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Abstract. The paper presents a method to distribute the generation of
all possible bounded length sequences of events for a given Petri net. The
crucial bene�t of our method is that it permits distributing of the gen-
eration process and allows to apply Big data processing techniques. The
net is decomposed into functional fragments, each of them is simulated
independently to produce the set of its sequences, which are combined
to yield the sequences for the whole net. This process can be executed
by structural induction, and facilitates re-usability of partial results.
To limit the amount of data transferred during the computation, which
is the critical factor, we represent these sequences in a compact form of
Mazurkiewicz traces, which identify all sequences which di�er by inter-
changing the order of subsequent independent events. Therefore a single
trace corresponds to all distributed runs of the net, where tasks that can
be executed concurrently are recorded in all possible orders.
Our tool can be useful in process mining, in particular in conformance
checking. In this use case, a Petri net model of a process is compared
to its real-life behaviour, recorded in execution logs. As the investigated
logs are large, the gain from distributing the computation is desired.

Keywords: process mining, conformance checking, distributed computation,
Big data, Spark, Petri net, elementary net system, Mazurkiewicz traces, struc-
tural induction

1 Introduction

The focus of this paper is providing a methodology for e�cient and distributed
generation of the set of all limited length runs of a given Petri net.

Petri net (PN) [4] is a model of a distributed system. The formalism of such
nets is a common and convenient modelling language. Their applications areas
range from work�ow systems, representing decision processes in a business or-
ganization, through the design of control structures in concurrent programming,
to the models of regulatory networks found in living cells.

One of the possible application areas for our tool is process mining [1, 6]. It
is a relatively young research area, whose main aim is to develop methods and
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techniques to discover, monitor and modify real processes, making use of the
knowledge implicitly present in their event logs. Certainly, achieving such a goal
requires methodology to perform (automated) process discovery, i.e., construct-
ing process models by mining the event log data. When the model is available,
conformance checking becomes important � it is the task of investigating and
analysing deviations between the real process and its model. The next steps
might then be model extension, model repair or case prediction.

The generation of all possible �xed length runs of a model is our contribution
towards conformance checking. Assuming that a Petri Net model of the process
is already available, it is then natural to compare the sequences of events gener-
ated by the model with those indeed recorded in the log. It is relatively easy to
do one way: check if the sequences of events present in the log are indeed per-
mitted by the model. The other direction is much harder: to check if there are
sequences of events permitted in the model, which do not appear in the event log,
and if so, characterize them, estimate their frequency among all runs, discover
their common properties, etc. In fact, using our tool to produce the complete
set of sequences generated by the model (up to some length), allows one to mine
the di�erence between the model's event log and the real system's event log,
providing otherwise unavailable information about what the real system can-
not do, as opposed to its model. Existing solutions, like various applications of
SAT-solvers, produce single runs, so can provide answers only to very detailed
existence questions and do not provide the general picture.

Given a PN N and a limit k our tool produces the representation of all event
sequences of length up to k of N . The cardinality of this set grows extremely
fast with k, thus our goal was to distribute the computation. A naïve method
for exhaustive sequence generation would be to explore the possible state space.
Such a method would be di�cult to distribute due to excessive communication
necessary to prevent repeated exploration of the same trajectories on di�erent
machines. The work could be distributed based on the order of events in the
simulation, where each machine gets a fragment of the search space, composed
of the sequences starting with a particular pre�x. Yet, for di�erent pre�xes there
can be signi�cant di�erence in the number of possible result sequences, which
would introduce skew and even if the computation would be balanced, then
common su�xes, or subsequences would lead to replication of work.

Instead we apply the techniques of Mazurkiewicz [3], where the sequences
for the net can be obtained by combining sequences for its subnets. This allows
us to reduce the problem to iterative Big data processing computation, which
can be e�ciently distributed with Big data frameworks like Hadoop and Spark.
Distributing the computation is done by structural induction on the PN model.
This has additional practical consequences. In a net with several identical com-
ponents it is enough to compute their behaviour once and then reuse it several
times. To limit the amount of data transferred during the computation, which
is the critical factor, rather than with sequences, we deal with Mazurkiewicz

traces [3] and exploit the pre�x closure property. Each such trace represents a
whole set of sequences, which di�er only by interchanging the order of subse-
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quent transitions that are independent in the net. This reduces the size of the
data necessary to store all runs by many times without losing any signi�cant
information. For example for sequences of length bounded by 7 we observed av-
erage reduction of 29 times. Indeed, every trace represents a set of runs in which
subsequent independent events occur in di�erent order or equivalently the trace
represents a run where all subsequent independent events occur simultaneously.
We further reduced the size of the representation (by 35% for the same exam-
ple), thanks to the observation of the pre�x closure property for the sequences
of events. However, even with this additional optimization and using the trace
representation, we still end up in the Big data range even for not too large k.

For implementation of our ideas we use Apache Spark engine [7]. The ad-
ditional advantage of this is that the computed traces are immediately avail-
able as Spark's Resilient Distributed Dataset (RDD) and can be further pro-
cessed/analysed without any overhead for parsing. Such post-processing could in-
clude analysing the deviations between the real observed process and the model,
or computing some statistics, e.g., in which percent of all possible runs some cho-
sen event always precedes some other event or what is the average delay/distance
between some events.

2 Elementary net systems and net languages

We focus on elementary nets systems (ENS) [5] which are a kind of PN with a
restriction that each place can contain up to one token. That is, for a transition
to be enabled not only all its input places need to contain tokens, but also all
its output places need to be empty. Formally, ENS is an ordered triple (P, T, F ),
where P is a �nite set of places, T a �nite set of transitions and F ⊆ ((P ×
T )∪ (T ×P )) de�nes the �ow relation. The marking is de�ned as M ⊆ P and a
transition t is considered enabled if (1) ∀p∈•tp ∈ M and (2) ∀p∈t•p /∈ M where
•t ⊆ P (t• ⊆ P ) is the set of input (output) places of t. An enabled transition

can �re, which changes the state from M to M ′ denoted as M
t−→ M ′ where

M ′ = ((M \ •t)∪ t•). For technical reasons we assume that the nets with which
we deal do not include immediate loops, that is for every transition t it holds
that •t ∩ t• = ∅.

An ENS with an initial state de�nes a transition system whose size can
be exponential with respect to the number of places. Such a system de�nes a
language of sequences (strings) with symbols from T � its net language � that
can be observed as the outcomes of possible runs of the system starting in the
initial marking. Formally, for N = (P, T, F ) and for some initial markingM0, we
say that sequence/string w = w1w2w3 . . . wn for wi ∈ T is in the net language

of N if M0
w1−−→M1

w2−−→M2
w3−−→ . . .

wn−−→Mn for some markings M1, . . . ,Mn.

3 Language synchronization

Synchronization of net languages [3] corresponds to composition of nets. We
use the synchronization operation on net languages to distribute net language
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computation for complex nets by decomposing the net and then synchronizing
net languages of the obtained components.

We consider composition for nets that have no common places but may have
common transitions. During this operation such transitions form an interface on
which the composition is conducted and are merged together. The marking of
the composite net is obtained as the sum of the markings of the composed nets.

Composition of sequence of non-trivial nets N1, N2, . . . , Nn, where Ni =
(Pi, Ti, Fi) and Pi ∩Pj = ∅ for i 6= j, is de�ned as the net N1 +N2 + . . .+Nn =
(
⋃
Pi,
⋃
Ti,
⋃
Fi). An example of the net composition is presented in Fig-

ure 1 for N1 = (P1, T1, F1) and N2 = (P2, T2, F2) where P1 ∩ P2 = ∅ and
T1 ∩ T2 = {b, c} 6= ∅ is the common interface. The resulting net N1 +N2 = N is
obtained by merging the interface transitions of the components.
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Fig. 1: Net composition example.

Complementarily we can de�ne net decomposition of a non-trivial net by spec-
ifying partition of its set of places into non-empty sets. Each such set de�nes a
subnet together with transitions adjacent to its places and corresponding edges
(transitions can be replicated for multiple subnets). Suppose that we have a net
N and its decomposition into N1+N2+ . . .+Nn. The language L(N) � net lan-
guage of N � can be de�ned in terms of net languages L(N1), L(N2), . . . , L(Nn).
Consider a seq ∈ L(N). Observe, that each of netsNi accepts a sequence πTi

(seq)
where πA(seq) is the projection of sequence seq onto alphabet A. This follows
from the observation that if there exists a series of actions seq in system rep-
resented by N , then if we look only at places and transitions belonging to the
component Ni and obscure remaining parts of the system we get πTi

(seq).

Formally, synchronization [3] of (arbitrary) languages L1 over alphabet A1

and L2 over A2 is de�ned as the language L1 ‖ L2 over alphabet A1 ∪ A2 such
that: seq ∈ (L1 ‖ L2)⇔ πA1

(seq) ∈ L1 ∧ πA2
(seq) ∈ L2.

The smallest element of net decomposition, containing a single place, is called
atom. Each net is a composition of all its atoms. We can observe that an atom
A = ({p}, T, F ) for a marking M = {p} has a net language which is de�ned by
the regular expression: ((p•)(•p))∗(p•+ε). This observation allows us to calculate
the language of a net by decomposing it into atoms, calculating net languages
of each atom and synchronizing those languages incrementally one by one.
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We can analyse this using the resulting net from Figure 1. We will cal-
culate net languages up to length 4. Let atom Ai be based on place pi
for i = 1, 2, 3, 4, 5 and let the initial markings be given by projections of
the marking presented in the �gure. We have: L(A1) = {ε, a}, L(A2) =
{ε, a, ab, aba, abab}, L(A3) = {ε, a, ac, aca, acac}, L(A4) = {ε, b, bd, bdb, bdbd},
L(A5) = {ε, c, cd, cdc, cdcd}. It can be observed that the following synchro-
nizations hold: L12 = L(A1) ‖ L(A2) = {ε, a, ab}, L123 = L12 ‖ L(A3) =
{ε, a, ab, abc, ac, acb}, L1234 = L123 ‖ L(A4) = {ε, a, ab, abc, abcd, abd, acb, acbd},
L(N) = L1234 ‖ L(A5) = {ε, a, ab, abc, abcd, acb, acbd}.

4 Distributing net language computation

The idea to decompose a net into atoms, compute net languages for them and
then generate the net language for the initial net by incrementally synchronizing
the languages of atoms gives us means to distribute the net language generation
problem.

This procedure is presented in the Listing 1. Its correctness follows from the
observation that synchronization is distributive, i.e., (A∪B) ‖ C = (A ‖ C)∪(B ‖
C) and A ‖ (B ∪ C) = (A ‖ B) ∪ (A ‖ C). Thus, to synchronize two languages
we can break one of them into a collection of languages containing individual
sequences and synchronize all such singletons with the second language and
�nally take union of the results. This observation forms the basis for how our
algorithm distributes work. As the incrementally generated net language is large
its subsets (partitions in Spark) can be stored on di�erent nodes in the cluster
and can be processed independently.

As the net languages of atoms are easy to generate and relatively small if
bounded by reasonable length, we can use the broadcast mechanism available
in Spark (and in Hadoop) to make them available on every node of the cluster.
In that case the computation could be organized in a loop where in each step
we would compute the net language of the net that is obtained from the net
from the previous step by composing it with next atom. The net language of
the composed net would be computed from the net language of the net from the
previous step by synchronizing its every sequence as singleton net language with
the net language of the composed atom.

The synchr(seq, bc.value) operation performs the synchronization {seq} ‖
bc.value. It can be implemented by synchronizing the {seq} language with each
language {s} for s ∈ bc.value and taking set union of the results. The de�nition
of the synchronization operation is nonconstructive. We will present our method
of computing synchronization in Section 6. For now let us just note that syn-
chronization of two singleton languages can either contain no nonempty (epsilon)
sequences, or contain a single nonempty sequence, or contain multiple nonempty
sequences. Thus we have to repartition the RDD after each step, to equalize the
sizes of subsets of the resulting sequences stored on individual nodes. This way,
in the next iteration of the main loop computation will take comparable amount
of time on each of the nodes. Furthermore, we also need to eliminate duplicates,
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def genLang(n: Net, k: Int, numPart: Int, sc: SparkContext) {

val atoms = n.splitToAtoms() //split net to atoms

//initialize with the language for the first atom

val l = atoms.head().getLanguage(k)

val res = sc.parallelize(l, numPart)

//structural induction

//incremental generation by synchr. with successive atom's languages

for (nextAtom <- atoms.tail()) {

l = nextAtom.getLanguage(k)

var bc = sc.broadcast(l) //broadcast next atom's language

//synchr. all pairs of sequences from two languages

res = res.flatMap(seq => synchr(seq, bc.value))

.map(seq => if (seq.length() > k) seq.substring(0,k)

else seq).distinct().repartition(numPart)

bc.unpersist()

}

res.saveAsTextFile(hdfsOutputPath) //store output

}

Listing 1: Language generation by incremental synchronization of atom lan-
guages.

which will be e�ciently done by Spark � Spark can merge both repartitioning
and duplicate elimination into one operation.

5 Traces

In the previous section we presented a method to calculate the net language of an
ENS in a distributed manner. Now we introduce a technique to limit the amount
of data transferred and at the same time reduce the amount of computation.

The net language consists of all possible sequences of events in a net even
if they di�er only by ordering of subsequent independent transitions. In this
section we introduce traces which group all sequences that di�er only in ordering
of subsequent independent transitions. Traces allow us to represent the same
information about the net as sequences but from the concurrent viewpoint � as
if all subsequent independent events occur simultaneously instead of considering
their linearisation.

First, we formalize independence/dependence of transitions. Following [3]
a dependence relation is any �nite, re�exive and symmetric relation. For a net
N = (P, T, F ) we de�ne a dependence relation DN ⊆ T×T and an independence

relation IN ⊆ T × T over alphabet T based on how �ring one transition a�ects
the possibility to �re another one. If �ring of one transition enables or disables
another transition we call them dependent. On the other hand if transitions are
independent �ring one of them should not immediately interfere with the ability
to �re the other. It is easy to see, that transitions are considered dependent,
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if they share a neighbouring place, otherwise they are independent. Formally,
(t1, t2) ∈ DN i� (•t1∪t1•)∩(•t2∪t2•) 6= ∅. Independence relation is de�ned as the
complement of dependence relation IN = (T × T ) \DN and we say it is induced
by dependence DN . For given dependence D we mark independence induced by
it as ID. Note that dependence D carries information about its alphabet which
is denoted Σ(D), similarly we use Σ(I) for independence I. It is an easy check
that dependence relation de�ned by us for a net is indeed �nite, re�exive and
symmetric. For net N from Figure 1 we have DN = {a, b}2 ∪ {a, c}2 ∪ {b, d}2 ∪
{c, d}2, so independence induced by DN is IDN

= {(b, c), (c, b), (a, d), (d, a)}.
For an alphabet A and a dependence D over A trace equivalence ≡D is

de�ned as the least congruence in A∗ such that for all (a, b) ∈ ID ⇒ ab ≡D ba.
Traces are equivalence classes of ≡D. A trace over dependence D represented
by a sequence seq is denoted [seq]D. For a language of sequences L, by [L]D we
denote the language of traces [L]D = {[seq]D | seq ∈ L}. Note that traces over
full dependence A×A are singletons.

For a given net N , [L(N)]D is called its trace behaviour or trace language.
It is important to note that trace behaviour of a net is consistent, i.e., {seq |
[seq]D ∈ [L(N)]D} = L(N).

6 Trace language computation

Without losing any information we can store every trace as one of its repre-
sentatives, i.e., one of the sequences that are in this equivalence class of the
equivalence relation ≡D. The dependence relation that is needed to calculate
the full net language of sequences of events from the representatives of its trace
behaviour can be easily calculated by de�nition from the net.

Synchronization of trace languages T1 over dependence D1 and T2 over D2 is
de�ned as the trace language T1 ‖ T2 over D1 ∪D2 (over the alphabet Σ(D1) ∪
Σ(D2)) such that t ∈ (T1 ‖ T2) ⇔ πD1

(t) ∈ T1 ∧ πD2
(t) ∈ T2. Here πC(t) is

the projection of trace t over dependence D onto dependence C ⊆ D, which
not only can remove some symbols from the trace but also make some of them
independent. Consider for example trace t = [abcd]DN

= {abcd, acbd} where N
is the net from Figure 1 and DN is its dependence. Take D1 = DN \ {a, c}2 and
D2 = {b, d}2 ∪{c, d}2, then πD1

(t) = {abcd, acbd, cabd} and πD2
(t) = {bcd, cbd}.

We present now a constructive method for computing synchronization of
trace languages. It can be used in the algorithm in Listing 1. Later on we present
how to adapt the method from net languages to trace languages and discuss how
it can be implemented in an e�cient way with dependence graphs.

Let us start with the observation that synchronization of singleton trace
languages yields either a language consisting of one trace, being either non-
empty or empty (epsilon) sequence. Therefore, for traces t1 over D1 and t2 over
D2, we de�ne t1 ‖ t2 to be t i� {t1} ‖ {t2} = {t}. Recall that t1 ‖ t2 is a trace
over D1∪D2. Such de�nition allows one to compute the synchronization of trace
languages as the set of all synchronizations of the pairs of the individual traces

61



in the Cartesian product of those two trace languages: T1 ‖ T2 = {t1 ‖ t2 | t1 ∈
T1, t2 ∈ T2}.

We can observe that the result of this operation always contains empty (ep-
silon) sequence and contains any other sequences only if some traces match on
the common interface Int = Σ(D1)∩Σ(D2)

1. Formally, this requirement means
that for [seq1]D1 = t1 and [seq2]D2 = t2, we have πInt(seq1) = πInt(seq2). This
follows immediately from the de�nition of synchronization.

The algorithm to construct a representative for the output trace from match-
ing representatives of the synchronized traces would be to divide the synchro-
nized representatives into subsequences delimited by interface symbols and then
interweave in any way the subsequences from the corresponding positions. Let
t1 = [k(∗,1), i1, k(1,2), i2, k(2,3), . . . , in, k(n,∗)] and t2 = [l(∗,1), i1, l(1,2), i2, l(2,3), . . . ,
in, l(n,∗)], where k(a,b) and l(c,d) are some sequences and i1, i2, . . . , in some sym-
bols and Int the common interface such that i1, i2, . . . in ∈ Int and none of
k(a,b) and l(c,d) contains any letters from Int. At �rst it may seem that t1||t2 =
[k(∗,1), l(∗,1), i1, k(1,2), l(1,2), i2, k(2,3), l(2,3), . . . , in−1, k(n−1,n), l(n−1,n), in, k(n,∗),
l(n,∗)], which is obtained by reversing the de�nition of projection and the obser-
vation that k(x,x+1) and l(x,x+1) cannot share any symbols, as they would have
to be in Int (so the interweaving of their symbols is arbitrary as long they are
between symbols ix and ix+1).

Unfortunately, it may happen that for two traces, some representatives allow
for such a match but not all. For example traces t1 = [abc]D1

over D1 = {a, b}2∪
{b, c}2 and t2 = [cb]D2

over D2 = {(b, b), (c, c)} and common alphabet {b, c} can
be synchronized. This becomes apparent if bc is chosen as the representative for
t2. Next we present a constructive method that does not require us to enumerate
all possible representatives to check if traces can be synchronized or not.

7 Dependence graphs and pre�x closeness property

In this section we describe how synchronization of two singleton trace languages
{t1} and {t2} can be implemented in an e�cient way. For that we extend the
dependence graphs representation from [3]. We also observe that the languages
we deal with are pre�x closed, which allows us to further minimize the amount
of memory needed to store them. The constructive synchronization we present,
is designed in such a way that it results in the synchronization of the longest
possible pre�xes, without storing them independently.

Dependence graphs are an alternative method to represent traces. They com-
bine the partial ordering of transition occurrences common to all sequences in
the dependence relation, in a form of a graph of partial ordering relation.

Formally, a dependence graph is a directed, acyclic graph that is labelled by
elements of the alphabet (symbols from T ). Only nodes that represent dependent
transitions are connected by an edge. Example of dependence graphs are given
in the left hand side of Figure 2. They represent exactly the same information

1 Note that it is possible for a symbol to be independent of any other symbols.
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as [adbad]D1
‖ [adcead]D2

= [adbcead]D, where D1 = {a, b, d}2, D2 = {a, c, e}2∪
{c, d}2 and D = D1 ∪D2.

The intuition is that the synchronization operation corresponds to combining
the dependence graphs by merging the interface nodes. That is, there has to be
the same number of occurrences of every interface transition, and after merging
the interface transitions together we have to get a dependence graph � which is
directed and acyclic, i.e., the ordering de�ned by the synchronized dependence
graphs cannot be contradictory.

As dependence relation is re�exive, we extend the notation of Mazurkiewicz
and enumerate successive occurrences of every transition in the trace/depen-
dence graph. With such an indexing the occurrences of transitions are unique
and the dependence graph representation is common to all representatives of a
trace. We can now observe, that if dependence graphs have compatible index-
ing and ordering on the common interface, i.e., the order of occurrences is not
contradictory and there is exactly the same number of each of the common in-
terface transitions in both dependence graphs, then we can synchronize them by
merging nodes representing the common interface (see Figure 2).

Fig. 2: Synchronization of two dependence graphs calculated by merging of their
indexed representations.

Now is the moment to observe that net languages and their trace representa-
tions are pre�x closed, i.e., for every sequence seq or trace [seq], all their pre�xes
are also in the language, i.e., are sequences/traces of the same system. Thus we
do not have to remember the pre�xes, which even further compresses our trace
representation. Cleaning a huge language of pre�xes would be computationally
intensive, especially as we do not have linear ordering of events for traces. There-
fore we developed a synchronization algorithm that not only synchronizes traces
(in the form of dependence graphs), but if they are not synchronizable then
pre�x synchronizes them, i.e., it �nds the synchronization of their longest syn-
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chronizable pre�xes. This allows us to avoid storing most of the pre�xes of other
existing traces, while reducing the size of the representation even further. Some
pre�xes can still appear in the representation, because it is possible that the
result of pre�x synchronization of some traces is a pre�x of some other trace.
We leave the elimination of this redundancy for future research.

For dependencies D1 = {a, b, c, d}2 and D2 = {a, b, e}2 with a common inter-
face being comprised of a, b, and for traces t1 = [aacdba]D1

and t2 = [aaeaa]D2
,

we have t1 ‖ t2 = ε . If we consider pre�xes t′1 = [aacd]D1
and t′2 = [aae]D2

, we
can synchronize them and get t′1 ‖ t′2 = [aacde]D = {aacde, aaced, aaecd}.

The following steps can be used to extend the algorithm from Listing 1 to a
trace version with pre�x synchronization.

1. Compute the common interface (this can be done once for two trace lan-
guages and reused for all the synchronized trace pairs).

2. Check if the number of occurrences of every transition from common interface
is equal in both traces � interfaces match. If not, for each element of the
interface take the minimum of the numbers of occurrences of that element in
both traces and remove the occurrences of this transition indexed above this
minimum. Remove also all the successors of removed transitions. Repeat if
signatures still do not match.

3. Merge the indexed dependence graphs. If there are any cycles, remove all
their nodes. Remove also all descendant nodes of the removed ones.

4. The resulting dependence graph is the result of synchronization of longest
synchronizable pre�xes.

5. From the dependence graph representation pick some representative for that
trace. Use the same method of choosing representatives for all dependence
graphs, i.e., make the representatives canonical. If the dependence graph
has more nodes than the limit k pick all the pre�xes of length k and choose
representatives for them.

In step 2 we �nd the pre�xes that are suitable for synchronization by merging
of dependence graphs representations. We remove nodes that cause the incom-
patibility of common interfaces, because the dependence graphs or traces that
do not have matching interfaces are not synchronizable. We also remove all suc-
cessive transitions.

A simple example shows that such a removal of nodes may have to be repeated
several times. ConsiderD1 = {a, b, c}2∪{a, d}2,D2 = {a, b, c}2 with the common
interface {a, b, c} and traces t1 = [adcb]D1

and t2 = [abbc]D2
. We have to make

three steps (remove b then c then d) until we �nd pre�xes that have matching
interfaces.

These steps are presented in Figure 3. The left hand side dependence graphs
are the subsequently examined pre�xes of t1, and on the right hand side are
the pre�xes of t2. In the �rst step, there are more occurrences of b in t2, so we
remove the second one, and also remove the only node labelled c. This causes
the situation, in which there is one more occurrence of c in the left hand side
dependence graph. To remove it we also need to remove the only node with b.
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Again there is no match on the common interface {a, b, c}, so in the third step
we have to remove the node with b from right hand side dependence graph. This
results in pre�xes equivalent to traces: [ad]D1 v t1 and [a]D2 v t2, which can be
synchronized.

Fig. 3: Finding longest pre�xes with matching interfaces.

Note that even if two traces have matching interfaces, it does not necessarily
mean it is possible to synchronize them. It may be the case that their common
interface from some point shows di�erent orderings of transition occurrences,
and the merging of dependence graphs will create cycles. Thus in step 3 we look
for cycles. All cycle nodes can be eliminated from the result (with all of their
successor nodes), because this corresponds to taking pre�xes of source operands.
Note that we cannot hope to break a cycle by taking a pre�x in just one trace
as this would prevent matching on the common interface.

Removing the same nodes from the source dependence graphs, which have
been deleted during cycle removal, maintains common interface compatibility.

During synchronization only transitions that are included in the common
interface are merged together, so the size of the result of synchronization can be
larger than of any of the components. As we are interested in traces of limited
length, we may calculate pre�xes of limited length. Note that trace can have
more then one pre�x of any given length. For example, consider dependence
relation D = {a, b}2∪{a, c} and trace t = [abc]D. It has two pre�xes of length 2:
[ab]D and [ac]D. This operation can be easily implemented for dependence graphs
where we can iteratively drop nodes with no outgoing edges. We do not lose any
information this way, because all traces of length bounded by k can be obtained
by synchronization of traces of length bounded by k. We found this optimization
to be pro�table in our experiments, but it does not have to be so in general, as
it may be better to store longer traces rather than many pre�xes.
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When choosing a representative for the trace, we make sure that for the same
graph we always choose the same representative, so that if two synchronizations
have the same result, we can eliminate one of them as a duplicate.

8 Experimental evaluation

We conducted tests of the experimental implementation. The Petri net examples
being simulated were adapted from the papers of Mazurkiewicz, together with
their initial markings. Below we use the name m95 for the sole example from [3],
and m84_Y where Y is a number, to indicate the example number Y from [2].
In order to get even larger nets, we multiplied them, by creating a few disjoint
copies of the initial net, adding a starting place and a starting transition, which
consumes the token from the starting place and inserts tokens into the places
which have been originally marked in each of the copies. Figure 4 presents an
example of this construction, where net m95 is three-fold multiplied to yield
m95x3. Note that the disjoint copies of the initial m95 net are independent in
m95x3.

Fig. 4: Petri net multiplication: m95 (on the left) and m95x3 (on the right).

The test cluster consisted of 12 machines equipped with Intel Core Quad
Q9550 2,8GHz processors with 4 cores and 4 GB RAM each. Two of the machines
were masters: one for Spark and one for HDFS. The other machines were used
as Spark workers for distributed computation and data nodes for HDFS for the
purpose of saving the �nal results.

The nodes were running Java Development Kit 1.80_60, Apache Spark
framework 1.4.1, and HDFS from the Hadoop 2.7.1 distribution. The Java VM
was restricted to use at most 2 GB of memory.

Initially we performed several tests to choose the right number of partitions.
It turned out, that in general a good choice was to use the number of partitions
equal to the number of workers, i.e., 10, and enforce repartition after each task
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to equalize their load. However, this choice was not absolutely superior, and
in some cases increasing the number of partitions to four times the number of
workers, i.e., 40, was bene�cial.

Then we measured running time as a function of the number of places and
transitions in the input net. The results are depicted in Figure 5. The general
observation is that the graphs are almost linear in the logarithmic scale, so indeed
the running time increases exponentially with the size of the net, if its structural
complexity does not grow � which in our case comes from the fact that each
of the lines represents a sequence of nets, created by increasing the number of
independent copies of the initial one.

Fig. 5: Running times of the PetriSpark application. The horizontal axis indicates
how many times the initial net has been multiplied. So 1 corresponds to the initial
net m, then the consecutive numbers stand for mx2, mx3, mx4, mx4x2, mx4x3
and mx4x4, having about 2, 3, 4, 8, 12 and 16 times more places and transitions
than m.

Concerning the memory usage (see Figure 6), we have chosen to count data
elements stored in RDDs, rather than the total memory consumption. The ben-
e�t is that this gives a hint about the true sizes of the sets that emerge during
computation, without taking their implementation details into account.

Those sizes vary greatly, depending on point of each step when they were
measured, and to show this we represent the logs as a few separate graphs.
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The curve indicated as initial represents the size of data structures at the
beginning of the step. The curve described as after synchronization provides the
size of data structures after the traces are synchronized, yet those traces can still
be longer than the requested limit. Next, we calculate pre�xes of limited length
which can increase the data size and is presented as curve described as after

pre�xes. Finally, duplicates are removed by executing distinct, which eliminates
the obvious redundant data elements and produces the initial data for the next
step.

The peaks on the graphs generally occur when many duplicates emerge. This
is caused by the structural properties of the nets being simulated.

Fig. 6: The number of data elements during execution.

Finally, we present a graph, depicting how the optimizations we perform
(elimination of pre�xes and replacing sequences with traces) in�uence the size
of the resulting sets of objects, which represent the complete set of runs of the
system. We have the following four cases: (A) is the unoptimized case, (B) is the
case of all sequences of length up to k (with proper pre�xes eliminated), (C) is the
case of all traces of length up to k (stored by using only one representative) and
(D) of all traces of length k, without proper pre�xes, i.e., with both optimizations
used simultaneously.

In order to visualize the situation, we repeated the experiments for all
four possible cases (A), (B), (C) and (D) for the following 15 nets 2: m84_0,
m84_0x2, m84_0x3, m84_1, m84_1x2, m84_1x3, m84_2, m84_2x2, m84_2x3,
m84_3, m84_3x2, m84_3x3, m95, m95x2, m95x3, and for the length limits
k = 5, 7 and 10.

Since we had many nets of di�erent sizes, we normalized the results by calcu-
lating, for each net and each k separately, the ratios of (D), (C), (B) and (A) to

2 Recall that m84_2x3 is the second example from [2] multiplied three times.
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(A), getting the ratio of size reduction in each case. Then we computed averages
of the ratios over all nets. As it is now apparent from the graph in Figure 7,
representing behaviours in the form of traces reduces the sizes of the datasets
much more than eliminating pre�xes. It is also visible that the larger k we have,
the better the e�ect of moving from sequences to traces. Eliminating pre�xes
alone gives a constant rate of size reduction, independent of k.

Fig. 7: The average representation size reduction over 15 nets, for k = 5, 7, 10.
(A) no optimization, (B) eliminating pre�xes, (C) moving to traces, (D) moving
to traces and pre�x elimination.

9 Summary and future research

Our research demonstrates a successful attempt to treat the investigation of the
runs of a PN as a Big Data problem. Our contributions are the following: (1)
Distributed generation of all runs, and moreover by structural induction over
the net being simulated; (2) Two optimizations, which reduce the size of the
resulting dataset manifold. Our tool can be applied for conformance checking,
where a PN model of a process is compared to its real-life behaviour, recorded
as the set of logs of its runs.

Our approach permits further improvements. An extra step could be added
to the algorithm to remove all pre�xes which would require developing special-
ized algorithm for that and testing if the extra e�ort is pro�table. Note that
for traces which do not represent linear ordering of events this may not be as
straightforward as for sequences. In the case that the simulated net contains sev-
eral copies of a certain subnet, we plan to reuse the trace language computed for
one copy while processing other copies, instead of recomputing it from scratch.
We intend to automatize detection of opportunities for such reuse.
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