailability. 

Formula (6) admits that component i can degrade more than one state. However, 

some approaches used in importance analysis of MSSs are based on the assumption 

that a component can degrade only one state. For this purpose, we can modify 

formula (6) in the following way:  

     ,)1(MCV),)1((;MCVs)1(MCVPrFVI
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where event     i

j

i

j

i

j sss )1(MCV),)1((;MCVs)1(MCV  
x  means that 

there exists at least one MCV with xi = s -1 that is greater than or equal to an arbitrary 

state vector ((s -1)i, x). 



The previous formula focuses on contribution of a specific component state to 

system unavailability. If we sum jc

si

,

,FVI  measures through all possible values of s, 

i.e. for s = 1,2,…, mi -1, then we can quantify the total contribution of component i to 

system unavailability U
 ≥ j

:  
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In the similar way, we can generalize FVI based on MPVs introduced in [20] for 

MSSs. In this case, we obtain the next formulae: 
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Formula (9) quantifies contribution of a minor improvement of state s of component i 

to system availability A
 ≥ j

, while jp

si

,

,FVI measure can be used to estimate the total 

contribution of component i to system availability A
 ≥ j

. 

3.1   Direct Partial Logic Derivatives 

Logical differential calculus is a special tool developed for analysis of dynamic 

properties of logic functions. The central term of this tool is a logic derivative. 

Several types of logic derivatives exist, and one of them is Direct Partial Logic 

Derivative (DPLD) [21]. This derivative has originally been defined for MVL 

functions. Since the structure function of a homogeneous MSS can be viewed as a 

MVL function [21], DPLD can also be applied in reliability analysis of such systems. 

Furthermore, it has been shown in [22] that this derivative can also be used in the 

analysis of nonhomogeneous systems. For this purpose, definition of a DPLD of 

function ϕ(x) with respect to variable xi has been generalized in the following way: 
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where ϕ(ai, x) = ϕ(x1, x2,…, xi -1, a, xi +1,…, xn) for a  {s, r}. This implies that the 

DPLD can be used to find circumstances under which a degradation/improvement of 

the i-th system component results in degradation/improvement of the whole system. 

Since only coherent systems are considered in this paper, only DPLDs in which j > h 

and s > r or in which j < h and s < r can be nonzero. The former identify state vectors 

(.i, x) = (x1, x2,…, xi -1, xi +1,…, xn) at which degradation of component i from state s to 

r results in degradation of system from state j to h, while the nonzero values of the 

latter agree with state vectors (.i, x) at which improvement of system state from value 

j to h results from improvement of state s of component i to value r. 



3.2   Integrated Direct Partial Logic Derivatives 

DPLDs are useful to identify situations in which a specific change of a state of a 

given component results in the specified change of system state. However, a problem 

is that a lot of DPLDs can be defined with respect to one component, i.e. if the 

component has mi and the system has m different states, then mi(mi -1)m(m -1) DPLDs 

can be defined with respect to this component. Assuming that the system is coherent 

and using the fact that )()()()( srxjhrsxhj ii    [21], only 

mi(mi -1)m(m -1)/4 DPLDs are needed to be computed. This can be still quite a lot. 

Another fact is that these DPLDs have a lot of zero values and, therefore, they usually 

carry little information. Furthermore, if we consider derivative )()( rsxhj i   

that is nonzero for a state vector (si, x), then all other DPLDs )()( rsxhj i  , 

where j′ ≠ j or h′ ≠ h, have to take value 0 for the considered state vector. Due to these 

facts, new types of logic derivatives have been introduced in [16], [22]. These 

derivatives were named as Integrated Direct Partial Logic Derivatives (IDPLDs), 

because they combine several DPLDs together. Three types of IDPLDs can be 

defined. For the purpose of this paper, the most important ones are IDPLDs of type III 

that can be used to find state vectors at which degradation (improvement) of a given 

component state causes degradation (improvement) of a given level of system 

availability. In notation of system degradation, this derivative is defined as follows: 
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where notation h≥j (h<j) means that all system states that are greater than or equal to 

(less than) j are taken into account. If we want to focus on system improvement, then 

this IDPLD has the following form: 
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It can be shown simply that the following relation holds between the IDPLDs 

introduced above: 
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but the principal difference between these two integrated derivatives is that IDPLD 

)()( rsxhh ijj    can be computed only at state vectors of the form of 

(si, x), while IDPLD )()( srxhh ijj    can be calculated only at state 

vectors of the form of (ri, x) (Fig. 1). 



 
Fig. 1. Example of existence and computation of IDPLDs of type III for structure function 

ϕ(x1, x2) = x1x2 for x1  {0,1} and x2  {0,1,2,3}. 

3.3   Calculation of Minimal Cut and Path Vectors using Integrated Direct 

Partial Logic Derivatives 

According to previous text, a MCV for level j of system availability agrees with a 

state vector at which the structure function takes a value less than j and at which a 

minor improvement (improvement by one state) of any non-perfectly working 

component causes that the system achieves at least state j. Identification of state 

vectors at which a minor improvement of component i results in such change of 

system state can be done using IDPLDs )1()(   ssxhh ijj  for s = 0,1,…, 

mi -2. If we compute these IDPLDs for all system components and combine them 

together using some special conjunction, then we can identify all MCVs for level j of 

system availability. This idea has been studied in [16], [17], where the following 

algorithm for computation of MCVs has been formulated: 

1. Repeat the next two steps for all system components: 

1.1. Compute expanded IDPLDs )1()(   ssxhh iejje  for 

s = 0,1,…, mi -2. 

1.2. Calculate Π-conjunction 


  
2

0
)1()(

im

s iejje ssxhh  of the 

expanded IDPLDs computed in the previous step. 

2. Calculate Π-conjunction of the Π-conjunctions computed in step 1 and 

identify state vectors for which it takes value 1. These state vectors agree 

with the MCVs for level j of system availability. 

This algorithm does not use directly IDPLDs of type III but rather their expanded 

versions that are defined also for state vectors at which IDPLDs cannot be computed. 

In these situations, the expanded IDPLD takes value “*”: 
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(x)  )10()( 111   xhh
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The Π-conjunction used in the algorithm is computed for two expanded IDPLDs 

based on the rules defined in Table 1 [16], [17]. 

Table 1.  Π-conjunction of two expanded IDPLDs of type III. 
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The similar algorithm can also be used to find all MPVs for level j of system 

availability [17]. The only difference is that expanded IDPLDs of the form of 

)1()(   ssxhh iejje , for s = 1,2,…, mi -1, have to be used. These expanded 

derivatives are defined similarly as (15). 

After obtaining the MCVs or MPVs based on logical differential calculus, the 

quantitative analysis of the investigated system can be performed. This is done simply 

by computing FVI measures introduced in the previous part.   

4   Hand Calculation Example 

Previous parts of this paper presented a complex approach for investigation of MSSs. 

This approach includes 1) computation of expanded IDPLDs, 2) identification of 

MCVs or MPVs based on the derivatives, 3) evaluation of importance of states of the 

system components (formulae (7) and (9)) or the total importance of the system 

components (formulae (8) and (10)) for level j of system availability. Now, we will 

illustrate some of these steps. 

Let us consider the service system used in [18]. It is composed of 3 components: 

service point 1 (component 1), service point 2 (component 2), and infrastructure 

(component 3). The system has 4 states with the following meaning: 0 – 

nonfunctioning (no customer is satisfied by the service points), 1 – partially 

functioning (some customers are satisfied), 2 – partially nonfunctioning (some 

customers are not satisfied), 3 – perfectly functioning (all customers are satisfied). 

The service points can be only functioning (state 1) or failed (state 0). The 

infrastructure is modeled as a 4-state component where value 0 means that the 

infrastructure is poor while value 3 agrees with its perfect quality. The system 

structure function and the state probabilities of the components are defined in Table 2. 

If we want to investigate importance of the system components using the proposed 

method, firstly the MCVs and MPVs of the system have to be computed. This can be 

done using the algorithm described in the previous section. According to this 

algorithm, firstly, expanded versions of IDPLDs of type III have to be computed. In 

the second step, their Π-conjunction has to be calculated. Let us assume that we want 

to find all MCVs and MPVs for level 1 of system availability. For this purpose, 

expanded IDPLDs )1()( 11   ssxhh iee  and )1()( 11   ssxhh iee  



have to be calculated for all system components, i.e. for i = 1,2,3, and for all 

components states for which they can be computed. In the next step, Π-conjunctions 

including all relevant component states have to be calculated for every system 

component. Please note components 1 and 2 have only 2 possible states, what implies 

that the Π-conjunctions are equal to expanded derivatives )10()( 111   xhh ee  

and )10()( 211   xhh ee  respectively in the case of MCVs identification and 

derivatives )01()( 111   xhh ee  and )01()( 211   xhh ee  respectively 

in the case of MPVs identification. Therefore, there is no need to compute Π-

conjunctions for these two components. However, the 3-rd component has 4 states 

and, therefore, the Π-conjunction has to be calculated. So, if we are interested in 

MCVs, then expression    
2

0 311 )1()(
s ee ssxhh  has to be formed from 

the expanded IDPLDs, while conjunction    
3

1 311 )1()(
s ee ssxhh  has to 

be found to identify the MPVs. Finally, using Π-conjunction we can combine the 

expanded IDPLDs computed with respect to components 1 and 2 with the Π-

conjunction calculated for component 3 and identify all MCVs (MPVs) for level 1 of 

system availability. For MCVs, these calculations are shown in Table 3. According to 

this table, the system has two MCVs for the considered level of system availability, 

i.e. (0,0,3) and (1,1,0). Similarly, we can compute that the MPVs are (0,1,1) and 

(1,0,1). The similar procedure can be used to identify the MCVs and MPVs for levels 

2 and 3 of system availability. The final results are in Table 4. 

Table 2.  Structure function of the service system and state probabilities of its components. 

Components 

states 
x3 (p3,s) 

x1 (p1,s) x2 (p2,s) 0 (0.20) 1 (0.60) 2 (0.10) 3 (0.10) 

0 (0.30) 

0 (0.30) 

1 (0.70) 

1 (0.70) 

0 (0.20) 

1 (0.80) 

0 (0.20) 

1 (0.80) 

0 

0 

0 

0 

0 

1 

1 

2 

0 

1 

1 

3 

0 

2 

2 

3 

 

MCVs and MPVs identified in the previous step can be used to investigate 

importance of individual states of the system components for a given level of system 

availability. This can be done using FVI measures (7) and (9). For illustration, let us 

compute 1,

1,3FVI c , which quantifies contribution of minor degradation of state 1 of 

component 3 to system unavailability U
 ≥1

. Using MCVs, this measure can be 

calculated in the following way: 

  ,)0,1,1()0,,(PrFVI
1

0,3

21

1,

1,3 

 
U

p
xxc  (16) 

where unavailability U
 ≥1

 can be computed using (4) as follows: 



 
     .)0,0,0(Pr)0,1,1(Pr)3,0,0(Pr

)0,1,1()3,0,0(Pr1





xxx

xxU  
(17) 

Using the numbers presented in Table 2, we obtain that 8065.0FVI 1,

1,3 c . In the 

similar way, we can compute all other measures of the form of jc

s

,

,3FVI (Table 5). 

According to the data presented in Table 5, we can state that a degradation of state 1 

of component 3 contributes mainly to unavailabilities U
 ≥1

 and U
 ≥2

, a degradation of 

state 2 to unavailabilities U
 ≥2

 and U
 ≥3

, and a degradation of state 3 contributes only  

to unavailability U
 ≥3

. 

Table 3.  Computation of the minimal cut vectors of the service system using expanded 

integrated direct partial logic derivatives.  

x1 x2 x3 ϕ(x) 
)10(

)(

1

11



 

x

hh

e

e  

)10(

)(

2

11



 

x

hh

e

e  







2

0 3

11

)1(

)(

s e

e

ssx

hh  
Π-conjunction 

0 0 0 0 0 0 0 0 

0 0 1 0 1 1 0 0 

0 0 2 0 1 1 0 0 

0 0 3 0 1 1 * 1 

0 1 0 0 0 * 1 0 

0 1 1 1 0 * 0 0 

0 1 2 1 0 * 0 0 

0 1 3 2 0 * * 0 

1 0 0 0 * 0 1 0 

1 0 1 1 * 0 0 0 

1 0 2 1 * 0 0 0 

1 0 3 2 * 0 * 0 

1 1 0 0 * * 1 1 

1 1 1 2 * * 0 0 

1 1 2 3 * * 0 0 

1 1 3 3 * * * * 

Table 4.  Minimal cut vectors and minimal path vectors for individual levels of availability of 

the service system.  

System 

availability level 

Minimal cut vectors for given 

level of system availability 

Minimal path vectors for given 

level of system availability 

1 (0,0,3), (1,1,0) (0,1,1), (1,0,1) 

2 (0,0,3), (0,1,2), (1,0,2), (1,1,0) (0,1,3), (1,0,3), (1,1,1) 

3 (0,1,3), (1,0,3), (1,1,1) (1,1,2) 

 

In the next step, we can sum all measures jc

s

,

,3FVI  for given level j of system 

availability. This allows us to evaluate the total contribution of component 3 to 

system unavailability U
 ≥ j

. Results of these calculations are presented in the right 

column of Table 5, and they imply that component 3 has the greatest influence on 



level 1 of system availability and the lowest on level 2. The similar investigations 

could be done for the remaining two components or using MPVs. 

Table 5.  Fussell-Vesely’s importance measures for component 3 based on minimal cut vectors. 

Component 3 
Component state 

Sum 
1 2 3 

S
y

st
e
m

 

a
v
a

il
a

b
il

it
y
 

le
v

e
l 

1 0.8065 0 0 0.8065 

2 0.3891 0.3750 0.0856 0.4747 

3 0 0.6757 0 0.6757 

5   Conclusion 

In this paper, a complex approach for investigation of MSSs based on MCVs, MPVs, 

and logical differential calculus was presented. The approach allows identifying all 

MCVs or MPVs for a given level of system availability. Based on the MCVs or 

MPVs several importance measures introduced in this paper can be computed. The 

measures represent generalization of the FVI, which has been developed originally for 

BSSs. The proposed generalizations of the FVI allows quantifying contribution of a 

degradation (improvement) of a given state of a given system component to system 

unavailability (availability) or total contribution of a given component to system 

unavailability (availability). 

One of the most important parts of the approach presented in this paper is 

identification of MCVs or MPVs. For this purpose, the algorithm based on IDPLDs 

[16], [17] can be used. According to the experiments performed in [17], this algorithm 

can be used for small and medium MSSs that are composed of 15 to 20 components 

(depending on the number of components states). However, the main benefit of this 

algorithm is that it can be applied to systems with complicated structure because, as 

has been shown in [17], its time complexity does not depend on the number of MCVs 

or MPVs, which closely relate to internal structure of the system. 
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