
VarMeR – A Variability Mechanisms Recommender for

Software Artifacts

Iris Reinhartz-Berger and Anna Zamansky

Department of Information Systems, University of Haifa, Israel

iris@is.haifa.ac.il, annazam@is.haifa.ac.il

Abstract. Software is typically not developed from scratch and reuse of existing

artifacts is a common practice. Consequently, variants of artifacts exist, challeng-

ing maintenance and future development. In this paper, we present a tool for

identifying variants in object-oriented code artifacts (in Java) and guiding their

systematic reuse. The tool, called VarMeR – a Variability Mechanisms Recom-

mender, utilizes known variability mechanisms, which are techniques applied to

adapt generic (reusable) artifacts to the context of particular products, for both

identification of variants and recommendation on systematic reuse. Building on

ontological foundations for representing variability of software behaviors,

VarMeR visually presents the commonality and variability of the classes in dif-

ferent products and recommendations on suitable polymorphism variability

mechanisms to increase systematic reuse.

Keywords: Software Product Line Engineering, Variability Analysis, Variabil-

ity Mechanisms, Polymorphism, Ontology

1 Introduction

In practice, software reuse takes in many cases an ad-hoc form. Often while artifacts

are not developed with reuse in mind, it is later achieved by duplicating artifacts and

adapting them to the particular needs (a clone-and-own approach). Such an approach is

easy to follow and intuitive, but has deficiencies in maintenance and future develop-

ment. Thus, various methods have been suggested to detect variants, mainly in code,

e.g., [1], [5]. Targeting at comparing and evaluating clone detection tools, four types of

clones are mentioned in [2]: Type 1 – an exact copy without modifications (except for

white space and comments); Type 2 – a syntactically identical copy (only variable, type,

or function identifiers were changed); Type 3 – a copy with further modifications (state-

ments were changed, added, or removed); Type 4 – a syntactically different copy which

performs the same computation. Taking clone detection one step forward, a method,

named ECCO (Extraction and Composition for Clone-and-Own), is introduced in [3]

to enhance the clone-and-own approach with reuse capabilities. Given a selection of

the desired features by the software engineer, ECCO finds the appropriate software

artifacts to reuse and also provides hints whether they need adaptation. The adaptation

itself, however, is left to the software engineer.

mailto:iris@is.haifa.ac.il
Jolita
Typewritten Text
X. Franch, J. Ralyté, R. Matulevičius, C. Salinesi, and R. Wieringa (Eds.):
CAiSE 2017 Forum and Doctoral Consortium Papers, pp. 57-64, 2017.
Copyright 2017 for this paper by its authors. Copying permitted for private and academic purposes.

Jolita
Typewritten Text

In order to provide guidance to the adaptation process and to extract reusable arti-

facts which make future development and maintenance easier, we suggested in [11],

[12], [13] a framework for identifying variants of software artifacts and associating

them with variability mechanisms – techniques applied to adapt reusable artifacts to the

context of particular products in Software Product Line Engineering (SPLE) [8]. The

framework is based on ontological foundations, where software artifacts are viewed as

things exhibiting behavior. The framework allows us to identify similar behaviors (ra-

ther than cloned realizations) and associate different variability mechanisms based on

the characteristics of related similarity mappings. To support this approach, we have

developed a tool called VarMeR – a Variability Mechanisms Recommender – which

gets object-oriented code artifacts (in Java) that belong to two products and provides

graphs that capture the commonality and variability of the classes of those products.

The tool further recommends how to increase reuse by utilizing suitable variability

mechanisms on similar classes. Currently VarMeR supports recommendations on three

mechanisms related to polymorphism.

The rest of this paper is structured as follows. Section 2 provides the background of

the approach, while Section 3 presents the capabilities of the VarMeR tool. Finally,

Section 4 summarizes and refers to future development plans.

2 The Approach

The approach at the heart of VarMeR analyzes the commonality and variability of prod-

ucts behaviors and provides reuse recommendations in the form of associating poly-

morphism mechanisms to classes that behave similarly (even if their realizations are

different). Accordingly, the approach is composed of three steps, which are shown in

Figure 1 and elaborated next: Extract Behaviors, Compare Behaviors, and Analyze Var-

iability.

P1

P2

Extract
Behaviors

Products
representations

Compare
Behaviors

Variability
mechanisms

Similar elements

Analyze
Variability

Reuse
Recommendations

Ontological
foundation

Similarity
measures

Figure 1. A high level overview of the approach

Extracting Behaviors. Referring to a software behavior as a triplet of initial state,

external event, and final state [11], this step extracts those behavioral components from

the operations of the different classes. Each class operation specifies some behavior of

the software product. We assume that the operation name captures the essence of the

behavior and thus can describe the external event, e.g., Borrow and Return of a Book

Copy class in a library management system.

58

For extracting initial and final states, we distinguish between two levels: shallow –

which refers to the signature of the operation, and deep – which takes into consideration

the operation’s behavior in terms of attributes used and modified throughout the oper-

ation1. The initial state of the behavior is composed of all the parameters passed to the

operation (part of shallow) and all the class attributes used (read) by the operation (part

of deep). The final state consists of the returned type (part of shallow) and all the class

attributes modified (set) by the operation (part of deep). For the operation Borrow of

the Book Copy class, we can consider the attributes AvailabilityStatus and Borrow-

ingPeriod for the initial state, as they are needed for the operation to be executed. The

attribute AvailabilityStatus is further modified as a result of the operation execution

and hence is considered part of the operation’s final state.

Compare Behaviors. After extracting the behaviors and their shallow and deep lev-

els, a similarity mapping between their constituents is applied. This mapping can be

based on existing general-purpose or domain-specific similarity metrics or some com-

bination of such metrics. The metrics can take into account semantic considerations

using semantic nets or statistical techniques to measure the distances among words and

terms [10]. Alternatively, they can use type or schematic similarities, potentially ignor-

ing the semantic roles or essence of the compared elements [6]. The similarity mapping

associates to each operation’s constituent (shallow or deep) all of its similar counter-

parts in the other operation (i.e., elements whose similarity with the given constituent

exceeds some predefined threshold).

Analyze Variability. Suppose that the constituents of two operations o1 and o2 in

classes C1 and C2 respectively are mapped using a similarity mapping sim, namely, the

similarity of their constituents exceeded some predefined threshold. We can distinguish

between the following situations with respect to sim:
1. USE – each constituent of o1 has exactly one counterpart in o2 and vice versa.

2. REF (abbreviation for refinement) – at least one constituent in o1 has more than one

counterpart in o2.

3. EXT (abbreviation for extension) – at least one constituent in o1 has no counterpart in

o2.

Note that REF and EXT are not mutually exclusive; we refer to a combination of

both as REF-EXT (abbreviation for refined extension).

Aggregating the above notions from the level of operations to the level of classes,

we aim at recommending on appropriate variability mechanisms. Our current focus is

on the common polymorphism mechanisms. Polymorphism is the provision of a sin-

gle interface to entities of different types. Therefore, the cases of polymorphism are

characterized by similar signatures of operations (namely, the USE category in the shal-

low level of the operations). We further focus on three types of polymorphism which

are widely used in industry [14]: subtype (inclusion) polymorphism (e.g., function

pointers, inheritance), parametric polymorphism (e.g., C++ templates), and overload-

ing. Table 1 presents recommendations for those polymorphism mechanisms based on

the reuse mapping characteristics.

1 We consider only attributes and ignore local variables, as the latter can be defined for imple-

mentation and realization purposes and may hinder the essence of the operation’s behavior.

59

https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Data_type

Table 1. Characteristics of Polymorphism Variability Mechanisms

Shallow Deep Description Variability

mechanism

Recommendation

USE USE Both signatures

and behaviors are

similar

Parametric

polymorphism

Add complete behavior or

behavior template as a core

asset and utilize the para-

metric polymorphism

USE REF Signatures are sim-

ilar and behavior is

refined

Subtype

polymorphism

Add the behavior as a core

asset and utilize the subtype

polymorphism

USE EXT Signatures are sim-

ilar and behavior is

extended

Subtype

polymorphism

Add the behavior as a core

asset and utilize the para-

metric polymorphism; use

(procedure) calls to the less

extended code

USE REF-

EXT

Signatures are sim-

ilar and behavior is

both refined and

extended

Subtype

polymorphism

As with Refinement and

Extension

USE Not

mapped

Signatures are sim-

ilar and behavior is

different

Overloading Add behavior interface as a

core asset and utilize over-

loading

3 The VarMeR Tool

We implemented the approach in Java. The main inputs of the tool – VarMeR – are jar

files implementing the software products (or applications) to be compared. Figure 2

presents the user interface of VarMeR: besides the names and paths to the compared jar

files, the tool supports selection of similarity-related information, including thresholds,

weights, and measures. Similarity measures define the way similarity is calculated.

VarMeR currently supports the text semantic similarity metric of Mihalcea, Corley, and

Strapparava (MCS) [10] that combines corpus-based and knowledge-based measures,

the Latent Semantic Analysis (LSA) metric [9], and UMBC – top N similar words and

phrase similarity metric [4]. The element and parameter name weights define the ratio

between name and type similarities of elements (operations or attributes) and parame-

ters, respectively. The weights are taken into consideration when comparing behaviors.

As the names of parameters are more often meaningless (with respect to attribute/oper-

ation names), the tool supports separate weights. Finally, the similarity threshold de-

fines the minimal value above which elements are considered similar.

The jar files of the compared products are reverse engineered into class diagrams (in

XMI format) and Program Dependence Graphs (PDG)2 [7] (in JSON format). The shal-

low and deep levels of the behaviors are extracted from those representations. Then the

behaviors are compared utilizing the similarity-related information provided as input.

2 PDG explicitly represents the data and control dependencies of a program.

60

Finally, variability is analyzed using the features of the three types of polymorphism

(see Table 1).

Figure 2. A screenshot of VarMeR inputs

The outcome of VarMeR is presented visually in the form of graphs. Each graph,

comparing two products, shows the classes of the two products in different colors (one

for the first product and one for the second product). The size of the nodes is propor-

tional to the number of operations in the corresponding classes (the larger the node is,

the more operations the class have). When hovering a node with the mouse, a tooltip

showing the behavior appears, presenting the list of all operations of the current class.

This way the user (e.g., a programmer or a code reviewer) can get a general idea on the

role of each class, not just by its name, but also by the behavior it is expected to support.

The edges of the graphs (links between classes) represent recommendation on vari-

ability mechanisms, where:

 the label on the edge (link) indicates which variability mechanisms were identified:

parametric, subtyping, and/or overloading.

 the width of the edge (link), as well as its length, represents the degree of evidence

(i.e., the number of operations related with a certain type of polymorphism; the

thicker/longer the link is, the more evidence to use the recommended variability

mechanism exist).

An example of VarMeR’s output is depicted in Figure 3. The numbers in parentheses

in the tooltip indicate the numbers of operations with certain names (but different sig-

natures). The top of the screen includes controls that allow defining the thresholds

above which a given mechanism (parametric, subtyping, or overloading) will be pre-

sented. In other words, these weights separately control the minimal numbers of oper-

ation pairs that need to satisfy certain constraints (USE, REF, EXT, REF-EXT) so that

the given mechanism will be recommended. In the top right part of the screen, the user

can hide classes unrelated to classes in the other product (such as testFlight in Figure

61

3). The bottom of the screen supports selecting colors for the classes of each of the two

products and the links between them. Note that currently, VarMeR compares classes

from different products (and not classes from the same product that may further in-

crease reuse). Hence, links connect nodes of alternating colors, potentially connecting

a single node to several nodes representing classes in the other product (see scribeFilter

in Figure 3 as an example).

Figure 3. An example of VarMeR output

The tool further enables zooming into relations (links) among classes to have better

understanding how the recommendations are generated and how to apply the recom-

mended variability mechanisms and systemize reuse of the corresponding classes. This

option presents the related operations of the classes and the categories to which the

links among them belong: USE, REF, EXT, REF-EXT. Figure 4 zooms into the sub-

typing link of Figure 3 presenting EXT and REF-EXT relations among operations of

the corresponding classes. This mapping can be used by a programmer in order to create

a class from which the two compared classes (ScribeGui and ScribeBinder) can inherit

through sub-typing polymorphism.

62

Figure 4. Zooming into a relation in VarMeR

4 Summary and Future Work

We presented a tool, called VarMeR – A Variability Mechanisms Recommender, which

is based on ontological foundations for representing variability of behaviors of software

products. The inputs of VarMeR are object-oriented code artifacts (jar files) belonging

to different software products. The outputs are graphs which can be used for analyzing

the commonality and variability of the classes in different products and recommending

on suitable polymorphism variability mechanisms to increase systematic reuse.

In the future, we intend to extend the tool support in several ways. First, VarMeR

will be extended to support further variability mechanisms besides polymorphisms. An-

other direction is incorporating VarMeR into existing programming environments, so

that it will be relatively easy to apply the recommendations generated by VarMeR. Fur-

thermore, we intend to empirically explore the usefulness of VarMeR and the quality

of its outcomes.

Acknowledgment. The authors would like to thank Jonathan Liberman, Alex Kogan

and Asaf Mor for their help in the implementation of the VarMeR tool. The second

author was supported by the Israel Science Foundation under grant agreement 817/15.

63

References

[1] Baker, B. S. (2007). Finding Clones with Dup: Analysis of an Experiment. IEEE Transac-

tions on Software Engineering 33 (9), pp. 608-621.

[2] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007). Comparison and

Evaluation of Clone Detection Tools. IEEE Transactions on Software Engineering 33 (9),

pp. 577-591.

[3] Fischer, S., Linsbauer, L., Lopez-Herrejon, R. E., and Egyed, A. (2014). Enhancing Clone-

and-Own with Systematic Reuse for Developing Software Variants. IEEE International

Conference on Software Maintenance and Evolution, pp. 391-400.

[4] Han, L., Kashyap, A., Finin, T., Mayfield, J., & Weese, J. (2013). UMBC EBIQUITY-

CORE: Semantic textual similarity systems. In Proceedings of the Second Joint Conference

on Lexical and Computational Semantics (Vol. 1), pp. 44-52.

[5] Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: A Multilinguistic Token-Based

Code Clone Detection System for Large Scale Source Code. IEEE Transactions on Software

Engineering 28, pp. 654-670.

[6] Kashyap, V. and Sheth, A., (1996). Semantic and schematic similarities between database

objects: a context-based approach. The VLDB Journal—The International Journal on Very

Large Data Bases, 5(4), pp. 276-304.

[7] Krinke, J. (2001). Identifying Similar Code with Program Dependence Graphs. 8th Working

Conference on Reverse Engineering, pp. 301-309.

[8] Lee, J. and Hwang, S. (2013). A Review on Variability Mechanisms for Product Lines.

ICCA’ 2013, ASTL vol. 24, pp. 1-4.

[9] Landauer, T. K., Foltz, P. W. and Laham, D. (1998). Introduction to Latent Semantic Anal-

ysis. Discourse Processes 25, pp. 259-284.

[10] Mihalcea, R., Corley, C., and Strapparava, C. (2006). Corpus-based and knowledge-based

measures of text semantic similarity. American Association for Artificial Intelligence

(AAAI’06), pp. 775-780.

[11] Reinhartz-Berger, I., Zamansky, A., & Wand, Y. (2016). An Ontological Approach for Iden-

tifying Software Variants: Specialization and Template Instantiation. 35th International

Conference on Conceptual Modeling (ER’2016), pp. 98-112.

[12] Reinhartz-Berger, I., Zamansky, A., and Kemelman, M. (2015). Analyzing Variability of

Cloned Artifacts: Formal Framework and Its Application to Requirements. Enterprise, Busi-

ness-Process and Information Systems Modeling, EMMSAD’2015, pp. 311-325.

[13] Reinhartz-Berger, I., Zamansky, A., and Wand, Y. (2015). Taming Software Variability:

Ontological Foundations of Variability Mechanisms. 34th International Conference on Con-

ceptual Modeling (ER'2015), LNCS 9381, pp. 399-406.

[14] Zhang, B., Duszynski, S., and Becker, M. (2016). Variability Mechanisms and Lessons

Learned in Practice. 1st International Workshop on Variability and Complexity in Software

Design (VACE'2016), pp. 14-20.

64

