Application of Model-based Testing on a
Quorum-based Distributed Storage

Rui Wang', Lars Michael Kristensen®,
Hein Meling?, Volker Stolz*

! Department of Computing, Mathematics, and Physics
Western Norway University of Applied Sciences
Email: {rwa@hvl.no,lmkr@hvl.no,vsto@hvl.no}
2 Department of Electrical Engineering and Computer Science
University of Stavanger, Email: {hein.meling@uis.no}

Abstract. Data replication is a central mechanism for the engineering
of fault-tolerant distributed systems, and is used in the realization of
most cloud computing services. This paper explores the use of Coloured
Petri Nets (CPNs) for model-based testing of quorum-based distributed
systems. We have used model-based testing to validate a distributed
storage implemented using the Go language and the Gorums framework.
We show how a CPN model of a single-writer, multi-reader distributed
storage system can be used to obtain both unit test cases for the quorum
logic functions, and system level test cases consisting of read and write
quorum calls to the storage. The CPN model is also used to obtain
the test oracles against which the result of running a test case can be
compared. Our experimental results show that we obtain 100 % code
coverage for the quorum functions, 84 % coverage on the quorum calls,
and 40 % coverage on the Gorums framework.

1 Introduction

Distributed systems serve millions of users in many important applications and
domains. However, such complex systems are known to be difficult to implement
correctly because they must cope with concurrency, failures, and a lot of other
challenges [9]. Thus, when designing and implementing distributed systems, it
is important to ensure correctness and fault-tolerance. Distributed systems can
rely on a quorum system to achieve fault-tolerance, yet it remains challenging
to implement fault-tolerance correctly. Therefore, the use of testing techniques
can help to detect bugs and to improve the correctness of such systems.

One promising testing approach is model-based testing (MBT) [18]. MBT is
a paradigm based on the idea of using models of a system under test (SUT)
and its environment to generate test cases for the system. The goal of MBT is
validation and error-detection aimed at finding observable differences between
the behavior of the implementation and the intended behavior of the SUT. A
test case consists of test input and expected output and can be executed on
the SUT. Typically, MBT involves: (a) build models of the SUT from informal

178 PNSE’17 — Petri Nets and Software Engineering

requirements; (b) define test selection criteria for guiding the generation of test
cases and the corresponding test oracle representing the ground-truth; (c) gen-
erate and run test cases; (d) compare the output from test case execution with
the expected result from the test oracle. The component that performs (c) and
(d) is known as a test adaptor and it uses a test oracle to determine whether a
test has passed or failed.

The contribution of this paper is to investigate the use of Coloured Petri
Nets (CPNs) [8] for model-based testing applied to quorum-based distributed
systems [20]. Quorum systems are fundamental to building fault-tolerant dis-
tributed systems, and recently the Gorums framework [13] has been developed
to ease the implementation of quorum-based distributed systems. The Gorums
framework constitutes a distributed middleware that hides the complexity in im-
plementing the communication, synchronization, message processing, and error
handling between the protocol entities. Our long-term research goal is to vali-
date the Go implementation of the Gorums framework using MBT. As a first
step towards this goal, we consider a Gorums-based implementation of a simple
single-writer, multi-reader distributed storage.

The storage system is implemented with a read and a write quorum call,
which clients can use to access the distributed storage. The distributed storage
may return multiple replies to a quorum call. To simplify client access to the
storage, Gorums uses a user-defined quorum function to coalesce the different
replies into a single reply that can then be returned to the client. For this partic-
ular storage system, we use a majority quorum. By developing a CPN model of
such a distributed storage, we are able to generate test cases consisting of read
and write quorum calls that test the Gorums framework implementation.

CPNs have been widely used for modeling and verifying models of distributed
systems spanning domains such as workflow systems, communication protocols,
and distributed algorithms [11]. Recently, work has also been done on auto-
mated code generation allowing an implementation of the modeled systems to
be obtained [10]. Comprehensive testing of an implementation is, however, an
equally important task in the engineering of distributed systems, independently
of how the implementation has been obtained. This also applies in the case of
automated code generation, as it is seldom the case that the correctness of the
model-to-text transformations and their implementation can be formally proved.

The rest of this paper is organized as follows. §2 introduces quorum-based sys-
tem and the Gorums framework, and §3 describes the Gorums-based distributed
storage which constitutes our system under test. §4 presents the constructed
CPN model for test case generation, and §5 shows how state-spaces and simu-
lation can be used to obtain test cases and test oracles. In §6 we present the
Go implementation of our test adapter and how it is connected to the Gorums
implementation of the distributed storage in order to execute the test cases.
We also report on the experimental results. §7 presents related work, and in §8
we sum up conclusions and presented directions for future work. The reader is
assumed to be familiar with the basic concepts of high-level Petri Nets.

Wang et.al.: Application of Model-based Testing on a ... 179

2 Quorum-based Distributed Systems and Gorums

In this section we describe Gorums [13], a framework for implementing quorum-
based distributed systems. We have used Gorums to implement the distributed
storage system that enables us to test the implementation of the framework.

Gorums is a library whose goal is to alleviate the development effort for
building advanced distributed algorithms, such as Paxos [12] and distributed
storage [1]. These algorithms are commonly used to implement replicated ser-
vices, and they rely on a quorum system [20] to achieve fault tolerance. That
is, to access the replicated state, a process only needs to contact a quorum, e.g.
a majority of the processes. In this way, a system can provide service despite
the failure of individual processes. However, communicating with and handling
replies from sets of processes often complicate the protocol implementations.

To reduce this complexity, Gorums provides two core abstractions: (a) a
flexible and simple quorum call abstraction, which is used to communicate with
a set of processes and to collect their responses, and (b) a quorum function
abstraction which is used to process responses. These abstractions can help to
simplify the main control flow of protocol implementations.

Fig. 1 illustrates the interplay between the main abstractions provided by
Gorums. Gorums consists of a runtime library and code generator that extends
the gRPC [5] remote procedure call library from Google. Specifically, Gorums
allows clients to invoke a quorum call, i.e. a set of RPCs, on a group of servers,
and to collect their replies. The replies are processed by a quorum function to
determine if a quorum has been received. Note that the quorum function is
invoked every time a new reply is received at the client, to evaluate whether or
not the received set of replies constitutes a quorum.

Gorums client

Y Gorums |

Quorum Call

| 7)

Quorum Invoke
Function RPCs

Replies4 '\“ ﬁ\ "\ Request

\

H ‘\\ - \\

gRPC servers

Fig. 1. Overview of Gorums abstractions.

180 PNSE’17 — Petri Nets and Software Engineering

With Gorums, developers can specify several RPC service methods using
protobuf [6], and from this specification, Gorums’ code generator will produce
code to facilitate quorum calls and collection of replies. However, each RPC/quo-
rum call method must provide a user-defined quorum function that Gorums will
invoke to determine if a quorum has been received for that specific quorum call.
In addition, the quorum function will also provide a single reply value, based on
a coalescing of the received reply values from the different server replicas. This
coalesced reply value is then returned to the client as the result of its quorum
call. That is, the invoking client does not see the individual replies.

Our goal in this paper is to provide a framework for generating test cases
to verify the correctness of the Gorums implementation itself in addition to
different quorum function and quorum call implementations for specific use of the
framework. The quorum functions for a specific protocol implementation must
follow a well-defined interface generated by Gorums. These only require a set of
reply values as input and a return of a single reply value together with a boolean
quorum decision. Hence, quorum functions can easily be tested using unit tests.
However, some quorum functions involve complex logic, and their input and
output domains may be large, and so generating test cases from a model, provide
significant benefit to verify correctness. A quorum call is implemented by a set of
RPCs, invoked at different servers, and so must consider different interleavings
due to invocations by different clients. Hence, using model-based testing we
can produce sequences of interleavings aimed at finding bugs in the server-side
implementations of the RPC methods and also in the Gorums runtime system.

3 System Under Test: Gorums and Distributed Storage

We have implemented a distributed storage system, with a single writer and
multiple readers. The storage system is replicated for fault-tolerance, and is im-
plemented using Gorums. To test this storage implementation, we have designed
a corresponding CPN model that we use to generate test cases (see §4). In this
section, we describe the different components of the distributed storage.

As with any RPC library, Gorums also requires that the server implements
the methods specified in the service interface. For our distributed storage, we
have implemented two server-side methods: Read() and Write(). These can be
invoked as quorum calls from storage clients, to read/write the state of the
storage. In our current implementation, we allow only a single writer client,
but any number of clients can read the state of the storage. A client reading
from the storage may observe different replies returned by the different server
replicas, since the read may be interleaved with one or more writes generated by
the writer client.

To allow a reader to pick the correct reply value to return from a quorum
call, each server also maintains a timestamp that is incremented for each new
Write(). That is, the reader will always return the value associated with the
reply with the highest timestamp. Thus, to implement the reader client using
Gorums, we can simply implement a user-defined ReadQF quorum function for

Wang et.al.: Application of Model-based Testing on a ... 181

the Read() quorum call as shown in Algorithm 1. As this code illustrates, a set
of replies from the different servers are coalesced into a single reply, the one with
the highest timestamp, that can then be returned from the quorum call.

The user-defined quorum functions are implemented as methods on an object
of type Quorumseec, named ¢gs in Algorithm 1. This object holds information
about the quorum size, such as ReadQSize, and other parameters used by the
quorum functions. This gs object must satisfy an interface generated by Gorums’
code generator. In Algorithm 1, ReadQSize is used to determine if enough replies
have been received to search for the reply with the highest timestamp.

Algorithm 1 Read quorum function
1: func (gs Quorumsrec) ReadQF (replies [|REapREPLY)

2: if len(replies) < gs.ReadQSize then > read quorum size
3: return HH, false > no quorum yet, await more replies
4: highest =1 > reply with highest timestamp seen
5: for r := range replies do

6: if r.Timestamp > highest.Timestamp then

7 highest :=r

8: return highest, true > found quorum

4 CPN Testing Model for the Distributed Storage

In this section, we describe the CPN model of our test framework for the dis-
tributed storage presented in §3. We model the entire system, parametrized by
a number of clients and servers. Some key features of the model are the use of
colored tokens for distinguishing multiple incoming and outgoing messages, and
the quorum specification based on the numbers of replies received so far.

Fig. 2 shows the top-most module of the CPN model developed in order to
generate test cases for the distributed storage implementation. The substitution
transition Clients represents the clients (users) of the distributed storage system
while Servers represent the servers. The places ClientToServer and ServerToClient
are used for modeling the exchange of messages between the clients and the
servers. The CPN model has been constructed in a folded manner so that the
number of servers is a parameter to the CPN model that can be configured
without making changes to the net-structure. Below we provide more details
on selected modules of the CPN model. The complete CPN model including all
color sets, variable declarations, and function definitions is available from [3].

Fig. 3 shows the client submodule of the Clients substitution transition in
Fig. 2. The substitution transition QuorumCalls is used to model the behavior of
applications running on the clients, which makes the read and write quorum calls.
In particular, the submodules of QuorumCalls serve as test driver modules used
to generate system tests for the distributed storage. The content of QuorumCalls

182 PNSE’17 — Petri Nets and Software Engineering

ClientTo
Server

. ServerxChannel
Clients Servers

ServerTo
Client

ServerxChannel Server

Fig. 2. Top-level module of the CPN model.

Quorum Calls

Quorum Calls

ReadCall WriteCall

erverTo
Client

ServerxChannel

ClientTo
erver

ServerxChannel

Write

Write

Fig. 3. The Clients module.

depends on the specific test scenarios to be investigated for the system under test,
and we give a concrete example of a test driver module in §6. The substitution
transitions Read and Write represent the quorum calls provided by the distributed
storage. The invocation of quorum calls is done by placing tokens on the Read
and Write places. The port places ServerToClient and ClientToServer are linked
to the identically named socket places in Fig. 2.

Fig. 4 shows the submodule of the Read substitution transition which pro-
vides an abstract implementation of the Read() quorum call. The main purpose
of the Read module is to generate test cases for the ReadQF quorum func-
tion. A read quorum call is triggered by the presence of a token with the color
READINVOKED(r), where r identifies the call and is used to match replies from
servers to the call. The execution of a read quorum call starts by sending a read
request to each of the servers. This is modeled by the transition SendReadReq
and the expression on the arc to place ClientToServer, which will add tokens
representing read requests being sent to the servers. In addition, a list-token is
put on place ReadReplies, which is used to collect the replies received from the
servers. The call then enters a WaitingReply state and waits for replies coming
back from the servers. When a read’s reply comes back, represented by a token on
place ServerToClient, then transition ApplyReadQF will be enabled. This transi-

Wang et.al.: Application of Model-based Testing on a ... 183

Ve
ReadCall
READINVOKED(r)
(r,[1) Send sendReadRegAllServers r \
ReadRe: gt erver
i
(r,((~1,0),false)) ServerxChannel
ReadReplies
ReadxReadReplies ReadxQFReadResult
if hasQuorum(readreplies')
(r,readreplies) (r(v/8.D)) |then (r,((v',t) true))
else (r,((~1,0),false))
(r,readreplies') Apply » (s,READREPLY (r,readreply)) erverto
N\ | ReadQF T~ > Client
if (not b) andalso hasQuorum(readreplies')
then 1°READRESULT(r,v') [readreplies' = readreplies~~[readreply], ServerxChannel
else empty (v',t") = withHighestTimestamp(readreplies')]

Fig. 4. The Read module.

tion takes the current list of readreplies and appends the received readreply
to form readreplies’. The quorum function is then invoked, as represented
by the arc expressions to WaitingReply and Read. If enough replies have been
received, then a read result is returned to the Read place containing the value
with the highest timestamp. As we will see later, we use occurrences of the Ap-
plyReadQF transition for generating test cases for the ReadQF quorum function.
In addition, we record the result computed by the CPN model as the test or-
acle and compare it to the result of our SUT’s implementation of the ReadQF
quorum function. The submodule for the Write() quorum call is similar. It has
a transition ApplyWriteQF, which we use as a basis for generating test cases and
obtain a test oracle for the WriteQF quorum function.

Fig. 5 shows the server submodule of the Servers substitution transition in
Fig. 2. The replicated state of each server is modeled by the place State. The two
substitution transitions are used for modeling the handling of write requests and
read requests on the server side. Fig. 6 shows the submodule of the substitution
HandleWriteRequest modeling the processing of a write request from a client.
The incoming write request will be presented as a token on place ClientToServer
and contains a value v’ to be written in the distributed storage together with a
timestamp t’. The server compares the timestamp of the incoming write request
with the timestamp t for the currently stored value v. If the timestamp of the
incoming write request is larger, then the new value is stored on the server, and
a write acknowledgement is sent back in a write reply to the client. Otherwise,
the stored value remains unchanged and a negative write acknowledgement is
sent to the client in the write reply. The handling of read requests is modeled in
a similar manner, except that no comparison is needed, and the server simply
returns the currently stored value together with its timestamps.

184 PNSE’17 — Petri Nets and Software Engineering

ClientTo
Server
ServerxChannel
Handle InitStorage() Handle
WriteRequest ReadRequest
ServerxStorageq
Client
Handle WriteRequest Handle ReadRequest
ServerxChannel

Fig. 5. The Server module.

(s,WRITEREQ (v',t")) ClientTa
-
‘
ServerxChannel
(s,(v,t)) InitStorage()
Handle < Server,

)((State [n/Out]

WriteRequest
if (t'>t)

then (s,(v',t")) ServerxStorage
else (s,(v,t))

~ erverTo
if (£'>t) -

then (s, WRITEREPLY WRITEACK)
else (s,WRITEREPLY WRITENACK) ServerxChannel

Fig. 6. The HandleWriteRequest module.

5 Test Case Generation

The generation of test cases for Gorums and the distributed storage system
is based on the analysis of executions of the CPN model. Test cases can be
generated for both the quorum functions and the quorum calls. The test cases
generated for the quorum functions are unit tests, whereas the test cases gener-
ated for quorum calls are system tests consisting of concurrent and interleaved
invocations of read and write quorum calls. The latter tests both the imple-
mentation of the quorum calls and the Gorums framework implementation. In
addition to the test cases, we also generate a test oracle for each test case to
determine whether the test has passed.

5.1 TUnit Tests for Quorum Functions

Test cases for the ReadQF quorum function can be obtained by considering
occurrences of the ApplyReadQF transition (Fig. 4). When this transition occurs,
the variable readreplies’ is bound to the list of all replies that have been
received from the servers so far, and which the quorum function is invoked on.
In addition, we can use the implementation of the quorum function in the CPN

Wang et.al.: Application of Model-based Testing on a ... 185

model as the test oracle. This means that the expected result of invoking the
quorum function can be obtained by considering the value of the token put back
on place WaitingReply. The value of this token contains the result of invoking
the quorum function in its second component. Occurrences of ApplyReadQF can
be detected using either state spaces or simulations:

State-space based detection. We explore the full state space of the CPN
model searching for arcs corresponding to the ApplyReadQF transition. When-
ever an occurrence is encountered we emit a test case together with the ex-
pected result. In this case, we obtain test cases for all the possible ways in
which the quorum function can be invoked in the CPN model.

Simulation-based detection. We run a simulation of the CPN model and use
the monitoring facilities of the CPN Tools [2] simulator to detect occurrences
of the ApplyReadQF transition and emit the corresponding test cases. The
advantage of this approach over the state-space based approach is scalability,
while the disadvantage is potentially reduced test coverage.

Test cases are generated based on detecting transition occurrences. This is
done in a uniform way for both detection approaches. Specifically, we rely on a
detection function, which must evaluate to true whenever a specific transition
occurrence is detected. When this happens, a generator function is invoked to
generate the actual test case.

The generated test cases and the expected results are exported in a custom
XML format. As part of future work, we will investigate the use of a general-
purpose XML format. Listing 1 shows an example of how our test cases are
represented. The test case for the ReadQF quorum function corresponds to two
replies (one with value 0 and timestamp 0, and one with value 42 and timestamp
1). With three servers, this constitutes a quorum, and the value returned from
the quorum function is therefore expected to be 42 with the timestamp of 1.

<Testcase>
<CaseName>ReadQFTest1</CaseName>
<Value>
<ContentTest>
<ValTest>0</ValTest><TsTest>0</TsTest>
</ContentTest>
<ContentTest>
<ValTest>42</ValTest><TsTest>1</TsTest>
</ContentTest>
</Value>
<ContentExpect>
<ValExpect>42</ValExpect><TsExpect>1</TsExpect>
</ContentExpect>
<QuorumExpect>true</QuorumExpect>
</Testcase>

Listing 1. Example of generated test cases for read quorum function.

186 PNSE’17 — Petri Nets and Software Engineering

5.2 System Tests of Quorum Calls

The generation of test cases and expected results is based on the submodule
of the QuorumCalls substitution transition (Fig. 3). This module acts as a test
driver for the system by specifying scenarios for read and write quorum calls to
the underlying quorum system. By varying this module, it is possible to generate
different scenarios of read and write quorum calls.

Fig. 7 shows an example of a test driver in which the client executes one read
and one write call (concurrent or in any order). Upon completion of these two
calls, a new read call is made. The Invoke transitions represent invocations of
read and write quorum calls. Each call has a unique identifier (1, 2, and 3) for
identifying the call. The write call also has a value (in this case 7) to be written
to the distributed storage.

WRITERESULT(2,true Write
Completed

WriteCall
Invoke

Completed Read2

READRESULT(1,v) Read
Completed

ReadCall

READINVOKED(3)

Fig. 7. The QuorumCalls module.

To make test case generation independent to the particular test driver mod-
ule, we exploit that the read and write quorum calls, made during an execution
of the CPN model, can be observed as tokens on the Read and Write socket places
(see Fig. 3). When there is a READINVOKED (i) token on place READ for some
integer i, it means that a read quorum call identified by i has been invoked.
When the read quorum call has terminated, there will be a token with the color
READRESULT (i,v) present on the place Read, where v is the value read by the
call. The invocation and termination of write quorum calls can be detected in
a similar manner by considering the tokens with the colors WRITEINVOKED (i,v)
and WRITERESULT(i,b) on the place Write (Fig. 3), where the boolean value b
denotes whether the value v was written or not.

Based on this, we can generate test cases in XML format specifying both
the concurrent and sequential execution of read and write calls. Listing 2 shows
an example where first a read and a write are initiated and upon completion of
these two calls, a new read call is initiated. We handle concurrent executions by
nesting the read and write operation tag as illustrated in Listing 2. In addition,
we interpret a new operation positioned after the completion of a call operation
end tag as the operation should not be started until after the termination of the
call. For write calls, we use the value tag to specify the value to be written, and
for read calls, we use the value tag to describe the permissible value (see next
section) returned by read calls for the test case. The absence of a value between

Wang et.al.: Application of Model-based Testing on a ... 187

value tags indicates that the result could be null - corresponding to the case
where no value have yet been written into the storage.

<RWTest>
<Function>RWTest</Function>
<Testcase>
<CaseName>RWTest1</CaseName>
<QuoCallMainROpers>
<OperationName>WRITE</OperationName>
<OperationValues>
<Value>7</Value>
</OperationValues>
<QuoCallOtherROpers>
<OperationName>READ</OperationName>
<OperationValues>
<Value>7</Value>
<Value></Value>
</OperationValues>
</QuoCallOtherROpers>
</QuoCallMainROpers>
<QuoCallMainROpers>
<OperationName>READ</OperationName>
<OperationValues>
<Value>7</Value>
</0OperationValues>
</QuoCallMainROpers>
</Testcase>
</RWTest>

Listing 2. Example of a generated test cases for the concurrent and sequential
execution of read and write calls.

It should be noted if the CPN model specifies that a read and write call may
execute concurrently (independently), but happened to be executed in sequence
in a concrete execution of the CPN model (e.g., first the read executes and com-
pletes and then the write executes an completes), then that will be specified as a
sequential test case in the XML format. This is not a problem as the CPN model
captures all the possible executions and hence there will be another execution
of the CPN model in which the read and the write are running concurrently.

5.3 Test Oracle for System Tests

Checking that the result of an execution with read and write quorum calls is as
expected is more complex than for quorum functions. This is because the result
of concurrently executing read and write calls will depend on the order in which
messages are sent and received. Fig. 8 shows an example test case in which there
are two routines (threads of execution) that concurrently execute read and write
quorum calls. When Write; and Read, are initialized and executed concurrently,
the returned result of Read, could be the old value in the servers before Write;

188 PNSE’17 — Petri Nets and Software Engineering

sequential
execution ;
Read;
concurrent
execution
------- Read, = ===| Read), = ===| Read, |====| Read, = = ===
second

routine

Fig. 8. An example of concurrent and sequential execution of quorum calls.

writes a new value to servers, or the returned result of Read, could be the value
already written by Write;. The same situation applies to Writep and Read,.
Since they are executed concurrently, the returned value of Read,. could be the
value written by Write; or Writes.

This means that if we execute (simulate) the CPN model with a test case
containing concurrent read and write quorum calls, then the result returned
upon completion of the calls may be different if we execute the same test case
against the Go implementation. The reason is that we cannot control in what
order the messages are sent and delivered by the underlying gRPC library, i.e.,
due to non-determinism in the execution. When we apply a state-space based
approach for extracting the test cases, e.g., for the quorum function, then we can
compute all the possible legal outcomes of a quorum call since the state space
captures all interleaved executions. In contrast, we cannot obtain all legal values
when extracting test cases from a single execution of the CPN model.

The first step towards constructing a test oracle is to characterize the per-
missible values of a read quorum call. These are:

1. the initial value of the storage in case no writes were invoked before the read
was invoked, or;

2. the value of the most recent write invoked but not terminated prior to the
read call (if any) or;

3. the value of the most recent write that has terminated prior to invocation
of the read or;

4. the value of a write that was invoked between the invocation and completion
of the read.

The above can be formally captured in the stateful automaton shown in Fig. 9
(left), which can be used to monitor the global correctness of the distributed
storage. The four events are shorthands for the abstract tokens per client-request
observed in the model, e.g., READINVOKED (i) is abbreviated RI;.

The set S is used to collect the set of permissible values for a read call. On
a read call RI;, any pending write WI(c) observed since the last write-return
WI(c) is a potential read-result. We abuse notation from alternating automata
with parametrized propositions [17] to capture that on a read invocation, we

Wang et.al.: Application of Model-based Testing on a ... 189

R/W

WR.: S = {c} WI(c): Sw{c}

RI; A RR;(z):x &€ S Q
S=0 fail
_)Q»J _/

RR;,(z): z € S

O

Fig. 9. Read-write automaton (left) and monitor deployment (right).

WI(c): Sw{c}

remain in the initial state and collect further input for a new instance of the
monitor with the same current state (indicated by the dashed line) for subsequent
read-invocations.

In order to obtain a test oracle which can be used in state space-based and
simulation-based test case generation, we use the above automaton to perform
run-time verification of the Go implementation when executed on the test cases
derived from the CPN model. Specifically, our test adaptor implements a run-
time monitor corresponding to the above automaton in order to keep track of
the invoked and terminated write calls and thereby determining whether a value
returned from a read call is permissible. Our test framework currently runs the
client (the single writer and multiple readers) within a single Go process. This
allows us to directly call into the monitor before the client sends the fan-out
messages to servers, and after the quorum function returns the resulting quorum
value, to check the result of the read request for plausibility against the permitted
values specified above. This corresponds to monitoring all calls and returns in
a particular deployment, i.e., correlating read calls and returns of the client in
the system against those of the writer in the shaded area of Fig. 9 (right).

6 Testing the Distributed Storage Implementation

We have developed the QuoMBT test framework in order to perform model-
based testing of quorum-based systems implemented using Gorums. Fig. 10 gives
an overview of the framework which consists of CPN Tools and a test adapter.
CPN Tools is used for modeling and generation of test cases and oracles as
explained in §4 and §5. The generated test cases are written into XML files by
CPN Tools, and then read by the reader of the test adapter, as shown in Fig. 10.
The reader feeds the test cases into the distributed storage and each test case is
executed with the provided test values as inputs. The tester included in the test
adapter compares the test oracle’s output against the output of each test case
in order to determine whether the test fails or succeeds.

190 PNSE’17 — Petri Nets and Software Engineering

> > | Reader Tester

Test adapter

Fig. 10. The QuoMBT test framework.

6.1 The Test Adapter: Reader and Tester

The Reader and the Tester are both implemented in the Go programming lan-
guage. The Reader can read XML files for unit tests of read and write quorum
functions, and for system level tests involving quorum calls. We could have gener-
ated Go-based table-driven tests, which is already supported by the Go standard
library. However, we chose to use an XML-based format for the generated test
cases to enable reuse of the test generator across programming languages.

The implementation of the Reader uses Go’s encoding/xml package, which
makes it easy to define mappings between Go structs and XML elements. In
order to map XML content into Go structs, each field of the Go struct has an
associated XML tag, which is used by Go’s XML decoder to identify the field
to populate with content from the XML. Also, we have implemented the Tester
using the testing package provided by the Go standard library. Go’s testing
infrastructure allows us to simply run the go test command to execute our
generated tests, which will provide pass/fail information for each test case. In
addition, this test infrastructure can also provide code coverage.

6.2 Distributed Storage Under Test

To test our distributed storage, we have implemented a test adapter that can ex-
ecute both the unit tests for user-defined quorum functions and system level tests
involving quorum calls. The unit tests for read and write quorum functions can
be performed without running any servers, while the system level tests require
a set of running servers to test the complete system, including parts of the Go-
rums framework. When testing the distributed storage, we distinguish between
quorum functions and quorum calls, because quorum functions are defined by
developers when implementing their specific abstractions, whereas quorum calls
are provided generally by the Gorums library. This separation also provides a
modular approach to testing.

Our test adapter implements a Go-based Tester for testing quorum functions.
We simply iterate through the test cases obtained from the Reader, invoking the
ReadQF and WriteQF functions with the test values, and compare the results
against the test oracle. When doing the system level tests involving quorum calls,
the servers shown in Fig. 1 must be started first. Then, the test adapter starts
a client so that it can execute the quorum calls. The test value, obtained from
XML files, for each write quorum call is written to servers by calling the write

Wang et.al.: Application of Model-based Testing on a ... 191

quorum call, and for each read quorum call, the value returned by the servers
will be captured by the Tester to compare against the test oracle. For each write
quorum call, the tests only check if it returns an acknowledgment from servers.

The non-trivial part of the test case execution is the concurrent and sequen-
tial executions of read and write quorum calls. Fig. 11 illustrates the detailed
implementation of the storage involving quorum calls under test. The testing
function for quorum calls run through each test case read from the Reader. For
the run of each test case, the write and read quorum calls can be executed both
sequentially and concurrently depending on the test driver used. For the sequen-
tial executions, the decision to execute write or read calls is made according to
their sequences in the XML files generated by CPN Tools.

Setup Client

~

Test Cases (& Reader

for each test case

~

Yes Reached Last
End — ¢
" Test Case? N h
main goroutine I .
1
. 1 .
read write 1 other goroutines
Write Or Read? 1
1
[_ 1 ‘
¥
Read Call Write Call Read Call
1
L J '
1
1
1
1
- Test Reply {====== ’ read reply
read or write reply
J/

Fig. 11. Flow-chart of test case execution for quorum calls.

For the concurrent executions of write and read quorum calls, the test ex-
ecution makes use of goroutines provided by the Go programming language.
Therefore, in Fig. 11, within each run of test cases, a write or read quorum call
(shown by solid line arrows) is executed based on their sequence in the XML files.

192 PNSE’17 — Petri Nets and Software Engineering

Meanwhile, there are other read calls, shown as dashed line arrows in Fig. 11,
that can be executed concurrently with the running write or read quorum call
shown by solid line arrows. After executing each test case, the returned values
of quorum calls are collected.

6.3 Experimental Results

To perform an initial evaluation of our model-based test case generation, we
consider the code coverage obtained using different test drivers. The Go toolchain
includes a coverage tool which we have used to measure statement coverage.

Table 1 summarizes the experimental results obtained using different test
drivers. We consider the following test drivers: one read call (RD), one write
call (WR), a read call followed by a write call (RD;WR), a write call fol-
lowed by a read call (WR;RD), a read and a write call executed concurrently
(WR||RD), a read and a write call executed concurrently and followed by a read
call ((WRJ||RD);RD). The table shows the number of nodes/arcs in the state
space of the CPN model with the given test driver, the state space and test case
generation time (TM) in seconds, the number of test cases generated for quo-
rum calls (QC), the number of test cases generated for quorum functions (QF).
For the test case execution, we show the code coverage (in percentage) that was
obtained for the system level and unit tests.

Table 1. Experimental results — test case generation and code coverage.

Test . Test case execution
. Test case generation .

Driver (coverage in percentage)

System Unit

T™ Gorums| QCs QFs
Nodes| Ares| . onds)| FC|QF|| Library [RD WR|RD WR
RD 39 74 <1 1| 3| 24.6 |84.4 0/100 0
WR 39 74 <1 1] 3|| 246 0 84.4| 0 100
RD;WR 444| 1073 <1 1 7| 39.1 |84.4 84.4/100 100
WR;RD 615 1376 <1 1| 12| 40.8 |84.4 84.4/100 100
WRJ|/RD 5,119(16,677 6 6| 17|| 40.8 |(84.4 84.4{100 100
(WR||RD);RD|| 21,020(59,647 53 6| 17| 40.8 |(84.4 84.4{100 100

The results show that the statement coverage for read (RD-QF) and write
(WR-QF) quorum functions is 100 % for both system and unit tests, as long as
both read and write calls are involved. The statement coverage for read (RD-
QC) and write (WR-QC) quorum calls is up to 84.4 %. For the Gorums library
as a whole, the statement coverage reaches 40.8 %.

For our system level tests, the statement coverage of quorum calls and Go-
rums are lower than the coverage for quorum functions. It should be noted that
the Gorums library contains all code generated by Gorums’ code generator, in-
cluding gRPC code, various auxiliary functions and logic for the quorum calls.

Wang et.al.: Application of Model-based Testing on a ... 193

We have conducted a code inspection, which shows that the statements currently
not covered in the Gorums library is code related to error handling. Much of this
code is actually not used in case when failures of the system are not considered.
Our initial test case generation presented in this paper does not consider failures
and error conditions. Hence, with the current testing model, we cannot expect
to obtain a higher coverage. The total number of lines of code for the system
under test is approximately 2200 lines, which include generated code by Gorums’
code generator (around 2000 lines), server code (around 130 lines), client code
(around 80 lines) and the code for quorum functions (around 60 lines).

7 Related Work

Research into model-based testing for distributed systems and cloud applications
is not new. In Saifan and Dingel’s survey [15], they provide a detailed description
of how model-based testing is effective in testing different quality attributes of
distributed systems, such as security, performance, reliability, and correctness.
The authors also classified model-based testing based on different criteria and
compared several model-based testing tools for distributed systems according
to this classification. This comparison, however did not consider quorum-based
distributed systems.

Model-based development and testing for the C* language with tool support
from Microsoft has been described in [19], and [7] devotes an entire book to
describe the same steps that we have taken here in detail: modeling a system
as a finite-state machine, and then using state space exploration to derive test
cases. In contrast to our work, they do not cover distributed system, but a single
application.

Until now, there also has been relatively few applications of CPNs for model-
based testing and test cases generation. Watanabe and Kudoh [21] propose two
CPN-based test suite generation methods for distributed systems, referred to
as the CPN Tree (CPT) method and the CPN Graph (CPG) method. Their
method does not directly address a particular way in deriving a CPN model for
a distributed system, nor do they give any particular guarantees on achieved
coverage for their methods.

Xu suggested using high-level Petri nets for MBT and implemented their ap-
proach [22]. The benefits of using high-level Petri nets over finite state machines
and UML was: a) the ability to include data in the models and hence directly
derive concrete test cases; and b) a compact modeling of parallelism making it
simpler to obtain test cases for systems with concurrency. Xu presents the In-
tegration and System Test Automation (ITSA) tool which supports test code
generation for languages such as Java, C/C++, and C# The ITSA tool also
uses the state spaces of the testing model to generate and select test cases. To
obtain concrete test cases with input data, the tool relies on a separate model-
implementation mapping. In contrast, we obtain the input data for the quorum
functions and calls directly from the data contained in the testing model. The
ITSA approach also includes test selection techniques and metrics in order to

194 PNSE’17 — Petri Nets and Software Engineering

prune the number of test cases. For testing the distributed storage implemen-
tation considered in this paper there was no need for test selection techniques.
However, when considering more complex quorum system this will likely be
needed also in our approach.

Faria et al. [4] use timed event-driven CPNs to generate test cases for dis-
tributed systems. They do not use CPNs as a direct interface to the user, but
generate them from UML sequence diagrams. Their tool suite has a slightly
different focus, as they instrument a running system to observe the messages
specified in the sequence diagrams. They use CPNs for similar reasons as us,
namely the large existing body of work on them, and their suitability to model
concurrent systems with data encoded in coloured tokens. Their notation of cov-
erage primarily cover the specification, not the code, but recording coverage data
on the underlying code should be easy to achieve with conventional means.

A CPN-based test generation approach has been proposed by Liu et al. [14].
The approach consists of conformance testing oriented CPN (CT-CPN) as the
basic models, a new PN-ioco relation to specify the meaning for an implemen-
tation to conform to its specifications, and the test case generation algorithm
for simulating the CP-CPN model. For the test case generation algorithm, the
authors only considered simulation-based test case generation for the simpli-
fied file downloading protocol system. However, in our paper, we also consider
state-space based test case generation.

8 Conclusions and Future Work

The main contribution of our work has been to establish an infrastructure con-
sisting of a CPN modeling approach, test case generation algorithms, and a test
case execution framework, which can be used to validate quorum-based systems
implemented using the Gorums library. Our initial experiments with this infras-
tructure on a distributed storage system have been promising in that we have
obtained a relatively good code coverage even with simple test drivers and a
small number of test cases.

An important attribute of our approach is that the CPN testing model has
been constructed such that it can serve as a basis for model-based testing of other
quorum-based systems. In particular, it is only the modeling of the quorum calls
on the client and server side that are system dependent. To experiment with dif-
ferent quorum functions for a given quorum system, it is only the implementation
of the quorum functions in Standard ML that needs to be changed. The state
space and simulation-based test case generation approaches are independent of
the particular quorum system under test.

Model-based testing can be used to test a system either by connecting a
model (acting as a test driver) directly to an instance of the running system,
or, as we do in this paper, generate test cases offline and execute these test
cases against the system. The main challenge related to this, is how to handle
non-determinism during test case execution. In our current approach, we have
addressed this by using monitors known from the field of run-time verification.

Wang et.al.: Application of Model-based Testing on a ... 195

The work presented in this paper opens up several directions of future work.
We have obtained good coverage results on the quorum functions and calls with
the current testing model which encodes a fair weather scenario, i.e., it generates
test cases where the environment behaves flawlessly by only doing reordering of
messages through non-determinism and interleaving in the model. In order to
increase coverage of the Gorums library as a whole, we need to test the quorum
calls under adverse conditions, such as network errors and server failures. This
will require extensions to the model, e.g. injecting erroneous values or generating
timeouts. Thus, the recorded test cases must also record the particular scenarios
in system tests such that the environment can replay the conditions. Conversely,
with the current model, an intermittent failure in the test environment during
system testing may be reported as test failures, as they are likely to produce a
result diverging from the recorded test output.

Our current solution uses the CPN model to generate test cases and record
the correct response from the quorum function. The global monitor presented in
85 independently specifies safe behavior in the form of correct read calls. Instead
of the automaton, a different formal specification logic for (distributed) systems
could have been used, e.g. Scheffel and Schmitz’s distributed temporal logic [16].
Their three-valued logic would allow us to adequately capture that the monitor
has neither detected successful nor failed completion.

To evaluate the generality of our modeling and test case generation approach,
we need to apply it to other and more complex quorum-based systems. This will
challenge the limits of state space-based generation of test cases. It therefore
becomes important to investigate the test coverage that can be obtained with
simulation versus the test case coverage that can be obtained with state spaces.
We anticipate that this will motivate work into techniques for on-the-fly test
case generation during state space exploration.

References

1. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing Memory Robustly in Message-
passing Systems. J. ACM, 42(1):124-142, Jan. 1995.

2. CPN Tools. CPN Tools homepage. http://www.cpntools.org.

3. CPN Testing Model for Gorum-based Distributed Storage.
http://home.hib.no/ansatte/Imkr/DistributedStorage.cpn. April, 2017.

4. J. P. Faria and A. C. R. Paiva. A toolset for conformance testing against uml
sequence diagrams based on event-driven colored Petri nets. Intl. J. on Software
Tools for Technology Transfer, 18(3):285-304, 2016.

5. Google Inc. gRPC Remote Procedure Calls. http://www.grpc.io.

6. Google Inc. Protocol Buffers. http://developers.google.com/protocol-buffers.

7. J. Jacky, M. Veanes, C. Campbell, and W. Schulte. Model-Based Software Testing
and Analysis with C*. Cambridge University Press, 2008.

8. K. Jensen and L. Kristensen. Coloured Petri Nets: A Graphical Language for
Modelling and Validation of Concurrent Systems. Communications of the ACM,
58(6):61-70, 2015.

9. Jepsen. Distributed Systems Safety Analysis. http://jepsen.io.

196

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

PNSE’17 — Petri Nets and Software Engineering

L. Kristensen and V. Veiset. Transforming CPN Models into Code for TinyOS: A
Case Study of the RPL Protocol. In Proc. of Intl. Conf. on Application and Theory
of Petri Nets and Concurrency, volume 9698 of LNCS, pages 135-154, 2016.

L. M. Kristensen and K. I. F. Simonsen. Applications of Coloured Petri Nets for
Functional Validation of Protocol Designs, pages 56—115. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013.

L. Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2):133~
169, May 1998.

T. E. Lea, L. Jehl, and H. Meling. Towards New Abstractions for Implement-
ing Quorum-based Systems. In 37th IEEE Intl. Conf. on Distributed Computing
Systems (ICDCS), 2017. To appear.

J. Liu, X. Ye, and J. Li. Colored Petri Nets Model Based Conformance Test
Generation. In IEEE Symp. on Computers and Communications (ISCC), pages
967-970. IEEE, 2011.

A. Saifan and J. Dingel. Model-based Testing of Distributed Systems. Technical
Report 548, School of Computing, Queen’s University, Canada, 2008.

T. Scheffel and M. Schmitz. Three-valued Asynchronous Distributed Runtime
Verification. In Twelfth ACM/IEEE Intl. Conf. on Formal Methods and Models
for Codesign (MEMOCODE), pages 52-61. IEEE, 2014.

V. Stolz. Temporal Assertions with Parametrized Propositions. Journal of Logic
and Computation, 20(3):743-757, 2010.

M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing
Approaches. Software Testing, Verification and Reliability, 22:297-312, 2012.

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-
manson. Model-based testing of object-oriented reactive systems with Spec Ex-
plorer. In Formal Methods and Testing, volume 4949 of LNCS, pages 39-76.
Springer, 2008.

M. Vukolic. Quorum Systems: With Applications to Storage and Consensus. Mor-
gan and Claypool, 2012.

H. Watanabe and T. Kudoh. Test Suite Generation Methods for Concurrent Sys-
tems Based on Coloured Petri Nets. In Software Engineering Conference, pages
242-251. IEEE, 1995.

D. Xu. A Tool for Automated Test Code Generation from High-level Petri Nets.
In Proc. of ICATPN’2011, volume 6709 of LNCS, pages 308-317. Springer, 2011.

