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Abstract Modeling complex systems nowadays requires a combination
of techniques to facilitate multiple perspectives and adequate modeling.
Therefore, UML and other formalisms are used to enrich the portfolio of
Petri nets. Often the different models are transformed into a single for-
malism to simulate the resulting models within a homogeneous execution
environment. For UML, the mapping is usually done via the transforma-
tion to some programming language. Anyhow, the problem with gener-
ative techniques is that the different perspectives that are provided by
the applied modeling techniques can hardly be retained once the models
are transformed into a single formalism.
In this contribution we elaborate on how multiple formalisms can be used
together in their original representation. One of the main challenges for
our approach is the provision of means for coupling mentioned formalisms
so they can be executed together. We utilize the synchronization features
of Reference Nets to couple multiple modeling techniques. This results in
a simultaneous and concurrent execution of models featuring a combina-
tion of multiple modeling formalisms. A finite automata (FA) modeling
and simulation tool is presented to showcase the principle concepts and
options that are gained by our results.

Keywords: Petri Nets, Multi-Formalism, Model Synchronization, Ref-
erence Nets, Finite Automata

1 Introduction

Modeling complex systems requires a separation of concerns and demands sup-
port for taking multiple perspectives on the system including various levels of
abstraction. This is achieved by combining several modeling techniques.

Looking back at the original ideas of Carl Adam Petri [27], automata are
enhanced by a communication mechanism, thus introducing the modeling of
concurrency. The new formalism, he calls “net”, facilitates the modeling of ad-
ditional concepts: locality (of time and place), asynchronism and concurrency.
With his conceptual extension to the formalism comes a shift of perspective. In
consequence, nets may serve for other purposes than automata.

Petri nets in their various forms have proven to be an adequate technique to
model, analyze and understand concurrent systems. They provide an operational



semantics, and by utilizing high-level Petri nets, modelers have a technique at
hand to cover multiple abstraction levels and perspectives. Anyhow, Petri nets
are not always the optimal solution for every modeling task. We agree with
Milner, who says: "I reject the idea that there can be a unique conceptual model,
or one preferred formalism, for all aspects of something as large as concurrent
systems modeling" [25, p. 78].

Depending on the context and the application area, various requirements to
the modeling technique have to be met. Extending a formalism (or creating a
new one) allows to shift the focus to other aspects, thus providing a different ab-
straction. Multiple techniques may be combined to facilitate various perspectives
in order to cover different levels of abstraction (vertical) or for a combination of
complementing views (horizontal).

Today, modeling techniques are quite elaborate, and the means for modeling
are systematically developed and researched. The purposes for constructing con-
ceptual models and their usage areas are manyfold. Krogstie [19, p. 3] has put
them into categories: models may be used for system (forward) design, for the
(computer-assisted) analysis, to support communication, for quality assurance,
model deployment and activation, or just for making sense out of something.

The complexity of systems has dramatically increased since the beginning of
computer science. This raises the necessity to provide several perspectives at the
same time. Of course, taking different perspectives makes no sense at all if they
can not be somehow related, which means they have to be linked together.

Standard modeling languages like UML (Unified Modeling Language) offer a
portfolio of techniques to provide multiple modeling perspectives covering var-
ious levels of abstraction. Model driven development approaches facilitate the
development of domain specific languages that can be related on the basis of
meta-models. Usually, they are generated to a single target language, which
comprises a loss of the desired abstraction level and an alteration of the per-
spective. Model simulation environments support the execution of models, but
models usually do not provide the means to be used in combination.

The concurrent execution of multiple modeling techniques in their original
representation, using explicit model coupling, are promising in order to combine
the advantages of linking models and direct simulation. Consequently, tool sup-
port is required not only to support the modeling of multiple perspectives, but
also to integrate the different views and to keep them consistent with each other.

We identify the following two main challenges. (1) For the generic coupling of
multiple modeling techniques an adequate mechanism has to be found. (2) How
is it possible to simulate coupled models from various modeling techniques in
one environment concurrently without losing the original representation?

In this work we propose a conceptual extension of current modeling tech-
niques by synchronous channels [7] as they are provided in the context of Ref-
erence Nets. Synchronous channels can supply synchronous communication be-
tween models in order to exchange data or control other models. Furthermore,
we propose to map the constructs of the modeling techniques to Reference Net
constructs. It should be noted that this mapping is not equivalent to the trans-
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formation that we reject above, since the original representation of the model is
preserved and even visually visitable during simulation. For modelers it should
appear as if a model is being simulated in its original modeling technique. In
order to achieve this, we propagate the simulation events of the underlying Ref-
erence Net back to the original model.

2 Proposal for Coupling through Synchronization

In this section we briefly introduce the conceptual and technical background of
our work and present a simple introductory example of the coupling of multiple
formalisms. First, we present the Renew environment for modeling and execu-
tion of Reference Nets and other modeling techniques. (Java) Reference Nets as
our main modeling and simulation formalism are introduced afterwards. Last,
with a simple example, we demonstrate our idea of multi-formalism execution,
which is presented in general in Section 3.

2.1 Renew

Renew is a continuously developed extensible modeling and simulation envi-
ronment for Petri nets and other modeling techniques [21]. Due to its recent
enhancements and extensions it has evolved into an IDE (integrated develop-
ment environment) for the development of Petri net-based software [5]. Renew
is focused on Reference Nets and has full support for that formalism in terms of
modeling and execution with or without graphical feedback. Benefiting from its
plugin architecture, over the past years, Renew has been extended with mul-
tiple modeling techniques and formalisms. With recent efforts regarding model-
driven language engineering [26], Renew has become an environment for the
development of modeling techniques and tools as well. The current development
version has full support for the concurrent and coupled simulation of multiple
formalisms. Renew is written in Java and available for various platforms such
as Linux, Mac OS and Windows including the source code.1

2.2 Reference Nets

The (Java) Reference Nets formalism [20] is a high-level Petri net formalism that
combines the nets-within-nets paradigm [29] with synchronous channels [7] and
a Java inscription language. This formalism makes it possible to build complex
systems using dynamic net hierarchies. The nets-within-nets concept is imple-
mented using a reference semantics so that tokens can be references to nets.
With the Java inscription language, it is possible to use Java objects as tokens
and execute Java code during the firing of transitions. The synchronous channels
1 The full multi-formalism feature will be part of Renew version 2.6 and then be
available at http://renew.de. The current development version can be found at
http://paose.net/wiki/MultiFormalism.
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(a) somenet (b) othernet

Figure 1: Example Reference Net system showcasing selected features (image and
description adapted from [6], image originally from [12, p. 77])

enable the synchronous firing of multiple transitions distributed among multiple
nets and a bidirectional exchange of information. An introduction to Reference
Nets is available in the Renew manual [22], the formal definition can be found
in [20] (in German). In the following we give a brief overview over the features
of Reference Nets based on an example.

The Reference Net system depicted in Figure 1 exhibits a large part of the
constructs of Reference Nets and features those that are relevant for this contri-
bution. It consists of two corresponding nets, somenet and othernet. The places
can hold black tokens, elementary data types, or references to complex data
types or embedded Reference Nets. Java types are imported and declared in the
declaration node. Net instances are created from net templates using the new
keyword as shown in the lower part of Figure 1a. Transitions have a flexible
inscription language featuring guards, synchronous channels, and Java expres-
sions. Places and arcs can also hold inscriptions. Virtual places are virtual copies
of places, where the same semantic place may have multiple graphical figures in
order to prevent long and crossing arcs.

The two highlighted transitions from somenet and othernet form a syn-
chronous channel, which always consists of two parts: downlink and uplink. The
downlink must hold a reference to the net containing the uplink. The net somenet
in Figure 1a holds the :exchange(sum,repr) channel’s downlink and a reference
(net) to the net othernet in Figure 1b, which contains the uplink. Even though
the invocation of the synchronous channel is directed, due to the required refer-
ence, the information exchange is bidirectional.

The unification algorithm searches for bindings of a transition that satisfy
the possible assignments of variables with respect to the declared inscriptions on
transitions, arcs, and places. If both transitions participating in a synchronous
channel are enabled, they can fire synchronously and exchange information in
both directions. In this example the :exchange(sum,repr) channel unifies the
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sum of the values of i and j bound to the variable sum in somenet with the
variable sum from the tuple of sum and repr from othernet.

The mechanism of synchronous channels provides powerful features for the
coupling of multiple models. As described above, a synchronous channel consists
of a pair of up- and downlink. The main reason for this is an efficient implemen-
tation (with mostly polynomial complexity instead of exponential complexity)
that has been described in [20]. If multiple uplinks of one net can participate
in the firing of synchronized transitions, one of the possible uplinks is chosen
non-deterministically. For each downlink (and its parameters) there is exactly
one uplink that will be bound when a transition is fired, and both must partici-
pate since the firing of the transitions is atomic. In the following we will briefly
sketch our approach to coupling multiple modeling techniques by introducing
our running example, before we generalize from this idea in order to develop our
conceptual approach.

2.3 Coupling Finite Automata with Reference Nets

The coupling of finite automata and Reference Nets serves as a simple example
for coupling multiple formalisms. We facilitate the coupling through enhancing
the finite automata formalism with synchronous channels. More precisely, we
develop a concept to synchronize finite automata state transitions with the firing
of Reference Net transitions.

In this section we outline the coarse idea by presenting a useful example for
the coupling of finite automata and Reference Nets. The general concept for the
coupling and simulation of multiple formalisms is described in Section 3. An
exemplary implementation that allows the simultaneous and synchronized exe-
cution of both – finite automata and Reference Nets – is described in Section 4.

One application area of multi-formalism simulation is the controlling of sys-
tems to avoid unwanted behavior such as deadlocks or security violations. To
enforce orderly behavior, it is possible to use a controlling instance to restrict
the possibilities of the controlled system. Ezpeleta et al. use controllers with Ref-
erence Nets in such a way [10]. Finite automata are well-suited for this purpose
because they provide an intuitive description of the desired behavior.

We present a simple example to motivate a goal of controlling nets – avoid-
ance of deadlocks and unwanted situations, as mentioned by Burkhard [4]. The
Reference Net in Figure 2 depicts a simple production and consumption process.
The consumption (lower right part) requires at least one preceding production
(upper right part) to prevent the system from running into a deadlock.

At the left hand side there are three manually fireable transitions that each
instantiate one of the controller automata shown in Figure 3. A reference token
can be removed anytime by the centered transition. Producing puts a token into
the storage place. Consuming is processed in two steps. In the first step the
consumption process is entered. In a second step a token from the storage is
consumed. If there is none, the net is stuck in a deadlock.

To avoid a deadlock, one may use a finite automaton. Three deadlock-avoi-
dance strategies are shown in Figure 3. Strategy avoid (Figure 3a) constrains the
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Figure 2: Reference Net with potential deadlock

net to produce at least once before each consumption. Strategymax2 (Figure 3b)
limits the number of tokens in the storage to 2, so that a consumption process
takes place at least after every second production. The third strategy twoEach
(Figure 3c) predefines the order to two productions followed by two consumptions
repeatedly. With all three strategies a deadlock is avoided.

(a) avoid (b) max2 (c) twoEach

Figure 3: Different deadlock avoidance strategies

3 Concept for Multi-Formalism Simulation

In the following we elaborate on our approach to multi-formalism simulation
that we sketch in Section 2. We will generalize the idea of using finite automata
to control and visualize parts of a system. We present a method to link multiple
formalisms through synchronized actions on the basis of Reference Nets.

3.1 Coupling via Synchronous Channels

In order to capture the overall structure and behavior of complex software sys-
tems, several modeling techniques are applied in combination. Coupling of mod-
els supports the modeling process in general by providing modeling techniques
that exactly match the requirements of the modeling purpose. Each created
model covers a distinct yet partly overlapping perspective of the system. All
models need to be integrated in a consistent way to cover the complete system.
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In a common setting – e.g. when using UML – the models are, more or less,
modeled in isolation. The relations to other modeling techniques and therefore
between the created models are not shown explicitly. While at first sight this
makes it easier for the modeler, this is a problem. Modelers must know how
models interact with each other. Usually, this relation is established by the com-
piler of the models if the models can be used directly for code generation. In
most modeling environments this is not the case. In consequence, the models are
complemented with implementation details to facilitate their execution.

As motivated in the introduction, the transformation of models to a single
target language involves a loss of perspectives when looking at the executed
system. While, of course, a common execution language may work in the back-
ground, we propose to directly execute the models and to make the coupling
explicit in order to retain the perspectives. The combined simulation in their
original representation requires an operational semantics of the applied tech-
niques and a mechanism for the coupling of models.

Coupling multiple techniques requires considerable conceptual and techni-
cal support. We use, in addition to the operational semantics of the modeling
techniques, an execution environment that properly supports multi-formalism
simulation: Renew. A drawback of the explicit coupling of multiple modeling
techniques is that it involves an extension of the modeling languages.

Direct simulation is not applicable for every modeling technique. For example
the execution of a solely structural diagram seems not to be useful. In this
contribution we mainly consider behavioral techniques that are discrete and
state-based. This covers many of the UML behavioral diagrams and process
modeling languages, such as BPMN and EPC.

3.2 Model Coupling with Graphical Feedback

In our group we have studied the necessary and sufficient solutions to implement
modeling techniques within our framework(s). To extend high-level Petri nets
by synchronous channels, elaborate algorithms were needed. The specification,
design and implementation was a highly complex task. However, on top of this
a very powerful semantics for the description of other modeling techniques is
available now. With previous contributions we have shown how a new formalism
can be developed on the basis of Renew by providing operational semantics
through a mapping to Petri nets [16,26]. In this contribution we propose to create
formalisms that use a mapping to Reference Nets in the background in order to
provide the operational semantics for the modeling technique but present the
original representation to the user.

Figure 4 summarizes the general idea of our approach to multi-formalism
modeling and execution. The upper part (Graphical Layer) of the figure contains
the graphical models (model drawings) and model instance drawings that are
visible to the user and permit user interaction. Model drawings are artifacts that
are created from a graphical editor within Renew or may be imported from an
external tool. The instance drawings reflect the simulation state to the user and
allow control over the simulation, e.g. by triggering a certain simulation step.
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Figure 4: Conceptual model of the model synchronization

The displayed model drawings on the top-left and top-right hand side are
arbitrary in a sense that they do not have a real application or semantics and
serve as representative for any modeling technique a modeler may want to use. A
simple example of how a concrete modeling technique is implemented is provided
for communicating automata in Section 4. For a specific modeling technique a
mapping from the constructs of the modeling technique to Reference Net con-
structs is needed in order to obtain an executable model. This may be compared
to a code generation approach. The development of such a mapping is a part of
the modeling effort, a developer of a modeling language is obliged to perform.

Graphical models are compiled into non-graphical Reference Nets, which can
be instantiated and executed in the Renew simulator (Simulation Layer). Syn-
chronization is performed on the level of the Reference Net instances (originating
from the same or other modeling techniques). A mapping of the dynamic view
of generated Reference Nets back to the modeling technique constructs even
allows a direct feedback. The presented solution enables the simulator to pass
simulation events from the Reference Net to the original model, e.g. to highlight
a corresponding graphical figure. Introducing an additional Reference Net layer
on top of the simulator has advantages, but also comes with a few restrictions.

3.3 Discussion

The best solution for a modeling and execution tool with respect to performance
is an optimized implementation with a generic coupling mechanism. However,
such an implementation from scratch is hard and time consuming. Our approach
based on Reference Nets simplifies the development of executable, coupled mod-
eling techniques with a powerful and yet easy to use mechanism for synchro-
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nization. Due to reasonable hardware and an efficient implementation of the
Reference Net formalism, this approach is applicable without a huge drawback
in terms of performance, and the Reference Net formalism is an adequate lan-
guage for the definition of an operational semantics.

A benefit of our concept is that the means for synchronization are made
utilizable. This makes it easier to develop formalisms and to concentrate on
the modeling language engineering. It supports a prototypical approach because
language constructs may be designed in their Reference Net representation to
be later on replaced with the constructs of the formalism in development. Syn-
chronous channels provide a common conceptual basis for combining multiple
formalisms. All formalisms share the same mechanism for communication and
are consequently designed to be used in combination. Users directly profit from
the native feedback in comparison to generative approaches.

Reference Nets are well-suited to cover multiple properties of modeling tech-
niques, especially those of discrete, state-based behavioral techniques that we
consider in this contribution. In order to simulate an arbitrary number of mod-
els concurrently, the execution language has to provide an intuitive mechanism
to support the implementation of concurrency. The requirement for atomicity
of activities and resource allocation emerges from the possibility of concurrent
activities in a set of models. The simulated models should not effect each other,
unless it is explicitly intended via synchronization. Thus, the execution language
has to support strict data encapsulation for models in simulation. For process
modeling languages often dynamic hierarchization is required (e.g. for subpro-
cesses in BPMN 2.0). Reference Nets as Petri net formalism provide a powerful
mechanism to implement concurrent behavior, resource allocation and atomic-
ity of actions. Due to the nets-within-nets concept, encapsulation of simulated
models and dynamic hierarchization is provided naturally by Reference Nets.

The utilization of synchronous channels as a coupling mechanism implies
that the coupling always has to be synchronous, but the implementation of
asynchronous coupling is possible as well. Two channels with an intermediate
buffer-place result in asynchronous behavior.

Another property that is inherent in many modeling techniques is time. An
extension of Reference Nets with timed expressions exists [22]. The presented
concept is thus applicable for timed modeling techniques using this formalism
as basis. Renew supports the execution of these nets. However, the formalism
can only be simulated sequentially.

Generating models into a single formalism also has the advantage of being
able to verify within a single formalism. For the intermediate format of Reference
Nets, however, there are not many verification tools available yet. In general the
usage of a single formalism seems to be valuable. With some of our tools, that
are currently under development, we can generate a reachability graph for some
restricted net formalisms.

The use of Reference Nets as coupling mechanism comes with some limita-
tions. As described in Section 2.2, one synchronous channel, comprising up- and
downlink, synchronizes exactly two transitions. There exist no means for global
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synchronization (due to the basic idea of the locality principle of a transition)
and consequently, there is no broadcast communication synchronizing all transi-
tions by default. A synchronous channel only provides the synchronized action of
two elements. The synchronization of more than two transitions is accomplished
by combining multiple channel inscriptions on one transition (having at most
one uplink, but several downlinks). In many cases, these restrictions do not con-
strain the general possibilities of modeling or easy alternatives exist: e.g. when
a model instance can/shall not hold references to other models, communication
may be provided by a system net that holds references to all participants.

The limited scope of variables to one transition and the connected arcs is
a sensible property for Petri net formalisms, because it fits the general concept
of locality, which is inherent in Petri nets. For other modeling techniques this
may be a limitation. In many cases, Reference Nets are still adequate to provide
operational semantics to modeling techniques with global variables. The use
of a single place for each variable and an arc connection to these places for
every transition can be used to simulate global variables. However, the variables
in Reference Nets are immutable in a sense that there is unification but no
assignment of variables. Therefore, the use of additional variables is required
sometimes. This said, we move on to the development of a formalism that profits
from the introduced concept for multi-formalism simulation.

4 Development of a Finite Automata Plugin

In order to demonstrate the principle concepts that are applied to couple models
we describe the development of the Finite Automata plugin (FA plugin). This
plugin extends Renew with the capabilities for modeling and simulating finite
automata that have the ability to synchronize with Reference Nets.

At first sight it may seem odd to use finite automata next to Petri nets
because they actually provide a similar perspective. Simple Petri nets already,
and Reference Nets a fortiori, are more expressive than finite automata. Still,
finite automata offer an intuitive reflection of a systems state, which is especially
helpful when multiple levels of abstraction of a complex system shall be covered.

4.1 Requirements

We derive the following requirements from our goal of extending Renew with
support for modeling finite automata and for simulation on the basis of Ref-
erence Nets. A concept of finite automata for simulation and synchronization
with Reference Nets is necessary. For this purpose, the finite automata modeling
language is to be extended. Also, during execution, an automaton’s state shall
be visually inspectable. Furthermore, the editor has to provide usability features
to support efficient modeling.

146 PNSE’17 – Petri Nets and Software Engineering



Table 1: Mapping of finite automata and Reference Net constructs

(a) Static view

Automata Reference Net

(b) Dynamic view

Reference Net Automata

4.2 Concept and Design

The modeling of finite automata is provided by the FA plugin, which was avail-
able prior to this work. In its previous version it was restricted to offer some
capabilities for drawing finite automata, without the possibility of simulation.
As Renew is natively capable of simulating Petri and Reference Nets, we extend
the existing FA plugin with simulation and synchronization capabilities.

Reference Net Based Semantics As already mentioned in Section 3, we propose
to provide semantics via a mapping to Reference Nets in order to exploit their
synchronization features. Additionally, we have to manually implement the visual
representation of the simulation state so that the user has feedback in the original
representation of the modeling technique (i.e. the state of the simulation of the
Reference Net at runtime has to be mapped back on the automaton).

The mapping of finite automata to Petri nets is straightforward as displayed
in Table 1a. A finite automaton’s state is mapped to a Reference Net’s place. We
do not distinguish between regular and end states, because we are more inter-
ested in the dynamic behavior than in the investigation of the formal language
an automaton generates. Start states are mapped to places that are initially
marked with a black token (represented as []). A state transition between two
states is mapped to a transition that is connected to the places representing
the corresponding states. This also holds for the special case of a self-loop. The
inscriptions of the state transitions are mapped to inscriptions of net transitions.

In addition to the static mapping, we need to provide a visualization of the
current simulation state by mapping the dynamics of the Reference Net back
to the automaton. This mapping is depicted in Table 1b. An empty place is
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mapped to a non-activated state. A place that contains a token is mapped to
an activated state (i.e. the current state in a DFA), which we highlight by a
gray filling. The firing of a transition (represented by a highlighted transition)
is mapped to a red highlighted state transition.

Synchronization of Finite Automata and Reference Nets We extend finite au-
tomata by synchronous channels to couple them with Reference Nets (see Sec-
tion 2.3). The direct mapping of inscriptions from state transitions to inscriptions
on Reference Net transitions makes the use of synchronous channels and other
Reference Net inscription types possible. This is due to the compiler, which is
handling the inscriptions as if they were attached to a Reference Net. Conse-
quently, Reference Nets or other modeling techniques that provide compatible
synchronous channels can synchronize with finite automata in the same way.

4.3 Modeling Capabilities

In this section we focus on the support for modeling finite automata with the
FA plugin. This comprises the drawing capabilities of the editor and the means
for the annotation of FA constructs with Java inscriptions.

Basic Modeling The FA plugin can be used to model finite automata using the
constructs that are depicted in Table 1a: start states, end states, start-end states,
neutral states and state transitions (between states). Because the FA plugin is
implemented as a Renew plugin it inherits modeling capabilities and usability
features. These features are complemented with some useful improvements such
as arc drawing handles or interchangeable state representations. The FA plugin
supports modeling of nondeterministic finite automata as well as deterministic
finite automata. We limit the quantity of start states to one, so that the semantics
remains simple. Drawings may be ex- and imported to the JFLAP2 format and
to a textual representation in addition to the standard formats of Renew.

Reference Net Inscriptions The inscriptions of our finite automata are inherited
from Reference Nets. Consequently, the syntax and the semantics are similar.
The inscription types, that are relevant for the simulation of finite automata
along with Reference Nets, are depicted in Figure 5. In general, more inscription
types are available. These are described in detail in [22, p. 48 ff.].

Nevertheless, modelers of our extended finite automata have to consider some
differences to the modeling of Reference Nets. Reference Net inscriptions can only
be – in a sensible way – attached to state transitions. This means, Reference Net
inscriptions that are attached to states are not handled by the compiler and thus
these are not executed by the Renew simulator in contrast to Reference Nets
where Java inscriptions to places are possible. Another important consideration
is that variables in finite automata can not be stored and only accessed arc-
locally (see Section 3.3). We prototypically implemented the feature to provide
2 JFLAP [18] is a modeling tool that is mainly concerned with teaching basics of
theoretical computer science.
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Figure 5: Available inscription types for finite automata

modelers with the capability to initialize the finite automata with diagram-global
variables already. So far, this implementation is experimental.

We forgo the description of each inscription that is illustrated in Figure 5 be-
cause most of them are inherited from Reference Nets. The synchronous channel
inscriptions are of specific relevance in this context. These can be used analo-
gously to the Reference Nets (see Section 2.2). Besides of calling uplinks of other
models, our extended finite automata are also capable of providing uplinks.

4.4 Formalism Implementation

The implementation of the formalism touches multiple layers of Renew: (1) graph-
ical layer, (2) shadow layer and (3) compilation layer. We identify the following
four main tasks: (a) implement a compiler that translates the graphical repre-
sentation into a non-graphical data structure (called shadow net), (b) develop
a mapping from finite automata concepts to Reference Net concepts, (c) imple-
ment a second compiler that compiles the finite automata constructs according
to the previously developed mapping to Reference Net constructs (called com-
piled nets) and (d) implement the return of feedback from simulation events to
a graphical representation. With the completion of these four tasks, the FA plu-
gin for Renew provides the concurrent simulation and synchronization of finite
automata and Reference Nets. The FA plugin as described in this section is part
of the Renew package referenced in Section 2.1.

5 Lift Application

In this section we present a slightly larger example for the use of multi-formalism
execution. The presented system is a model of a lift, which is partly created as
automaton and partly as Reference Net. The lift can move up- and downwards
between four floors and open its door on each of the floors. It is possible to call
the lift on a floor by pressing a button on the respective floor. For reasons of
simplicity, we assume that pressing the button on one floor has the same effect
as pressing the button for the destination floor from inside the lift. Thus, we do
not model the touch panel inside the lift explicitly. In this scenario the status of
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(a) Lift automaton (b) Floor status automaton

Figure 6: Automata models of the lift example

the lift and the status of the button on each floor is simple. These are systems
without any concurrency and with a defined state. Therefore, these components
are modeled as finite automata. The complex part in this scenario is the control
mechanism that ensures a reasonable serving strategy. Consequently, it is realized
as a Reference Net. Thereby, we use adequate modeling techniques for all parts.
The control mechanism as independent component can be exchanged by another
version that uses a different serving strategy.

Automata Models The automata models as depicted in Figure 6 have multiple
state transitions attached with uplink inscriptions in order to be synchronized
with the Reference Net. With the loop at each state, it is possible to implement
state dependent behavior (e.g. opening the door is only possible when the button
on the respective floor is pressed).

Reference Net Control The Reference Net in Figure 7 implements a lift control
that serves a floor when the lift is requested by a pressed button and prefers to
keep the movement direction. On the top left hand side of the net, instances of
the automaton models are created (one instance of lift, four instances of floor).
On the top right hand side there are four transitions that trigger a push of the
button in one of the floors. For technical reasons it is not possible to fire state
transitions in automaton models, yet. Hence, these transitions in the control net
are a simple solution to overcome this technical restriction.

The actual lift control is divided vertically into the four floors. Each floor
consists of three to four control places (green places) representing the lift on
the respective floor on its way downwards (leftmost place), on its way upwards
(rightmost place) or with an open door (places in the center). Changes to the
lift and floor models or state queries to these models require access to the lift
and floors places. This is achieved by using virtual places.

The lift is initialized with closed doors in the ground floor. With Transition o
in the bottom, the door is opened initially. Transition cu0 closes the door of the
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Figure 7: Reference Net for controlling the lift
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lift (lift:close()), which can then start its way upwards. This is only possible,
when the lift was requested on one of the higher floors (i.e. the button is pressed
on one of the higher floors, fn:p(); guard n > 0). If the door is closed the
lift may move upwards one floor with Transition u1 (lift:up()) if the lift was
requested from a higher floor (fn:p(); guard n > 0) and it was not requested
on the same floor (e.g. somebody wants to hop on, f0:np()).

With this mechanism, the lift can move upwards until it reaches a floor where
the button is pressed (e.g. on the second floor). There, it has to open the door
(lift:open(2)) and the request for the floor is reset (f2:unpress()).

On the first and second floor the lift has two places representing an open
door to distinguish the two directions. The lift is allowed to change its direction
(with Transitions td1, tu1, td2, tu2 ) if there is no request in the current direction
(f3:np()) and a request in the other direction (fn:p(); guard n < 2).

Analogously to the right hand side of the lift control, the left side implements
the controlling of the lift moving downwards.

6 Related Work

In this section we briefly relate our proposal to work in the area of multi-
formalism modeling and execution.

Zeigler [30] proposes the multifacetted modeling methodology, which is an ap-
proach to simulation modeling by integrating multiple models. The hereby used
Discrete Event System Specification (DEVS) formalism is capable of construct-
ing coupled models that are composed of atomic DEVS models. In his work
an abstract simulation concept for the DEVS formalism was developed. The
concept claims to couple serveral simulators for each component in a system of
systems to facilitate simulation using a global coordinator for synchronization.
Unlike our approach, Zeigler’s demonstrations are rather abstract. Our approach
is also different from his as we attach importance to concurrent simulation, in
particular to true concurrency of Renew. We propose to work with Reference
Nets instead of DEVS.

Lara et al. [23] introduce a tool that supports the combined use of multi-
formalism modeling and meta-modeling, called AToM3. Due to the definition
of graph grammar models, formalisms can be transformed into an appropriate
formalism for which simulation is already supported. They suggest the DEVS
formalism as the central modeling formalism that can be universally used for sim-
ulation purposes. AToM3 also supports code generation, a meta-modeling layer
that can be used to model formalisms in a graphical manner, and the possibility
to transform models by preserving the behavior [1]. In contrast to our approach,
Lara et al. focus on providing meta-modeling and model-transformation features.
The transformed models have to be simulated in an external environment.

Möbius is a tool for modeling and simulating systems composed of multiple
formalisms. The project focuses on extensibility by new formalisms and solvers,
which is demonstrated in [8]. An abstract functional interface is implemented,
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which transforms models to framework components to allow for addition of for-
malisms and interaction between models. Their approach differs from ours in the
way of having an overall system state. The Möbius tool enables selective sharing
of model states, so that solvers (i.e. simulators) are able to access them.

One practical implementation of a multi-formalism modeling and simulation
concept was done by The GEMOC Initiative [13]. This initiative’s vision is to
advance the research on the coordinated use of modeling languages. They rec-
ognized a problem in the unavailability of a generic runtime service for multiple
modeling languages. GEMOC Studio is proposed as a tool to create meta-models
for both the representation and the operational semantics of modeling languages.
Created models of multiple languages can then be executed in coordination,
while being debugged and graphically visualized. They use the Behavioral Coor-
dination Operator Language (BCOoL [24]) to explicitly specify the coordination
patterns between heterogeneous languages. The used execution engine operates
as a coordinator of multiple language-specific engines.

Frank [11] proposes a method for multi-perspective modeling that extends
the classical approach (of e.g. UML) to conceptual modeling by including the
organizational environment. He is also interested in tool support and states the
following requirement we share: “A tool environment for enterprise modeling
should allow for creating multi-language diagrams, i.e., diagrams that integrate
diagrams of models that were created with different DSML” [11, S. 946]. The
linking of techniques he proposes is established on the level of a meta-model,
but the method lacks an environment to properly support the execution. “How-
ever, there are other paradigms that come with specific advantages, too. [...]
Languages used for creating simulation models would allow for supplementing
enterprise models with simulation features. Petri Nets provide mature support
for process analysis and automation” [11, S. 960]. We find the combination of
such approaches to modeling language engineering with the provision of opera-
tional semantics for a dedicated execution environment most promising.

Jeusfeld [17] proposes the linking of multiple perspectives through declara-
tive constraints in the context of meta-modeling domain-specific languages for
the ADOxx platform. He distinguishes the relation between model and external
environment from the internal model validity and focusses on the latter. The
constraint language is used to define a Petri net firing rule and to sketch a firing
rule of BPMN constructs. However, he does not show the combined execution
of these formalisms.

There are other researchers who have tried to combine various formalisms
with Petri nets. The set of all firings of a Petri net can be considered to be a
language. The research of automata and Petri nets as language descriptions has
led to the control of Petri nets by (finite) automata [4]. The results suggest that
controlling Petri nets through finite automata can be beneficial. A combination of
finite automata and high-level Petri nets can be seen as a vertical composition, as
both techniques basically provide the behavioral modeling perspective according
to Krogstie [19], just on another level of abstraction.
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While first the idea of language intersections were of interest, the idea of a
controller was used in the context of application modeling [28]. A lift system
was modeled, however, just the control was addressed and no other modeling
techniques were applied. In other research, flexible manufacturing systems (FMS)
were used to demonstrate central aspects of control theory (cf. [14] for discrete
event system discussion). Most of the authors’ work concentrates on techniques
that provide one specific modeling perspective. A production system can be
controlled by a simple model to ensure that no deadlocks can occur [9,15].

Overall our approach presented here allows to reduce the cognitive load of
modelers. The complexity can be reduced by using an appropriate modeling tech-
nique, like finite automata, workflows or other modeling techniques like BPMN,
eEPCs, Activity Diagrams, etc. However, each formalism needs to be connected
via the synchronous channels to be executed within our environment. Systems
complying to our interfaces could also mimic our approach if sufficient support
for the execution of modeling techniques is available, for example with CO-
OPN/2 [2] or the Zero-safe net formalism [3]. Our illustrations of the principle
usage in Sections 4 and 5 can be seen as proof of concepts.

7 Conclusion

In this contribution we conceptually present how various formalisms can be used
together not only for modeling, but also for simulation while preserving their
original representation.

In our opinion, the benefit of using multiple formalisms for the modeling of
complex systems can be increased by providing a solution for the simulation
of these formalisms. That does not mean that we just intend to transform the
models of multiple formalisms into one single formalism, but rather provide
simulation feedback for the original representation of the models. Therefore, the
various formalisms are mapped to Reference Nets and the simulation events are
returned to the models original representation (see challenge (2) in Section 1).

We set up the thesis that the synchronization and data exchange between
models of various formalisms should not be achieved through the development of
several individual coupling mechanisms. Instead, we represent the opinion, that
this should be achieved through one coupling mechanism.

We propose the generic coupling of models using the synchronous channels on
the basis of Reference Nets (see challenge (1) in Section 1). Regardless of whether
the models are of various or the same formalism. Synchronous channels allow for
the synchronization of several models, and data exchange in all directions.

As a proof-of-concept we practically demonstrate how this approach can be
implemented for the coupling of finite automata and Reference Nets.

In the close future we plan to improve the various concepts and implemen-
tations of our approach to support modeling techniques with variables for for-
malisms that are not capable of storing references by themselves. Furthermore,
we investigate how to support the development of techniques through meta-
modeling and to provide a close adaption to the simulation environment of Re-
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new, e.g. to model the techniques themselves, the drawing tools and their op-
erational semantics [26]. In the context of the above mentioned investigation,
among others we will develop a Renew plugin that provides the modeling and
simulation of statecharts.
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