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Abstract. The composition of heterogeneous software components is
required in many domains to build complex systems. However, such com-
positions raise mismatches between components such as unspecified mes-
sages. Checking compatibility for asynchronously communicating sys-
tems with unbounded channels is undecidable. In this paper, we propose
a compatibility control approach based on a coverability product, which
is a finite abstraction of the asynchronous products of I/O-transition
systems. This coverability product is used to check UR-compatibility,
without requiring a synchronizabity of the peers. We distinguish between
messages brought by acyclic path and those brought by cycles. This al-
lows us to overcome over-approximation for some arcs. Furthermore, we
define relationships, called patterns, to check a good choreography be-
tween peers in terms of emission and reception activities.

Keywords: communicating systems, compatibility analysis, coverabil-
ity product, patterns, infinite systems.

1 Introduction

Component-based development aims at facilitating the construction of very com-
plex applications by reusing and composing existing components. The assembly
of components offers a great potential for reducing cost and time to build com-
plex software systems and improving system maintainability and flexibility. A
software component is generally developed independently and is assembled with
other components, which have been designed separately, to create complex sys-
tems. Normally glue code is written to realize such an assembly. Compatibility
checking is used to control if composed components can work together without
errors. This verification is very important for ensuring correct interaction be-
tween components and may be done by using different formal models such as
interface automata, I/O-transition systems, π-calcul, Petri nets and state ma-
chines [1, 8, 9, 12].

There are several incompatibility notions: (1) label incompatibility concerns
messages exchanged between components which can be handled differently. For



instance, messages are named differently, methods are called with parameters
which don’t match perfectly (incompatible types, different orders, ...) [1]. (2)
The bidirectional notion requires that when a component sends a message, there
is another component which eventually receives it, and when a component is
waiting to receive a message, there is another which must send that message.
(3) The unspecified reception (UR-compatibility) is less restrictive than the bidi-
rectional notion, since the reception of messages expected is not required for
unspecified reception notion. The UR-compatibility requires that the composi-
tion of components doesn’t contain any deadlock, i.e. starting from their initial
states, all components can either evolve or terminate if they are in final states
and their buffers are empty [1, 6].

To deal with incompatible components, pessimistic and optimistic approaches
have been proposed. The pessimistic approach considers that two components
are compatible if they can always work together in any environment while, in
the optimistic approach, two components are compatible if they can be used
together in some helpful environment [1].

Components can interact synchronously or asynchronously. In synchronous
communications, a send action is a lock-step, since it is allowed only when the
receiver is ready to perform the corresponding reception. Thus, send and receive
actions are performed simultaneously. In asynchronous communications, a send
action is not a lock-step. The messages sent are added to the receiver buffers.
Such buffers may be ordered or unordered. Analyzing asynchronous communi-
cating components with unbounded buffers is a complex task, undecidable in
general [10,13], since it may lead to an infinite state space. Several works aiming
at analyzing such systems bound the size of buffers or the number of iterations
per cycles. Bounding such parameters is not a good solution since new unex-
pected errors can occur when the values of parameters change or exceed the fixed
bounds. Thus, the main problem of these approaches is to choose the appropri-
ate bounds to study the compatibility of the infinite communicating systems. In
this paper, we propose a compatibilty control approach, based on a coverabil-
ity product, for asynchronous communicating components with unordered and
unbounded buffers.

2 Related works

Brand and Zafiropulo are among the first to have proposed works in the area of
service compatibility checking [6]. They use communicating finite state machines
to model interacting processes executed in parallel and exchanging messages via
FIFO buffers. Their works focus on unspecified receptions compatibility notion
for interaction protocols. When considering unbounded buffers, the authors show
that the resulting state spaces may be infinite, and the problem becomes unde-
cidable.
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The works in [7, 8] use Petri net models to treat incompatibility problems.
Some works rely on extensions of Petri nets, like open nets to model communicat-
ing processes, assuming asynchronous communication over non-ordered message
buffers. As far as asynchronous semantics is considered, compatibility analysis
has been proven to be undecidable for unbounded open nets. The authors deal
only with limited-communications which give bounded open nets. In [12] au-
thors use the so-called state equation, which is based on the standard linear
programming in Petri nets, to find a necessary but not sufficient condition for
compatibility control.

Recently, Bouajjani and Emmi [5] consider a bounded analysis of asyn-
chronous message-passing programs with ordered message queues. Their ap-
proach does not limit the number of communicating processes nor the buffers’
size. However, the number of iterations of communication cycles is limited. De-
spite the potential for huge exploration of unbounded process contexts, the pro-
posed bounding scheme gives rise to a simple and efficient program analysis by
reduction to sequential programs.

In [13], an approach on checking the compatibility of peers communicating
asynchronously by message exchange over unbounded buffers is proposed. The
approach requires that peers are synchronisable. In this case, the synchronous
system behaves like the asynchronous one for any buffer size. Thus, the com-
patibility check on the asynchronous version of the system is reduced to the
synchronous version, which is finite and decidable. However, the approach can-
not conclude anything about non synchronizable peers. In [11], authors focus on
the verification of weak asynchronous compatibility relying on half-duplex sys-
tems instead of synchronizability and provide a decidable criterion that ensures
weak asynchronous compatibility.

3 Motivation
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Fig. 1: Asynchronous communicating peers

Figure 1.a shows a simple example which highlights the relevance of un-
ordered queues in a context of asynchronous communication. Peer 1 sends mes-
sage a followed by b, but peer 2 consumes the messages in a reverse order of
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their emission. The peers are compatible with unordered queues but not with
FIFO queues. In Figure 1.b, peer 1 (resp. peer 2) sends message a (resp. b) and
loops infinitely by consuming b (resp. a) and then sending a (resp. b). All works
based on synchronizability property [2, 3, 13] cannot conclude anything about
the compatibility of such a system, since peers are not synchronizable. However,
they are free of deadlock and any message sent is consumed. Consider Figure
1.c and suppose that s0 is the initial state of the left peer. This latter can ei-
ther loop on the emission of c followed by a, or the reception of b. Peer 2 can
indefinitely receive c, send b and then receive a. Despite the perfect coherence
between the production and consumption patterns of these peers, there is no
conclusion about their compatibility based on synchronizability property.
In this paper, we propose an approach to control the compatibility of asyn-
chronous communicating peers without requiring the synchronizability property.
Our solution is mainly based on the construction of a coverability asynchronous
product which is always finite. Some analysis techniques are also proposed to
overcome the over-approximation of a coverability asynchronous product and
check the coherence of peers’s production and consumption patterns in their
cyclic stages.

4 Coverability product

4.1 I/O-transition systems

First we give the definition of an I/O-transition system.

Definition 1 An I/O-transition system A is a 4-tuple (SA, SinitA , ΣA, τA) such
that:

1. SA is a finite set of states.
2. SinitA ⊂ SA a set of initial states.
3. ΣA = ΣI

A ∪ ΣO
A ∪ ΣH , where ΣI

A , ΣO
A and ΣH

A are finite disjoint sets of
input, output and internal actions.

4. τA ⊆ SA ×ΣA × SA is a set of steps.

In an I/O-transition system, each input (resp. output, internal) action is pre-
ceded by the symbol ? (resp. !, ;). A finite execution σ in an I/O-transition
system is an alternating sequence of states and actions s0

a1−→ s1 . . .
an−−→ sn

such that si
ai+1−−−→ si+1 ∈ τA. For the sake of clarity, we suppose that SinitA is

reduced to a single state.

4.2 Coverability product construction

The asynchronous product of I/O-transition systems with unbounded buffers
may be infinite. In this paper, we propose to build a finite coverability product,
inspired from the standard approach of constructing a coverability graph for P/T
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nets [4]. The coverability graph covers all reachable states where ω, a specific
symbol, is used to represent reachable states with unbounded messages.

In our approach, we distinguish between the message occurrences brought by
elementary paths and those brought by cycles. The former are explicitly repre-
sented in the product, while the latter are abstracted by a set Ω. Thus, Ω gives
the set of unbounded messages. In the sequel, we confuse between terms message
and action.

Let A1 = (SA1
, s0A1

, ΣA1
, τ1) and A2 = (SA2

, s0A2
, ΣA2

, τA2
) be two I/O-

transition systems. Automata A1 and A2 fulfils the following conditions: ΣI
A1
∩

ΣO
A2

= ∅ and ΣO
A1
∩ ΣI

A2
= ∅. Let Σ = ΣA1

∪ ΣA2
be the set of actions of A1

and A2.

Definition 2 The coverability product of A1 and A2, denoted by A1 ⊗A2, is
a 7-tuple (V,Π1,Π2, τ,M,Ω, v0). V is the set of nodes, with v0 ∈ V being the
root. Πi (with i = 1,2) is a function from V to SAi

. τ ⊆ V × Σ × V is the
set of labelled arrows. M is a function from V ×Σ to N, assigning an ordinary
marking to every node. Ω is a function from V to 2Σ giving, for a node v, the
set of its infinite actions (messages).

A step of A1 ⊗ A2 is either a step of A1 or A2. The following definitions are
useful to build A1 ⊗A2.

Definition 3 (Enabling condition) A state s of SAi , for i ∈ {1, 2}, enables a
node v of A1 ⊗A2 iff ∃s δa−→ s′ ∈ τAi

and Πi(v)=s and either:

– δ ∈ {! , ; },
– or δ =? ⇒ (a ∈ Ω(v) ∨M(v)(a) > 0 ).

Definition 4 Let u and v be two nodes of A1 ⊗ A2. Two nodes u and v
are equal, denoted by u = v, iff Π1(u) = Π1(v), Π2(u) = Π2(v), ∀a ∈ Σ,
M(u)(a) =M(v)(a) and Ω(u) = Ω(v).

Definition 5 Let u and v be two nodes of A1 ⊗ A2. Node u is less than v
, denoted by u < v, iff Π1(u) = Π2(v), Π2(u) = Π2(v), ∃a ∈ Σ, M(u)(a) <
M(v)(a), ∀b ∈ Σ , (M(u)(b) ≤M(v)(b) or b ∈ Ω(u)) and Ω(u) ⊆ Ω(v).

Given two I/O-transition systems A1 and A2, the algorithm 1 constructs the
coverability product A1 ⊗A2. For the sake of clarity we present the product for
two I/O-transition systems. However, the algorithm can be easily extended to n
I/O-transition systems.
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Algorithm 1: Coverability graph construction
Data: Two I/O-transition systems A1 = (SA1 , s0A1

, ΣA1 , τ1) and
A2 = (SA2 , s0A2

, ΣA2 , τA2)
Result: Coverability Graph G =(V,Π1, Π2, τ,M,Ω, v0)

1 v0 ← new node ;
2 V ← {v0} ;
3 Π1(v0) = s0A1

;Π2(v0) = s0A2
;

4 ∀a ∈ Σ, M(v0)(a)=0 and Ω(v0) = ∅ ;
5 τ ← ∅ ;
6 unprocessed ← {v0};
7 while unprocessed 6= ∅ do
8 v ← element of unprocessed;

9 foreach s
δa−→ s′ of τA1 , s.t. state s enables node v do

10 v′ ← new node ; Π1(v
′) = s′; Π2(v

′) = Π2(v) ; Ω(v′) = Ω(v) ;
11 if δ =! then M(v′)(a) = M(v)(a) + 1 ;
12 if δ =? ∧ M(v)(a) > 0 then M(v′)(a)=M(v)(a)− 1 ;
13 if δ =? ∧M(v)(a) = 0 ∧ a ∈ Ω(v) then M(v′)(a)=M(v)(a) ;
14 if δ =; then M(v′)(a)=M(v)(a) ;

/* x τ y means a path from x to y with arcs in τ. */
15 if ∃u τ v, with u < v′ then
16 foreach a ∈ Σ do
17 if M(u)(a) < M(v′)(a) then
18 M(v′)(a) =M(u)(a) ;
19 Ω(v′) = Ω(v′) ∪ {a} ;
20 end
21 end
22 end
23 if @w ∈ V s.t. w = v′ then
24 V ← V ∪ {v′} ;
25 unprocessed← unprocessed ∪ {v′} ;
26 τ ← τ ∪ {v δa→ v′} ;
27 else
28 select w ∈ V s.t. w = v′ ;

29 τ ← τ ∪ {v δa→ w}
30 end
31 end

/* This loop is repeated for each edge s
δa−→ s′ of τA2. */

32 unprocessed← unprocessed \ {v} ;
33 end
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4.3 Reduction of I/O-transition systems

The interleaving between some actions of A1 and A2 are not necessary for the
properties we target (dealock and UR-reception). They only increase the size of
A1 ⊗ A2. For instance, from state s0 of Figure 1.c, message c is sent and then
message a. These actions can be done by the left peer without any interaction
with the right peer. Hence, they can be replaced by a single and an atomic
action !ca. Furthermore, the path s0

!c−→ s1
!a−→ s0 is reduced to s0

!ca−−→ s0. This
transition produces one occurrence of message a and another of b. We can also
reduce sequences of internal or/and emission actions. However, the reduction of

a sequence sj?
δ0a0−−−→ . . .

δkak−1−−−−→ sj+k of Ai, i ∈ {1,2}, is not always possible.
Conditions required to reduce a path are given below:

1. No interaction: δ0, . . . δk−1 ∈ {!,; }.
2. No intermediary branching states: ∀j < h < j+k, sh is not a branching

state.
3. Occurrence in an elementary cycle: Either all the arcs of the sequence

are in an elementary cycle or all are not.

The first point states that there is no interaction between the peer and its
correspondent, whereas the two other points allow to preserve the behavior of
the peer.

Example 1 Consider again the I/O-transition systems depicted in Figure 1.c
and suppose that s2 is the initial state of the left peer. Only the left automa-
ton can be reduced by replacing the edges s0

!c−→ s1 and s1
!a−→ s0 by s0

!ca−−→ s0.
The coverability product, constructed by Algorithm 1, is shown in Figure 2. Un-
bounded actions of a node v, Ω(v) are given between brackets. The occurrences
of actions brought by elementary path are explicitly represented. In the reachable
state (s0,s

′
0, a,{c,a}), say u, the current state Π1(u) of the first (resp. Π2(u)

of the second) I/O-transition system is s0 (resp. s′0). The marking M of u is
reduced to one occurrence of a (M(u)(a)=1, M(u)(b)=0 and M(u)(c)=0) and
Ω(u) = {c,a} meaning that the occurrences a and c are potentially infinite.

Non-travial scc are bordred by dashed boxes and C1 is terminal scc. Some
arcs are represented by gray lines to highlight the over-approximation notion,-
which will be introduced in the following section.

Notation 1 A strongly connected component (scc) C of a graph G is a maximal
set of nodes C ⊆ SG, where SG is the set of nodes of graph G, such that for every
pair of nodes u and v in C, there is a directed path from u to v and a directed
path from v to u. A scc C composed of one node is said trivial, otherwise non
trivial. A path or cycle in G is called elementary if no node occurs more than
once. A cycle is called simple if no edge occurs more than once. A scc is terminal
if it has no outgoing edge. Let σ be a sequence of transitions or an elementary
cycle of A1 ⊗ A2. #(σ,!a) (resp. #(σ,?a)) gives the number of occurrences !a
(resp. ?a) in σ and #(σ,a) represents #(σ,!a)−#(σ,?a).
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Fig. 2: Coverability product for peers of Figure 1.c

Definition 6 The set of actions which may accumulate in the nodes of a
cycle µ, denoted by Ψ(µ,!), corresponds to {a ∈ Σ| #(µ,a) > 0}. A cycle µ may
consume accumulated actions, those in Ψ(µ,?) = {a ∈ Σ|#(µ,a) < 0}.

In Figure 2, each cycle µ labelled by !ca is an infinite producer of c and
a (#(µ,c) = 1 and #(µ,a) = 1). Similarly, for instance, cycle µ =?c !b ?b ?a
consumes actions c and a which are not produced by µ (#(µ,c) = −1 and
#(µ,a) = −1) but accumulated by cycles labelled by !ca.

4.4 Over-approximation of coverability product

We give in Figure 3.b a part of the coverability product of peers in 3.a. In node
v1, peer A2 does not block, since peer A1, at state s0, is able to provide messages
a. Now consider the sequence v0

!a−→ v1
!a−→ v1

?a−→ v2
!b−→ v3

?b−→ v4. At the end
of this sequence, peers A1 and A2 are in states s1 and s′2, respectively. Observe
that A2 waits indefinitely message a which will never be provided by peer A1.
Indeed, at state s1, peer A1 cannot produce message a. Hence, node v4, contray
to v1, is a potential deadlock for peer A2.
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Both edges v1
?a−→ v2 and v4

?a−→ v5 are over-approximated. However, the first
is always possible, whereas the second is only possible for some executions. An
over-approximated edge v ?a−→ v′ deserves special attention, since, for some exe-
cutions, node v′ is never reached. Hence, their presence makes A1 ⊗A2 not reli-
able. A loop v ?a−→ v is not considered as over-approximated even ifM(v)(a) = 0.
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Fig. 3: Over-approximation

In this section, we propose a technique aiming at discarding gradually the
over-approximated status for some edges. Algorithm 2 summarises this tech-
nique. Its input is a strongly connected component C of A1⊗A2. The algorithm
returns false whenever some edges remain over-approximated, otherwise it re-
turns true. The algorithm uses the sets simpleCycles(C) and reliableCycles(C,v),
with v a node of C. The former contains all simple cycles of C and the second is
a subset of simpleCycles(C) where each cycle contains node v and is composed
of non over-approximated edges only.

The algorithm builds a set of nodes called Vover. A node of Vover is an ini-
tial extremity of at least one over-approximated edge. The algorithm is iter-
ative. At each step, Vover is computed. The over-approximated status of each
edge v ?a−→ v′, with v ∈ Vover is discarded whenever there is a reliable cycle
µ ∈reliableCycles(C,v) producing indefinitely action a, i.e. a ∈ Ψ(µ,!). At the
next step, Vover is updated, since some edges turn into non over-approximated.
Hence, new cycles become reliable.

The termination of the algorithm is ensured since there is a finite number
of simple cycles, actions and edges. The algorithm is applied to the strongly
connected components of A1 ⊗A2. It is obvious that if the product contains no
over-approximated edges, then it is reliable and can be used to check the free of
deadlock and UR-compatibility properties.
Consider again the coverability product of Figure 2. Applying the precedent
algorithm to non trivial scc (C1) induces the following steps.

1. Gray edges (over-approximated) of C1 compose Eover.
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Algorithm 2: dealOverapproxation
Data: a strongly connected components C of A1 ⊗A2

Result: boolean
1 new =true;

2 Eover = {v ?a−→ v′ an edge of C s.t. M(v)(a) = 0 and v 6= v′} ;
/* Eover contains the set of over-approximated edges */

3 ∀µ ∈ simpleCycles(C), µ.visited = false ;
4 while new do
5 Vover = {v a node C|∃v ?a−→ v′ ∈ Eover};
6 new=false ;
7 foreach v ∈ Vover do
8 actions = {a ∈ Σ|a ∈ Ψ(µ,!) ∧ µ ∈ reliableCycles(C,v) ∧ ¬µ.visited} ;
9 foreach µ ∈ reliableCycles(C,v) do

10 µ.visited = true
11 end

12 foreach over-approximated edge e = v
?a−→ v′ do

13 if a ∈ actions then
14 Eover = Eover \ {e} ;
15 new = true;

16 end
17 end
18 end
19 end
20 if Eover 6= ∅ then return false else return true;

2. In the first iteration, Vover contains the three nodes of C1 which are initial
extremities of gray arcs. A reliable simple cycle, labelled by !ca, loops around
each node of Vover. Thus, the set of actions {c,a} is associated to each node
of Vover. All gray edges are then removed from Eover.

3. In the second iteration, Vover is empty and there is no change about edge
status, inducing the termination of the algorithm. The algorithm returns
true.

Likewise, the algorithm 2 is applied to the other scc of A1 ⊗ A2 depicted in
Figure 2. We can easily see that the coverability product depicted in Figure 2 is
free of deadlock.

5 UR compatibility verification

In this section, we focus on the widely notion unspecified receptions UR. A set
of peers is UR-compatible if they do not deadlock and each sent message by
a peer is received by another one. Consider the peers given in Figure 1.c and
consider s0 as initial state of the left peer. It is obvious that there are a good
choreography and proper interactions between the peers, since the right peer
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requires an equality between messages a and c, a relation satisfied by the left
peer of the Figure 1.c. However, when we add a cycle, for instance, s0

!a−→ s0 for
the left peer, the equality relation between a and c is lost inducing a mess in
the consumption activity. In this paper, we propose an approach to determine
relationships between unbounded actions and use such relationships to check the
UR compatibility through A1 ⊗A2.

5.1 Pattern of a strongly connected component

In this paper, we suppose that a turn of any cycle may produce (or consume)
at most one occurrence of a given action. In other terms, −1 ≤ #(µ,a) ≤ 1 for
any action a of any cycle µ of A1 ⊗A2.

Consider a non-trivial scc C of a free of deadlock coverability product.
It is worth noting that, by construction, the set of unbounded actions is the
same for any node of C; we use Ω(C) to denote such a set. The relation-
ships between unbounded actions within C consists to partition set Ω(C) to
P(C) = {P1, . . . , Pn} such that for any node v of C, any cycle v µ−→ v and any
part Pj ∈ P(C), the accumulated actions of Ω(C) verify the following equality:
a, b ∈ Pj ⇔ #(µ,a) = #(µ, b). P(C) is called the pattern of C.

We inductively build P(C), by considering the elementary cycles of C.
Initially, the partition associated with C is empty. At step i, a new partition is
computed according to the partition in the previous step i − 1 by considering
a new elementary cycle µ of C. Cycle µ may alter the relationships between
some actions. In other terms, it may change the relationships between the part’s
elements of the partition computed in step i − 1, since it brings some actions
and consumes other actions, with the same rhythm. Thus, taking into account
the restriction presented at the beginning of this section, each part P of the old
partition is split into three subsets E, R and N .

– A subset E gathering actions of P produced by µ. Each action of E wins
one occurrence for each turn of µ.

– A subset R gathering actions of P consumed by µ. Each action of R loses
one occurrence for each turn of µ.

– A subset N gathering actions of P which are not changed by µ.

Furthermore, the set E ⊂ Ψ(µ, !) (resp. R ⊂ Ψ(µ, ?)) whose actions don’t belong
to any part of the old partition is added to the partition being computed. E
(resp. R) constitutes a fresh equality relationship.

Example 2 Consider a partition Pi(C) = {{a,b,c,d,e},{f,g}}, obtained at the
ith iteration, and a new elementary cycle µ =!a !b ?b ?c !f ?e !h ?i?j, so:
- Ψ(µ,!) = {a,f,h}, Ψ(µ,?) = {c,e,i,j},
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Algorithm 3: Pattern computation
Data: a strongly connected components C of A1 ⊗A2

Result: Pattern of C
1 partition ={∅};
2 foreach Elementary cycle µ of C do
3 NewPartition=∅;
4 foreach Part P of partition do
5 E = {a ∈ P | #(µ,a) = 1};
6 R = {a ∈ P | #(µ,a) = −1};
7 N = {a ∈ P | #(µ,a) = 0};
8 NewPartition=NewPartition ∪ {E,R,N};
9 end

10 E = {a ∈ Ψ(µ,!) | @P ∈ partition ∧ a ∈ P};
11 R = {a ∈ Ψ(µ,?) | @P ∈ partition ∧ a ∈ P};
12 NewPartition=NewPartition ∪ {E,R};
13 partition=NewPartition;
14 end
15 return partition;

- Partition obtained at the next iteration Pi+1(C) = {{a}, {b,d}, {c,e},{f}, {g}, {h}, {i,j}}.

Part {a,b,c,d,e} is split into three subsets, {a}, {b,d}, {c,e} since #(µ,a) = 1,
#(µ,b) = #(µ,d) = 0 and #(µ,c) = #(µ,e) = −1, idem for the part {f,g}. Cycle
µ brings new actions, h ∈ Ψ(µ,!) and i, j ∈ Ψ(µ,?), inducing two parts {h}, {i,j}
in Pi+1(C). It is worth noting that cycle µ has broken the equality of a with the
other actions of its part in Pi(C), keeps an equality between b and d (resp. c and
e) and so on.

5.2 Choreography Checking

The pattern of a scc must C also take into account the elementary cycles of the
ascendants scc of C. It is worth noting that the action occurrences, brought by
elementary paths, are explicitly represented in the coverability product and are
not included in the computation of the patterns of the scc. Consider again the
coverability product of Figure 2, the pattern of scc C0 (resp. C1), computed in
isolation is {{c, a}} (resp. {{c, a},{b}}). The pattern of C0 is preserved when
considering the ascendant scc, idem for C1.

Definition 7 There is a choreography compatibility within a scc C of a cov-
erability product if for any elementary cycle µ of C, Ψ(µ,?) ∈ P(C).

Consider an element E ∈ P(C). By construction, there is an equality rela-
tionship, in some nodes of A1 ⊗ A2, between occurrences of actions of E. Any
elementary cycle µ such that Ψ(µ,?) = E consumes, at each turn, a same number
of elements of E preserving the relationship. Thus, the comsumption is in a step
with the production rythm.
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Example 3 Consider the coverability graph of Figure 2. The pattern of its
unique terminal Scc is P(C1) = {{c,a}, {b}}. There is a choreography compat-
ibility within C1, since cycles of C1 fulfill definition 7. For instance, Ψ(µ,?) =
{a,c} ∈ P(C1) for cycle µ =?c !b ?a ∈ C1, idem for Ψ(µ,?) = {b} ∈ P(C1) for
cycle µ =?b ∈ C1.

5.3 UR compatibility Checking

The UR compatibility requires that each message sent is eventually received. To
ensure that all sent messages are received, we must have in all terminal strongly
connected components, cycles able to consume accumulated actions. These cycles
are garbage collectors.

Definition 8 A cycle µ of A1 ⊗A2 is a garbage collector iff: Ψ(µ,?) 6= ∅ and
Ψ(µ,!) = ∅.

A garbage collector is able to clean the actions Ψ(µ,?). In the other hand,
the cycle does not produce residual messages. Consider again the coverability
product of Figure 2. The cycle labelled by ?b is a garbage collector of action b,
whereas the cycle labelled by ?c!b?b?a is a garbage collector of actions a and b.

Proposition 1 Two automata A1 and A2 are UR-compatible if the coverability
product A1 ⊗ A2 is free of deadlock and for any terminal scc C of A1 ⊗ A2 the
following conditions hold:

– There is a choreography compatibility within C.
– For any node v of C and any action a of Ω(v), there is a garbage collector

of a.
– ∀a ∈ Σ, ∃ a node v of C, such that M(v)(a) = 0.

Proof. The first point states that there are proper interactions between peers,
while the second ensures that peers are able to clean the accumulated actions.
Finally, the last point indicates that the peer’s buffers always reach a state where
any action brought by an elementary path has been emptied.

The coverability product of Figure 2 holds the conditions of the previous
proposition. Thus, the peers of example 1 are UR-compatible.

6 Conclusion

In this paper, we presented a new approach to check compatibility of asyn-
chronous communicating infinite systems, using unbounded and unordered buffers.
We do not have any restrictions on the number of cycle iterations, size of buffers
nor on number of components. Our main result is that our approach does not
require any synchronizability property. In our approach, we proposed a cover-
ability product by constructing a finite state space. We define the concept of
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patterns associated with messages occurring in the cycles of a strongly con-
nected component. These patterns are jointly used with the covering graph to
check the UR-compatibility of the components. The patterns allow to make an
underlying analysis of strongly connected components. Thus, they show if there
is a good choreography between components.

We have implemented our approach, which is under experimentation as future
work, we aim to consider systems with FIFO unbounded buffers. This work could
be a promising base to tackle with infinite systems.
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