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Abstract. The set of regions of a transition system, ordered by set
inclusion, is an orthomodular poset, often referred to as quantum logic,
here called regional logic. Regional logics, which result to be also regular
and rich, are the main subject of investigation in this work.
Given a regular, rich logic L, one can build a condition/event transition
system A, such that L embeds into the regional logic of A. Call stable a
logic if the embedding is an isomorphism.
We give some necessary conditions for a logic to be stable, and show
that under these, the embedding presents some stronger property. The
full characterization of the class of stable logics is still an open problem.
In particular, we show that any {0, 1}-pasting of n Boolean logics is sta-
ble, and that, whenever L contains n maximal Boolean sublogics sharing
exactly one atom, L is stable.

1 Introduction

Regions of transition systems have been introduced by Ehrenfeucht and Rozen-
berg [7], [8] and applied to the synthesis of net systems in several ways, as
described by Badouel, Darondeau and Bernardinello [2],[1].

We are interested in the order structure of regions both in case they are seen
concretely as sets ordered by set inclusion and in case they are seen abstracly
as quantum logics. While quantum logics [11] have been introduced as ordered
structures representing observations and measurement operations of quantum
physics, we use here their properties without going into the details of their
relations with physics.

In more detail, we exploit a duality between condition/event transition sys-
tems and rich and regular quantum logics presented in [4]. In that contribution,
with some difference in notation that will be explained in a remark at the end of
section 2, we proved that, given a rich and regular quantum logic L (we use sim-
ply logic in what follows), one can build a condition/event transition system A,
such that L embeds into the logic generated by the regions of A. In the present
work, we explore the case in which this embedding is an isomorphism. So we call
a logic stable if the embedding mentioned above is an isomorphism and we give
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some necessary conditions for a logic to be stable, while the full characterization
of the class remains an open problem.

The special cases analyzed in this paper exploit the fact that any quantum
logic can be seen as a family of partially overlapping Boolean algebras. In par-
ticular, we show that any {0, 1}-pasting ([11], p. 4) of n Boolean algebras, or
Boolean sublogics, is stable, and that, whenever L contains n maximal Boolean
sublogics sharing exactly one atom, L is stable.

The rest of the paper is structured as follows. In section 2, after preliminary
definitions on transition systems, condition event transition systems (CETS) and
regions, we present in section 2.2 basic notions on quantum logics, in particular
on rich and regular logics, as well as the notion of two-value state. In section
3 we show that to any CETS it is possible to associate the quantum logic of
its regions, and we show a synthesis procedure to associate a CETS to any rich
and regular logic. Sections 4 and 5 constitute the original part of the paper:
the first deals with some results towards the characterization of stable logics,
the second considers some particular subclass of logics, and shows that they are
stable. Section 6 concludes the paper with some remarks.

2 Preliminary Definitions and Notations

2.1 Transition systems

Transition systems are a class of automata representing the global behaviour of
a system in opposition to the representation via local states or local properties.
The relation between these two ways of representation is extensively reported
in the literature, see [7], [8] and [9] as first papers on the subject and [1] for a
complete survey. In this contribution, we will always consider finite transition
systems.

Definition 1. A transition system is a triple A = (Q,E, T ) where Q is a set
of states, E is a set of events and T ⊆ Q× E ×Q is a set of transitions. We
assume that the following conditions are respected:

1. the underlying graph of the transition system is connected;
2. ∀(q1, e, q2) ∈ T q1 6= q2;
3. ∀(q, e1, q1), (q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

In some cases, we will drop axiom 1, which imposes connection.
A region of a transition system is a set of its states such that the occurrence

of one of its events has the same crossing relation, namely entering, leaving the
region itself, or otherwise neither of the two. This is formalised as follows.

Definition 2. A region of a transition system A = (Q,E, T ) is a subset r of Q
such that ∀e ∈ E, ∀(q1, e, q2), (q3, e, q4) ∈ T :

1. (q1 ∈ r and q2 6∈ r) ⇒ (q3 ∈ r and q4 6∈ r); and
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2. (q1 6∈ r and q2 ∈ r) ⇒ (q3 6∈ r and q4 ∈ r).

Given a transition system A, its set of regions will be denoted by R(A); given
a state q ∈ Q, the set of regions containing q will be denoted byRq(A) and, when
the transition system that originates the regions is clear from the context, simply
by Rq. Note that the set of regions R(A) of a transition system A = (Q,E, T )
cannot be empty since at least the whole set of states Q is a region.

Definition 3. Let A = (Q,E, T ) be a transition system. The pre-set and post-
set operations, denoted respectively by the operators •( . ) and ( . )•, applied to
regions r ∈ R(A) and events e ∈ E are defined by:

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 6∈ r and q2 ∈ r};
2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 6∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.

Condition/event transition systems have been introduced as the class of tran-
sition systems isomorphic to the sequential case graphs of condition/event net
systems [8], [10].

Definition 4. A Condition/Event Transition System (CETS) is a transition
system such that the following conditions are satisfied:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q,∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q: (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q,∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q: (q1, e, q2) ∈ T .

Basic facts concerning regions of CETS [3] are listed in the following:

Proposition 1. Let A = (Q,E, T ) be a CETS and R(A) its set of regions, then:

1. ∅ ∈ R(A);
2. Q ∈ R(A);
3. r ∈ R(A) ⇒ Q \ r ∈ R(A);
4. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A)⇔ r1 ∪ r2 ∈ R(A)).

We consider R(A) as enriched with the usual concrete structure. Elements,
seen as subsets of A, are ordered by inclusion. Set union and intersection are
here partial operations; R(A) is closed by set complement.

2.2 Quantum logics and states on a logic

We will follow the notation and definitions given in [11], but for the fact that
we will consider only finite structures. In particular, the name used for the basic
order strucure defined in this section will be quantum logic, or simply logic. In
the literature, quantum logics are known as well as orthomodular posets. This
class is larger than that of orthomodular lattices since the operators of greatest
lower bound, denoted ∧, and lowest upper bound, denoted ∨ — induced by the
order relation — are not always defined. The following definition is taken from
[11] (definition 1.1.1).
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Definition 5. A quantum logic (or logic) L = (L,≤, 0, 1, ( . )′) is a partially
ordered finite set (L,≤) endowed with a least and a greatest element, denoted
by 0 and 1, respectively, and a unary operation ( . )′ (called orthocomplement),
such that the following conditions are satisfied:
∀x, y ∈ L
1. x ≤ y ⇒ y′ ≤ x′;
2. (x′)′ = x;
3. x ≤ y′ ⇒ x ∨ y ∈ L;
4. x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

Let x, y ∈ L be such that x ≤ y′, then we say that they are orthogonal, denoted
x ⊥ y.

A sublogic of L is a subset L̂ of L that is itself a logic with respect to
the restrictions of the operation (.)′ and the relation ≤ to L̂. In particular,
x ∈ L̂ ⇒ x′ ∈ L̂ and, ∀x, y ∈ L̂ x ≤ y′ ⇒ x ∨ y ∈ L̂. A sublogic is Boolean if it
is a Boolean algebra.

An element a of a logic is an atom if, for any element b of L such that b ≤ a
either b = a or b = 0. Atoms are the least elements in the logic except for the
bottom element. A logic is said to be atomic if any element, except the bottom,
is greater or equal to some atom. Finite logics are atomic. Atomic logics present
the practical advantage to be determined by the relations among their atoms,
and thus allow for a concise representation.

We say that two elements x and y in L are compatible, denoted x $ y if,
and only if, there exist three mutually orthogonal elements x̂, ŷ and z in L such
that x = x̂ ∨ z and y = ŷ ∨ z. Intuitively, we can see maximal sets of mutually
compatible elements in L as maximal Boolean sublogics of L. The following
definition is taken from [11]( definition 1.3.26).

Definition 6. A logic L is called regular if, for any set {x, y, z} ⊆ L of pairwise
compatible elements, we have that x $ (y ∨ z).

The relation between compatible subsets of a logic L and Boolean sublogics of
L is put in evidence by the following proposition, to be found in [11] (proposition
1.3.29).

Proposition 2. A logic L is regular if and only if every subset of pairwise
compatible elements of L admits an enlargement to a Boolean sublogic of L.

Example 1. The poset shown in figure 1 is a regular quantum logic. The set of its
atoms is v, w, x, y, z. Examples of orthogonal pairs of elements are: x ⊥ y, x ⊥ w,
v ⊥ w. It contains two maximal Boolean sublogics: {0, v, w, x, v′, w′, x′, 1} and
{0, x, y, z, x′, y′, z′, 1}, which intersect in the (non-maximal) Boolean sublogic
{0, x, x′, 1}.

Morphisms of logics are defined in such a way that they preserve order (and
consequently orthogonality) and compatibility. The formal definition is borrowed
from [11] ( definition 1.2.7)
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Fig. 1. A regular quantum logic.

Definition 7. Let L1 and L2 be logics. A mapping f : L1 → L2 is a morphism
of logics if the following conditions are satisfied:

1. f(0) = 0;
2. ∀x ∈ L1 f(x′) = f(x)′;
3. ∀x, y ∈ L1 x ⊥ y ⇒ f(x ∨ y) = f(x) ∨ f(y).

A morphism f : L1 → L2 is an isomorphism if f is bijective, and f−1 is a
morphism. Moreover, f is an embedding if f(L1) is a sublogic of L2 and f :
L1 → f(L1) is an isomorphism.

A crucial notion in the following is the concept of two-valued state which, in
the case of regional logics, will allow to identify subsets of regions correspond-
ing to states of the related condition/event transition systems. The following
definition can be found in [11] (definition 2.1.1).

Definition 8. A two-valued state on a quantum logic L is a mapping s : L →
{0, 1} such that:

1. s(1) = 1;
2. ∀x, y ∈ L x ⊥ y ⇒ s(x ∨ y) = s(x) + s(y)

An immediate consequence of the definition is that a state s preserves order.
In [11] a distinction is made between states, that is mappings defined on L

whose co-domain is the interval [0, 1], and two-valued states as in Def. 8 above.
Since we are using exclusively two-valued states, in what follows we will not
make this distinction and we will call states the two-valued states of Def. 8.

If L is atomic, then every state will assign 1 to exactly one atom per maximal
Boolean sublogic.

Given a logic L, we denote by S(L) the set of all states on L and by Sx the
set {s ∈ S(L) | s(x) = 1}.

Definition 9. Let L be a logic, and X ⊆ L, then the up-closure of X, denoted
↑X, is the set of all elements in L greater or equal to some element in X.
Formally:

↑X := {a ∈ L | ∃x ∈ X : x ≤ a}
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This definition is particularly useful, for it allows to represent states in a concise
way. This representation relies on a result from [4] (proposition 29), slightly
reformulated in the following proposition.

Proposition 3. Any state s of a finite logic L is the characteristic function of
a set ↑X, where X is a maximal set of pairwise incompatible atoms, such that it
intersects each maximal set of mutually orthogonal atoms.

Example 2. Consider the logic shown in figure 1. v 6$ y, v 6$ z, w 6$ y and
w 6$ z, and indeed its states are: ↑{v, y}, ↑{v, z}, ↑{w, y}, ↑{w, z} as well as
↑{x}. Sv = {↑{v, y}, ↑{v, z}}, Sx = {↑{x}}.
Logics which have “enough” states, in such a way that the order relation can be
re-constructed by the evaluation of the states, are called rich.

Definition 10. Let L be a logic and x, y ∈ L. L is rich if:

Sx ⊆ Sy ⇒ x ≤ y.
The converse property: x ≤ y ⇒ Sx ⊆ Sy is a consequence of condition 2.
in Def. 8 above. A characterisation of rich logics, which will be of use in the
contributions of the present work, is provided by the following theorem ([11]
section 2.4.12).

Theorem 1. Let L be a logic. Then L is rich if and only if ∀a, b ∈ L a 6$ b ⇒
Sa ∩ Sb 6= ∅.
Example 3. Consider again the logic shown in figure 1. It is rich, in fact, for
example, v 6$ y and Sv ∩ Sy = {↑{v, y}} since Sv = {↑{v, y}, ↑{v, z}} and
Sy = {↑{v, y}, ↑{w, y}}.
A particular type of logic is known as concrete logic. A logic is called concrete if it
can be represented as a collection of subsets of a given set Ω. In this case, the or-
der relation is the set inclusion between subsets of Ω while the orthocomplement
( . )′ is the set complement in Ω.

Definition 11. The tuple (∆,⊆, ∅, Ω, (.)′), where ∆ is a collection of subsets of
a given set Ω and A ∈ ∆ ⇒ (A)′ = Ω \A, is a concrete logic if and only if the
following conditions are satisfied:

1. ∅ ∈ ∆;
2. A ∈ ∆ ⇒ Ω \A ∈ ∆;
3. ∀A1, A2 ∈ ∆ A1 ∩A2 = ∅ ⇒ A1 ∪A2 ∈ ∆.

Note that in this concrete representation of a logic, orthogonality is equivalent
to being pairwise disjoint, and two elements A1, A2 ∈ ∆ will be compatible if
and only if A1∩A2 ∈ ∆. A more detailed presentation of concrete logics and the
discussion on the satisfaction by concrete logics of properties 1-4 in definition 5
can be found in [11], p. 2.

As shown in section 3 below, the set of regions R(A) of a CETS A is a
concrete logic. This is the reason why we are interested in concrete logics and in
the following theorem (due to Stanley Gudder and reported in [11] as theorem
2.2.1) that relates richness to concreteness:
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Theorem 2. A logic L is isomorphic (as a logic) to a concrete logic if and only
if it is rich.

The proof of this theorem uses a property of duality between L and the set
of its states S(L): each element in x ∈ L can be represented by the set Sx of
the s ∈ S(L) such that s(x) = 1. Conversely, we note that states are in fact
characteristic functions, and can therefore be interpreted as subsets of L. We
will use the same duality in the next sections.

Remark. In the present paper, we have partly changed notation and terminology
with respect to [4]. In particular, here we use ‘rich and regular logic’ to denote
what was called ‘prime and coherent orthomodular poset’; moreover, ‘two-valued
state’ or ‘state’ of a logic was called ‘prime filter’ to stress the connection with
the concept of ultrafilter in Boolean algebras.

3 Regional Logics and Synthesis of Saturated Transition
Systems

In the following, we recall how to associate to any CETS a concrete regular logic,
and how to construct a CETS starting from a rich and regular logic; afterwards,
we discuss the relations between these two transformations.

Let us consider the properties of regions recalled in proposition 1. By using
these properties, it is possible to construct a logic starting from the regions of a
transition system. More precisely, if A = (Q,E, T ) is a finite CETS and R(A) is
its set of regions then R(A) = (R(A),⊆, ∅, Q, (.)′) (where r ∈ R(A) ⇒ (r)′ =
Q \ r) is a rich and regular quantum logic as proved in [4]. Moreover, R(A) is
a concrete logic as in Def. 11. We will say that R(A) is the regional logic of A,
and that a logic L is regional if it is isomorphic to R(A) for some A.

In [4], a synthesis procedure allowing to construct a CETS starting from a
rich and regular logic L was presented and set in categorical terms by showing
the existence of two contravariant functors between the categories of CETS and
rich and regular quantum logics.

In the following, besides illustrating the synthesis procedure, we show by
means of examples that in general in both cases there is no isomorphism between
L and R(A(L)) as well as between A and A(R(A)).

The core of the synthesis procedure is in interpreting the states of S(L) as the
states of a transition system. A state of the transition system can be identified
with the set of all regions containing it, and, by proposition 3, it coincides with
the state of a logic, as in definition 8. In fact, the transition system associated
to a logic L is constructed by taking S(L) as the set of states, and symmetric
differences between states as events. Formally we have the following.

E(L) = {〈s1 \ s2, s2 \ s1〉 | s1, s2 ∈ S(L), s1 6= s2}. (1)

The set of transitions is now naturally defined as the set of all pairs of distinct
states, each labelled by the corresponding ordered symmetric difference. In the
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following, [s1, s2] will denote 〈s1 \ s2, s2 \ s1〉.

T (L) = {(s1, [s1, s2], s2) | s1, s2 ∈ S(L), s1 6= s2} (2)

Of course, the same label can have several occurrences. We can now define the
transition system

A(L) = (S(L), E(L), T (L)). (3)

The transition system A(L) includes a transition for each ordered pair of states;
hence we call it saturated of transitions. A(L) is a CETS, as shown in [4].

At this point, two natural questions arise about the two opposite transfor-
mations and the possibility that they are inverse of each other:

1. Given a rich and regular logic L, build the CETS A(L) and consider
its regional logic R(A(L)). Is R(A(L)) isomorphic to L?.

2. Given a CETS A0, construct the CETS associated to its regional
logic A(R(A0)). Is A(R(A0)) isomorphic to A0?

In the general case, L embeds into R(A(L)). In fact, for each x ∈ L, Sx is a
set of regions of A(L) and the embedding is given by φ(x) = Sx ⊆ S(L).

The fact that φ( . ) is an embedding of logics will be formally proved in the
next section in proposition 4. However, φ( . ) is not always an isomorphism, and
this can be clarified by the following example.

Example 4. Consider the set Ω = {1, 2, . . . , 6} and define ∆ as the collection
of the X ∈ P(Ω) such that |X| is an even number. Then L = (∆,⊆, ∅, Ω, (.)′)
is a regular concrete logic in which, for x, y ∈ ∆, x $ y ⇔ x ∩ y ∈ ∆. All the
states of L are represented by the sets δi = {x ∈ ∆ | i ∈ x} for i = {1, 2, . . . , 6}.
The CETS associated to L, A(L) has then six states and a set of transitions,
computed as in eq. 2 above, whose labels are all distinct. This means that the
regions of the CETS A(L), defined as in eq. 3 above, are isomorphic to the power
set P(Ω) that strictly contains ∆.

Viceversa, by assuming as given a CETS A = (Q,E, T ), the general case
shows that S(R(A)), and then also A(R(A)), can contain states which do not
correspond to any state in Q. This means that, in general, A is not isomorphic
to A(R(A)), as for example in the following.

Example 5. Consider the CETS A = (Q,E, T ) shown in figure 2. Its regions
are the trivial ones, ∅ and Q, plus x = {1, 2, 5}, y = {1, 2, 6}, z = {1, 3, 5},
w = {1, 3, 6} and the respective complements {3, 4, 6} = ({1, 2, 5})′, {3, 4, 5} =
({1, 2, 6})′, {2, 4, 6} = ({1, 3, 5})′ and {2, 4, 5} = ({1, 3, 6})′. The corresponding
concrete logic is represented in figure 3 and its states are formed by choosing
exactly one element from each complementary pair of disjoint non-trivial regions.
Hence, there are sixteen states. By applying the synthesis procedure above to the
logic R(A) = (R(A),⊆, ∅, Q, (.)′), we find that six out of the sixteen states in
S(R(A)) correspond to the original states of A.
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Fig. 2. A CETS with fewer states than its regional logic.

Concerning the relation between regions and events, we note that pre- and
post-regions of an event e ∈ E can be retrieved in R(A) as set differences be-
tween states of the logic. Remember that Rq1 is the set of regions containing q1
and Rq2 is the set of regions containing q2. If (q1, e, q2) is a transition in A, then
Rq1 \Rq2 gives the set of regions from which e exits, namely the set of pre-regions
of e; the difference in the other direction gives the set of post-regions. By def-
inition of region, these differences are independent of the individual occurrence
of e in A: let (q1, e, q2), (q3, e, q4) ∈ T . Then Rq1 \ Rq2 = Rq3 \ Rq4 = •e and
Rq2 \ Rq1 = Rq4 \ Rq3 = e•. Hence, these set differences allow us to identify
different occurrences as corresponding to the same event, in other words, that
two transitions carry the same label.

Example 6. For the CETS A in figure 2, the case can be exemplified by consid-
ering the two events labelled a, leading from state 1 to state 3 and from state 2
to state 4, respectively. In this case, R1 is the set composed by {1, 2, 5}, {1, 2, 6},
{1, 3, 5}, {1, 3, 6} and R3 is composed by {3, 4, 6}, {3, 4, 5}, {1, 3, 5}, {1, 3, 6}. By
computing the set differences as above, we find that: R1 \R3 = R2 \R4, the set
of regions from which a exits. The symmetric case leads to R3 \ R1 = R4 \ R2.

x x′ y y′

1

0

z z′ w w′

Fig. 3. A quantum logic composed by four complementary pairs; the regional logic of
the CETS in figure 2.

With reference to the logic R(A) of the CETS A in figure 2 as represented
in figure 3, we can compute, in terms of symmetric differences, the transitions
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between any couple of the sixteen states of the logicR(A) as in equation 2 above.
We find, among many others, the transitions corresponding to the identical labels
of A. For example, by considering the states in Sx and in Sy, we have that
Sx \ Sy = Sy′ \ Sx′ .

4 Towards the characterization of Stable Regional Logics

In the previous section, we have considered two cases: the first one deals with
the construction of a logic R(A) starting from a CETS A and the second one
deals with the construction, or synthesis, of a CETS A(L) starting from a regular
and rich logic L. In both cases, by applying again the process and computing
A(R(A)) and R(A(L)) we obtain two embeddings. The original CETS A embeds
in terms of both states and transitions into the CETS resulting from the synthesis
procedure applied toR(A), and the original logic L embeds into the concrete logic
formed by taking Ω as the states of A(L) and ∆ as the set of regions of A(L),
as asserted by theorem 2. We say that the logic L is stable if this embedding is
an isomorphism of logics.

Definition 12. A quantum logic L is stable if there is an isomorphism of logics
from L onto R(A(L)).

Our aim is to characterize the class of stable regional logics. In what follows,
we present some new results towards such a goal. First we discuss two necessary
conditions for a logic to be regional, and then we prove that one implies the
other. Afterwards, in subsection 4.2, we prove that there is an embedding of
logics from L to R(A(L)), and that, under the same condition, this embedding
is strong in the sense that it preserve also incompatibility.

4.1 Regional Logics are ETI and TIP

In [6] and [5] it is shown that regional logics satisfy the properties called tip and
eti, respectively. In the following, after recalling the definitions, we show that
any eti logic is also a tip logic.

The property tip results from the translation in the abstract setting of quan-
tum logic of a property of regions of transition systems, which we call triple
intersection property and which is expressed by the following lemma, the proof
of which can be found in [6].

Lemma 1. Let A be a CETS, and let a, b, c ∈ R(A) be such that: a∩b = b∩c =
c ∩ a, then z = a ∩ b ∩ c ∈ R(A).

The triple intersection property (tip) for a logic L is then obtained by considering
for any element in L the set of two-valued states selecting that element and from
the fact that this set identifies a region of the CETS A(L) synthesised from L.

Definition 13. A logic L is tip if

∀a, b, c ∈ L : Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa ⇒ ∃z ∈ L : Sz = Sa ∩ Sb ∩ Sc
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As well as tip, also eti is inspired by a property of regions. If (q1, e, q2), (q3, e, q4),
with q1 6= q3 and q2 6= q4, are two distinct transitions in a CETS A = (Q,E, T ),
then R(A) must contain two incompatible regions, one containing q1 and q2 but
not q3, the other containing q1 and q3 but not q2. Hence, events with multiple
occurrences and pairs of incompatible regions are related. In this sense, we say
that the events of an abstract logic L testify incompatibility ; L is said to be
eti if, for any pair of incompatible regions, the set E(L) contains an element
witnessing this incompatibility.

Definition 14. A logic L is eti if ∀a, b ∈ L : a 6$ b ⇒

∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ : sa \ s1 = s0 \ sb

Example 7. An example of a concrete logic which is neither tip nor eti is the
logic of the subsets of even cardinality of {1, 2, 3, 4, 5, 6}, already seen in example
4. This logic is regular and rich, but not regional as discussed in [4]. In order to
see that L is not tip, let us consider the elements in L : {1, 2}, {1, 3}, {1, 4},
then S{1,2}∩S{1,3} = S{1,3}∩S{1,4} = S{1,4}∩S{1,2} = {δ1}, where δ1 is the two-
valued state of L selecting all the elements containing 1. It is then immediate
to see that there is no z in L such that Sz = {δ1}. L is not eti since the
symmetric differences among the six states of the associated transition systems
are all different, and then it is not possible for a pair of incompatible elements
of L to find pairs of equal symmetric differences.

Any regional logic is tip, as shown in [6], and eti, as shown in [5] Although we
do not know yet if the two properties, eti and tip, coincide, we can prove that
eti implies than tip.

Theorem 3. Let L be a eti logic. Then L is tip.

Proof. By contradiction, let L be eti and not tip. Not tip means: ∃a, b, c ∈ L :
Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa 6= ∅ and ∀z ∈ L : Sz 6= Sa ∩ Sb ∩ Sc. We have two
cases.

First case: a $ b. Then since Sa ∩ Sb 6= ∅, a 6⊥ b and then there exist three
mutually orthogonal elements â, b̂ and x in L such that a = â∨ x and b = b̂∨ x.
This implies Sa to be the disjoint union of Sâ and Sx, and Sb to be the disjoint
union of Sb̂ and Sx, then we get the contradiction: ∃x : Sx = Sa ∩ Sb = Sc ∩ Sa.

Second case: a 6$ b. Then, since L is eti, there are four states: s1 ∈ Sa ∩ Sb,
sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ such that: sa \ s1 = s0 \ sb. Then
s1 ∈ Sa∩Sb implies s1 ∈ Sc. Since Sc is a region in R(A(L)), then either sa ∈ Sc
and sb /∈ Sc, or sb ∈ Sc and sa /∈ Sc. In any case this contradicts the hypothesis
Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa. ut

4.2 Strong embedding of L into R(A(L))

At this point, we stress the fact that given a regular, and rich logic L, and
its synthesised CETS A(L), the injection defined by φ(x) = Sx is a morphism
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of logics. Furthermore, we show that φ : L → R(A(L)) is an embedding of
logics. To check that φ is a morphism, we verify the three properties in Def. 7.
First note that S0 = ∅ is the bottom element in R(A(L)). Second, since any
x ∈ L is orthogonal to its complement x′, from point 2. in Def 8, it stands that
Sx ∩ Sx′ = ∅, and furthermore, ∀x ∈ L : Sx ∪ Sx′ = S(L), so Sx′ = S(L) \ Sx.
The third point is a direct consequence of proposition 1.

On the other hand, put Sx = Sy, then L being rich, it holds from Def. 10
that x ≤ y and y ≤ x, so φ is injective. We see in the following proposition, that
φ is even an embedding.

Proposition 4. Let L be a rich and regular logic, and φ : L → R(A(L)) be
defined by φ(x) = Sx for all x ∈ L. Then ψ ≡ φ−1|φ(L) is a logic morphism.

Proof. Clearly, ∀x ∈ L : ψ(Sx) = x. Now, since L is rich, the only element
whose associated set of states is the bottom element, hence ψ(∅) = 0. Also,
ψ(S(L) \ Sx) = ψ(Sx′) = x′, so it preserves orthocomplements. Finally, consider
two disjoint Sx,Sy. Then Sx ⊆ S(L) \Sy = Sy′ , and since L is rich, x ⊥ y. From
point 2. in Def. 8 it stands that {s ∈ S(L) | s(x ∨ y) = 1} = {s ∈ S(L) | s(x) =
1} ∪ {s ∈ S(L) | s(y) = 1} = Sx ∪ Sy. Hence ψ(Sx ∪ Sy) = x ∨ y. ut

Now, φ being an embedding means that L and R(A(L)) would be isomorphic
if φ was surjective. We have also seen in the previous section that L being
eti is a necessary condition for that. We shall now see that if L is eti, the
embedding verifies a stronger property, required (but not sufficient) for φ to be
an isomorphism.

We remind the reader that logic morphisms preserve order, orthogonality and
compatibility. Since φ is an embedding it shall also reflect these relations. How-
ever, in general this is only true when considering them restricted to the image
φ(L). Indeed, if φ is an embedding then L is isomorphic to φ(L), but the lack
of surjectivity might, in the general case, allow the images of two incompatible
elements to be compatible. We shall explain this notion through an example.

Example 8. Consider the logic L = {0, u, u′, v, v′, 1}, and the Boolean logic
B whose atoms are {a1, a2, a3, a4}. Then the mapping given by φ(u) = a1 ∨
a2, φ(u′) = a3 ∨ a4, φ(v) = a1 ∨ a3, φ(v′) = a2 ∨ a4 is indeed an em-
bedding. Since (a1 ∨ a2)′ = a3 ∨ a4 and (a1 ∨ a3)′ = a2 ∨ a4, the sublogic
L1 = {0, a1 ∨ a2, a3 ∨ a4, a1 ∨ a3, a2 ∨ a4, 1} of B is isomorphic to L. However,
when considered in the whole of B, we see that a1 is both a1 ≤ a1 ∨ a2 and
a1 ≤ a1 ∨ a3, with {a1, a2, a3} mutually orthogonal in B. Thus φ(u) $ φ(v),
whereas u 6$ v. This does not prevent φ from being an embedding because, in
fact a1, a2, a3 /∈ L1.

This example should justify the following definition (see [11]).

Definition 15. Let φ : L1 → L2 be an embedding between logics. Then φ is said
to be a strong embedding if

∀a, b ∈ L1 : a $ b⇔ φ(a) $ φ(b)
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For instance, a logic with incompatible elements cannot embed strongly into a
Boolean logic.

We shall now prove that a logic L being eti is a sufficient condition for
φ : L→ R(A(L)) to be a strong embedding.

Theorem 4. Let L be a rich and regular logic. If L is eti, then the embedding
φ : L→ R(A(L)) defined as φ(x) = Sx is strong.

Proof. We have already shown that φ preserves compatibility, it will therefore
be sufficient to prove that it also preserves incompatibility. So let a, b ∈ L verify
a 6$ b. Since L is eti, ∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ :
sa \ s1 = s0 \ sb. Then e = [s1, sa] ∈ E(L) will be a label in the saturated
transition system A(L), and the transitions (s1, e, sa), (sb, e, s0) ∈ T (L) will
prevent Sa ∩ Sb from being a region. Indeed, (s1, e, sa) crosses the border of
Sa ∩ Sb, whereas (sb, e, s0) does not. Since R(A(L)) is a concrete logic, we have
that Sa = φ(a) 6$ φ(b) = Sb. ut

This result implies, in particular, that if new regions are produced by the syn-
thesis procedure, these cannot be contained in the image by φ of an atom.
Orthocomplementation implies therefore that they cannot contain the images
of coatoms (maximal elements except for the top). Thus, the possible lack of
surjectivity of φ is narrowed down.

5 Classes of stable Regional Logics

In this section we look at a few subclasses of concrete logics, and show that they
are stable.

To start with the simplest example, let L be a finite Boolean logic with k
atoms. Then L is a regular rich logic, isomorphic to the power set of {1, · · · , k}, in
which singletons correspond to atoms. L has exactly k states, each corresponding
to ↑{x}, where x is an atom of L.

This implies that all the ordered symmetric differences between states differ
in at least one atom, so that each transition in A(L) carries a unique label, and
all subsets of states are regions. Hence, L and R(A(L)) are isomorphic, and L
is stable.

In the next cases, we will use the notion of restriction of a transition system
to a subset of events. We will say that A1 = (S,E1, T1) is a restriction of A =
(S,E, T ) if they have the same set of states, E1 ⊆ E, and T1 is obtained by
removing from T all the transitions labelled by events in E \ E1. From the
definition of regions, it follows immediately that R(A) ⊆ R(A1).

The next case we consider is that of a logic obtained as the so-called {0, 1}-
pasting of two (or more) logics. This construction is strictly related to a con-
struction on transition systems, so we briefly deviate from the main route, in
order to clarify the correspondence.

Given two transition systems, A1 and A2, with disjoint sets of events, we can
build a new one by putting them side-by-side and letting them work in parallel.
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Definition 16. Let Ai = (Qi, Ei, Ti) be a CETS for i = 1, 2, with E1 ∩E2 = ∅.
Define

A1 ||A2 = (Q1 ×Q2, E1 ∪ E2, T )

where

T ={((q1, q2), e, (q′1, q2)) | (q1, e, q′1) ∈ T1} ∪
{((q1, q2), e, (q1, q

′
2)) | (q2, e, q′2) ∈ T2}

By construction, for each region r of A1, the set r × Q2 is a region of A1 ||A2,
and, for each region r of A2, the same holds for the set Q1×r. For any region r of
A1 ||A2, the projection of its states on the first component must be a region of A1

(and symmetrically for the projection on the second component), because in any
transition only one of the two components of a state will change; hence, the full
set of non-trivial regions of A1 ||A2 is given by {r×Q2 | r ∈ R(A1)} ∪ {Q1× r |
r ∈ R(A2)}. We now introduce the corresponding operation on logics, found as
{0-1}-pasting in the literature. We use the same symbol as for the operation on
transition systems. It will always be clear by the context which is being applied.

Definition 17. Let L1 and L2 be two logics with 0i, 1i for i = 1, 2 the respective
least and greatest elements. Define on L1 ∪ L2 the equivalence relation

∼:= {(a, a) | a ∈ L1 ∪ L2} ∪ {(01, 02), (11, 12)}.

Then L1 ||L2 = (L1∪L2)/∼ is the {0-1}-pasting of L1 and L2. It is their disjoint
union but for identification of 01 with 02, and 11 with 12.

The {0-1}-pasting of L1 and L2, L1 ||L2, is again a logic.
Without loss of generality, in what follows we will simplify the notation con-

cerning the {0-1}-pasting of L1 and L2 by indicating by the same element 0 and,
respectively, 1 the bottom and top elements in both L1 and L2. As a useful con-
sequence, the set of states S(L1 ||L2) of L1 ||L2, seen as membership functions,
will simply be composed by the union s1 ∪ s2 for any pair of states s1 ∈ S(L1)
and s2 ∈ S(L2).

The next lemma shows that the parallel product of transition systems and
the {0, 1}-pasting of logics are strictly related. The lemma follows from the
characterization of regions of A1 ||A2 discussed above.

Lemma 2. Let Ai = (Qi, Ei, Ti) be a CETS for i = 1, 2, with E1 ∩ E2 = ∅.
Then R(A1 ||A2) and R(A1) ||R(A2) are isomorphic logics.

Proposition 5. Let L1 and L2 be stable regional logics. Then L = L1 ||L2 is a
stable regional logic.

Proof. Consider A(L) = (S(L), E(L), T (L)), the synthesis as defined in section
3. Every state in L is obtained by taking the union of a state of L1 and a state
L2, and every such union is a state in L:

S(L) = {s1 ∪ s2 | s1 ∈ S(L1), s2 ∈ S(L2)}.
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All these unions are distinct, so we can represent S(L) as S(L1)× S(L2).
We will now define a transition system on S(L), by taking a subset of the

events and transitions of the saturated transition system. Define

EM ={[(s1, s2), (s′1, s2)] | s1, s′1 ∈ S(L1), s2 ∈ S(L2)} ∪
{[(s1, s2), (s1, s

′
2)] | s1 ∈ S(L1), s2, s

′
2 ∈ S(L2)}

We must now take all the transitions corresponding to labels in E.

TM ={((s1, s2), [(s1, s2), (s′1, s2)], (s′1, s2)} ∪
{((s1, s2), [(s1, s2), (s1, s

′
2)], (s1, s

′
2)}.

The transition system AM (L) = (S(L), EM , TM ) is a restriction of A(L), such
that EM ⊆ E, hence, its set of regions is a superset of R(A(L)). On the other
hand, each region of AM (L) is either of the form S(L1) × r, for r ∈ L2, or of
the form r×S(L2), for r ∈ L1. Hence, after theorem 2, there is an isomorphism
between L and R(AM (L)), and since R(A(L)) ⊆ R(AM (L)) ' R(A(L1)) ∪
R(A(L2) ⊆ R(A(L)), there is a bijection between L and R(A(L)), and L is
stable. ut

The construction and the argument above can be easily generalised to the case
of the {0, 1}-pasting of K logics.

Let us now suppose that L is a rich, regular quantum logic with exactly
two maximal Boolean sublogics, B1 and B2, such that B1 ∩ B2 = B, with
B = {0, x, x′, 1}, and x is an atom of L (hence x′ is a co-atom). Note that B
is a Boolean logic (it corresponds to what is called the centre of L in [11]). An
example of such a logic has been given in figure 1 and discussed in examples 1,
2, and 3.

Proposition 6. Let L be a logic such that L = B1 ∪ B2, B1, B2 are Boolean
sublogics, and B = B1 ∩B2 = {0, x, x′, 1}. Then L is stable.

Proof. There are two kinds of states of L. States of the first kind are built by
choosing one atom a of L in B1 \ B2, one atom b of L in B2 \ B1, and the up-
closure of {a, b} in L. The only state of the second kind is the up-closure of {x}.
We will now define a generalised transition system, so that it is a restriction of
A(L), by selecting a subset of events, and the corresponding transitions.

Let us denote each state in A(L) of the first kind by the ordered pair (a, b),
with a and b atoms of L. Let x, y, w, and z be variables ranging on the atoms of
L. Then we select the events associated to transitions from, say, (x, y) to (w, y),
and those associated to transitions from (x, y) to (x, z).

Let EM(L) be this set of events, and define TM(L) as the set of all transitions
in A(L) with labels in EM(L). Finally, define AM (L) = (S(L), EM(L), TM(L)).
Clearly, AM (L) is a generalised transition system, which is a restriction of A(L).

AM (L) is not connected because the state ↑{x}, with x the atom of L common
to B1 and B2, is isolated.
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Each transition in A(L) starting from, or leading to, ↑{x} carries a unique
label, which has no other occurrence. Hence, the singleton formed by this state
is a region in A(L), as it is in AM (L).

The rest of AM (L) can be seen as the parallel product of A(B1), without the
states corresponding to atoms shared with B2, and the analogous substructure of
A(B2). We can then apply the same argument as in the case of the {0, 1}-pasting
given in proposition 5 above.

The construction can be generalised to the case of a family of K Boolean
logics, such that their pairwise intersections coincide, and consist in a Boolean
logic B = {0, x, x′, 1}, and x is an atom of L. A state of A(L) is either the
up-closure of {x} or the up-closure of a set built by choosing exactly one atom
from each Bi.

6 Conclusions

With the results presented in this paper we have done a further step towards
the characterization of the rich and regular quantum logics, which result to be
isomorphic to the orthomodular posets of the regions of the CETSs synthesised
starting from the logics themself.

We are particularly interested in such a characterization because it is the basis
for founding a logic of distributed systems. While the regions of a single sequen-
tial component constitute a Boolean logic, the presence of concurrency leads to
a family of partially overlapping Boolean sublogics, each one corresponding to a
sequential component.
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lar posets generated by transition systems. Electr. Notes Theor. Comput. Sci.,
270(1):147–154, 2011.

7. Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures. part I:
basic notions and the representation problem. Acta Inf., 27(4):315–342, 1990.

8. Andrzej Ehrenfeucht and Grzegorz Rozenberg. Partial (set) 2-structures. part II:
state spaces of concurrent systems. Acta Inf., 27(4):343–368, 1990.

9. Mogens Nielsen, Grzegorz Rozenberg, and P. S. Thiagarajan. Elementary transi-
tion systems. Theor. Comput. Sci., 96(1):3–33, 1992.

10. C. A. Petri. Concepts of net theory. In MFCS, pages 137–146. Mathematical
Institute of the Slovak Academy of Sciences, 1973.
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