
Semantic Web Development with WSDM

Peter Plessers, Sven Casteleyn, Olga De Troyer

Vrije Universiteit Brussel, Pleinlaan 2, 1000 Brussels, Belgium
{Peter.Plessers, Sven.Casteleyn, Olga.DeTroyer}@vub.ac.be

Abstract. Currently, one of the important focal points of the evolution of the
World Wide Web is the semantic web: a web in which the semantics of the
available content and functionality is made explicit. Web Design Methods,
originally aimed at offering the designer a well-structured, systematic approach
to web design, now face new opportunities and challenges: on one hand, se-
mantic web technology can be used internally in web design methods to make
the semantics of the different design models explicit, on the other hand, a major
challenge for existing design methods is to (semi-) automatically generate the
semantic annotations, effectively enabling the semantic web. In this paper, we
describe how WSDM, one of the first web design methods, was adapted to (in-
ternally) use semantic web technology. In addition to its existing strengths (i.e.
solid design support for website structure and presentation) as a traditional web
design method, we show how the internal use of semantic web technology can
be exploited to support the generation of semantically annotated websites.

1 Introduction

With over a decade of evolution, the World Wide Web has undergone some dramatic
changes. While websites at first consisted of a handful of linked (static) pages, they
are now complex applications, offering (rapidly changing) information and function-
ality to a highly diversified audience. To keep up with the growing needs and de-
mands of visitors, web technology evolved at an equally dazzling rate. In this setting,
it gets more and more difficult to design a website in an ad hoc way. The resulting
websites lack consistency, both in structure and presentation, and transparency. Visi-
tors fail to build a mental model of the website, causing them to feel ‘lost in hyper-
space’.

Web site design methods were conceived to help the web designer in coping with
the complexity of designing and creating websites. By offering abstractions for the
different design concerns, and a systematic approach to web design, these design
methods succeeded in helping the designer to create more usable websites.

With the conception of the semantic web, and related technologies (e.g. RDF,
OWL, …), new challenges and opportunities for web design methods arose. The aim
of the semantic web is to make the semantics of the available web content explicit,
thereby facilitating machine understanding and processing (of the content). Building
on their strength in providing design support for website (navigation) structure and
presentation, a challenge for web design methods is to support the (semi-) automatic

1

generation of semantic annotations. An opportunity however lies in the use of se-
mantic web technologies internally in the web design method. More particularly, the
use of ontologies, which capture semantics, allows to explicitly express the semantics
of the different design models, as well as the semantics of the represented data.

Some web design methods use ontology languages to internally represent informa-
tion (see related work). As far as the authors are aware of, only limited support exists
for automatic generation of semantic annotations based on web design models. There
exist however manual and semi-automatic (based on natural language parsing) anno-
tation techniques (see related work). In this paper, we discuss how WSDM, one of
the first web site design methods, was adapted to suit the needs of the semantic web
on one hand, and to benefit from semantic web technology on the other hand. We
further extend our previous work on semantic annotations as described in [16]. Major
changes include the use of web ontology language OWL, both to explicitly define the
different WSDM design models and to model data and functionality of the website.
Subsequently, we show how the adoption of semantic web technology helps to (semi-
) automatically generate semantic annotations. As the semantic annotations are sup-
ported on a conceptual level, and the actual annotations are generated based on this
conceptual level, the approach provides some benefits over existing annotation ap-
proaches: static and dynamic websites are supported, changes in site structure or
presentation do not invalidate the annotations and the generated annotations are more
consistent.

The remainder of this paper is structured as follows. Section 2 gives an overview
of the WSDM approach and informally discusses the WSDM Ontology capturing the
different design models. Chapter 3 discusses how WSDM supports semantic annota-
tions at a conceptual level (during design), and points out problems and solutions.
Chapter 4 describes in more detail the actual generation process of both website and
semantic annotations. Chapter 5 gives an overview of related work and finally sec-
tion 6 states conclusions.

2 WSDM Overview and Ontology

WSDM was developed in 1998 by De Troyer and Leune [2] and aims to separate
design concerns by offering a systematic, multi-phase approach to web design. Each
design phase focuses on one specific aspect of the web design cycle: requirements
and task analysis, data and functionality modeling, navigation modeling, presentation
modeling and implementation. More than other web design methods, WSDM is a
methodology, i.e. it not only provides modeling primitives that allow a web developer
to model the web application from different perspectives and at different levels of
abstraction, but it also provides a systematic way for the designer to obtain the differ-
ent design models and the resulting website.

WSDM originally targeted ‘traditional’ websites. With the emergence of the se-
mantic web, WSDM has been adjusted to support the generation of semantic web-
sites: the web content is annotated with semantic information. To facilitate the speci-
fication of semantic information (during design), and the generation of semantic an-
notations (during implementation generation), an OWL ontology is used to formally

2

define the different design models, and to perform data and functionality modeling.
This OWL ontology formally specifying the different WSDM design models is called
the WSDM Ontology1. In the remainder of this section, an overview of WSDM is
given, and the OWL concepts that describe the relevant design models are informally
described.

Figure 1 shows an overview of the different phases of WSDM, and the relevant
design models constructed in each design phase.

 Fig. 1. WSDM Overview Fig. 2. Implementation generation.

Mission Statement
In the first phase of WSDM, the mission statement for the website is formulated. The
intention of this phase is to identify the subject of the website, the purpose and the
target users. The mission statement is formulated in natural language. In the WSDM
Ontology, the ‘mission statement’ is an OWL concept with a textual data property.

Audience Modeling
In the Audience Modeling phase, the targeted users, identified in the mission state-
ment, are classified in so called audience classes. An audience class is a group of
visitors that have the same information and functional requirements. Audience
classes can be subclassed: an audience class that has the same and more requirements
than another audience class is called an audience subclass. Also during audience
modeling, for each audience class, their characteristics and usability requirements are
expressed.

In the WSDM Ontology, OWL concepts for ‘requirement’ and ‘characteristic’ are
described. Requirement is subclassed into ‘Usability-‘, ‘Information-’ and ‘Func-
tional-’ requirements. Finally, the ‘Audience Class’ concept describes the WSDM
audience classes. Each ‘Audience Class’ has as object properties ‘hasRequirement’
and ‘hasCharacteristic’, and can be subclassed. The model representing the audience

1 See http://wise.vub.ac.be/ontologies/WSDMOntology.owl

3

class hierarchy as well as for each audience class their characteristics and their set of
(informal specified) requirements is called the audience model.

Conceptual Design
The conceptual design phase is used to specify the content, functionality and structure
of the website at a conceptual level. The conceptual design makes an abstraction from
any implementation or target platform. The content and functionality are defined
during the Task Modeling phase; the navigational structure is defined during the
Navigational Design.

The purpose of the Task Modeling phase is to analyze in detail the different tasks
each audience class needs to be able to perform, and to formally describe the
data/functionality that is needed for those tasks. The tasks each audience class needs
to be able to perform are based on the requirements formulated for each audience
class (during audience modeling). WSDM uses a slightly modified version of CTT
[15] to decompose each (high level) task into a set of elementary subtasks, and de-
scribe the temporal relations among them. Such decomposition is called a task
model. For each elementary task of a task model, an object chunk is created to for-
mally describe the necessary information and functionality needed to fulfill the re-
quirement of this elementary task [3]. OWL itself is (re-)used as modeling language
for the object chunks. In the WSDM Ontology, the OWL concept ‘Object Chunk’ is
composed of OWL classes, object and data properties. Furthermore, ‘Object Chunks’
can have associated ‘Object Chunk Functions’, which allow to model system func-
tionality and interaction (e.g. instance creation, select functions, upload function, …).
Due to space restrictions, we don’t go into deeper detail on these functions.

The goal of the Navigational Design is to define the conceptual structure of the
website and to model how the members of the different audience classes can navigate
through the website and perform their tasks. For each audience class, a dedicated
navigation structure, called navigation track, is defined. A navigation track can be
considered as a sub site containing all and only the information and functionality
needed by the members of the associated audience class. Such a navigation track is
further composed of nodes (conceptual units of navigation) and links (connecting
nodes).

In the WSDM Ontology, the Navigation Model is represented by the OWL con-
cepts ‘node’ and ‘link’. Nodes have one object property ‘hasChunk’ which identifies
the object chunks which are connected to the node. There are two subtypes of nodes:
‘RootNode’ and ‘ExternalNode’. Links have object properties ‘hasSource’ and ‘has-
Target’, identifying the two nodes that are linked. Furthermore, a link can have a
parameter (‘hasParameter’) identifying flow of information along links, and a condi-
tion (‘hasCondition’) to restrain the appearance of the link. There are four subtypes
of ‘link’, one for each link type supported in WSDM: navigation aid, process logic,
semantic and structural link. For an in depth discussion of these link types, see [4].

Implementation Design
During the implementation design phase, the conceptual design models are completed
with information required for the actual implementation. The implementation design
consists of three sub phases: the Site Structure Design, Presentation Design and Data
Source Mapping.

4

During Site Structure Design, the conceptual structure of the website (defined dur-
ing navigational design) is mapped onto pages, i.e. it is decided which nodes (with
object chunks) and links defined in the navigational model will be grouped onto web
pages. Different site structures can be defined, targeting different devices, contexts or
platforms. The output of this phase is the site structure model.

In the WSDM ontology, ‘pages’ are OWL concepts which have one object prop-
erty ‘hasNode’ to denote the nodes that are contained in that particular page.

The Presentation Design defines the look and feel of the website as well as the
layout of the pages (i.e. positioning of page elements). First, the sub phase Style &
Template Design, aims at designing page templates. Typically, a website may require
different kinds of templates, e.g. a homepage template, a title-page template, leaf page
templates, etc. Furthermore, the style of page elements (e.g. font, color, alignment,
etc.) is also specified. Next, the sub phase Page Design aims at describing how the
information/functionality (modeled by the object chunks and represented by means of
nodes) assigned to a page should be presented. Also link labels are decided, and pres-
entation styles are given to the (different) links. The layout of a page is based on one
of the templates defined during the Style & Template Design. This is done for each
page type. The output of this phase is the presentation model consisting of a set of
templates and for each page defined in the site structure model, a page model.

The main concepts in the WSDM Ontology describing the presentation design are
‘TemplateConcepts’ (concepts related to modeling templates) and ‘PresentationCon-
cepts’ (concepts related to modeling positioning of page objects). Style is currently
not included in the WSDM Ontology; instead Cascading Stylesheets are used. Going
into further detail on the WSDM presentation concepts is outside the scope of this
paper, and left for a forthcoming publication.
Finally, the Data Source Mapping phase is discussed in the next section (see Data
Source Mapping).

3 Semantic Annotations

In this section, we describe how WSDM supports semantic annotations at the concep-
tual level and explain the benefits of our approach. The approach extends our previ-
ous work as described in [16]: next to building a domain ontology during design, we
also show how one or more existing domain ontologies can be re-used to generate
semantic annotations, and the problems (and solutions) involved.

Conceptual Design
As described in the overview of the WSDM method (see Section 2), Object Chunks
are used to model the concepts and relations between these concepts necessary to
fulfill a particular (elementary) requirement of the website. Object Chunks are repre-
sented using OWL. As each Object Chunk models only one specific requirement,
they can be seen as tiny ontologies. All Object Chunks together cover the complete
domain of the website.

The goal of our approach is to automatically generate a website which content is
annotated with one or more domain ontologies. Details about the generation process

5

are given in Section 4. In practice, three different cases may occur when designing a
website. They are described below:
1. No appropriate domain ontology exists or is available. In this case, we incremen-

tally build a new domain ontology as a result of the creation of the Object Chunks.
This domain ontology covers the domain covered by the union of the Object
Chunks, and therefore of the complete website. The Object Chunks can be seen as
views on this new domain ontology.

2. One domain ontology exists that covers the complete domain of the website. The
domain ontology is taken as basis for the conceptual design. The Object Chunks
are defined as views on this domain ontology by selecting the appropriate con-
cepts.

3. Multiple domain ontologies are needed to cover the domain of the website. To be
able to define Object Chunks as views, we first have to align the different domain
ontologies. This is done by defining a reference ontology and mappings between
the domain ontologies and this reference ontology. The Object Chunks are then de-
fined as views on this reference ontology.

Figure 3 shows an overview of the architecture covering all three cases. The dif-
ferent domain ontologies used are aligned by defining mappings to a reference ontol-
ogy (called Domain Ontology Mappings). This reference ontology can also be used to
define additional concepts not present in the used domain ontologies. Note that in the
case of just one domain ontology, the sole purpose of the reference ontology is the
latter one. In the case where there is no domain ontology available, the reference
ontology plays the role of domain ontology that is incrementally constructed. The
second mapping, called Object Chunk Mappings, defines Object Chunks as views on
the reference ontology. This view mechanism is required because the conceptualiza-
tion as specified by a domain ontology may not always exactly suit the requirements
of the website. E.g. a domain ontology may specify that a person may have multiple
email addresses (general case), but the website may require that persons can only
enter exactly one email address (specific case). Both the Domain Ontology Mappings
and the Object Chunk Mappings are defined using MAFRA (MApping FRAmework
for Distributed Ontologies) [12].

Fig. 3. General architecture illustrating the different mappings.

We give a small example illustrating the different mappings. We use the (shorter)
description logic syntax for the object chunks, reference ontology and domain on-
tologies. Also a shorthand notation is used for the mappings themselves instead of the
XML syntax of MAFRA. A domain ontology 1 describing the university domain
contains the following axioms: {Person m ∀name.String, Student m Person *

6

∀email.String} (a person and student have respectively as name and email address a
string as value). A second domain ontology 2 describes social aspects of citizens and
contains the following axioms: {Person m ∀hasName.String * ∀hasSSN.String} (a
person has as name and social security number a string as value). To align the two
domain ontologies, we construct a reference ontology containing the following state-
ments: {Person m ∀name.String * ∀SSN.String, Student m Person * ∀email.String).
The following Domain Ontology Mappings are defined to link the reference ontology
and the domain ontologies (only showing the properties involved):

Reference ontology Domain Ontology 1 Domain Ontology 2
name name hasName
SSN - hasSSN
email email -

Assume that the website requires a further refinement of name into first name and
surname. An Object Chunk would contain the following axiom: {Person m
∀firstName.String * ∀surname.String}. The following Object Chunk Mappings are
defined:

Object Chunk Reference ontology
firstName + surname name

The advantages of defining mappings at the conceptual level compared to ap-
proaches defining mappings on an implementation level are manifold. We mention
the most important ones below:

1. Implementation independent: annotations are done on a conceptual level,
and can effortlessly be re-generated along with different implementations

2. Consistency of annotations: as the annotation process is performed on a con-
ceptual level, the actual annotations (at instance level) are guaranteed to be
consistent.

3. Both static and dynamic websites supported: the implementation generation
process of WSDM (see Section 4) does not distinguish between static and
dynamic websites; annotations are effortlessly generated for both types of
websites

Conflicts
When defining the Object Chunk and the Domain Ontology Mappings we may need
to resolve possible conflicts between respectively the Object Chunks and the refer-
ence ontology, and the domain ontologies and the reference ontology. The different
types of conflicts can be classified into the following categories:
• Structural heterogeneity problems. Different designers may have a different view

on the same domain. As ontologies are only an abstract view of a domain, this
means that a same domain can be structured differently by different designers. This
includes naming conflicts, datatype conflicts, granularity differences, ...

• Semantic heterogeneity problems. Two concepts with the same name can refer to
different real world objects in the domain (homonyms); and two concepts with dif-
ferent names can refer to the same real world object (synonyms).

7

Due to space limitations, we cannot go into deeper detail on solving these conflicts.
Instead, we refer to [5].

Data Source Mapping
When the implementation of the website is generated, the different web pages need to
be filled out with actual data (as specified in the page design). The web designer may
decide to use a data source (e.g. a relational database) to store this data. To be able to
fill out these web pages correctly, a Data Source Mapping needs to be defined be-
tween the reference ontology and the data source. E.g. in the case of a relational data-
base, the Data Source Mapping determines in which tables and columns instances are
stored of which concepts of the reference ontology. Note that, as with Object Chunk
Mappings and Domain Ontology Mappings, no one-to-one relation can be assumed.
Consider as example a table ‘Person(ID, name, SSN, email, code)’ in a relational
database storing name, SSN from persons and email address from students. The fol-
lowing mappings are defined (note the additional condition for email due to lack of
built-in subtyping support in relational databases):

Reference ontology Data Source
name name
SSN SSN
email email WHERE code=’S’

4 Implementation Generation Process

To generate the actual implementation of a semantically annotated website, a trans-
formation pipeline is used. This pipeline takes the object chunks, navigational model,
site structure design, template design and page design as inputs. The transformations
necessary to generate the implementation of the website consists of three steps (with-
out the annotations). Figure 2 gives an overview.
• Implementation Mapping (T1): the implementation platform is chosen (e.g.

XHTML2), and the integrated model derived by the previous transformations is
partially transformed towards the chosen platform. References to data (i.e., refer-
ences to object chunks) are not yet processed.

• Data Source Mapping (T2): the references to statements in the object chunks are
resolved and mapped to their data source. This results into executable queries us-
ing the appropriated querying formalism. This mapping can be performed fully
automatically using the mapping from the reference ontology to the data source.

• Query Execution (T3): finally, the queries are executed and the actual pages can be
generated by inserting the actual data. When the query execution phase is per-
formed offline, a static website is created but when it is performed at runtime, a
dynamic site is the result.

To be able to also generate the semantic annotations, the transformation pipeline
needs to be extended. For each query that is executed, we make the result of the query

2 See http://www.w3.org/TR/xhtml1/.

8

explicit in terms of the associated Object Chunk. Next, an annotation is created be-
tween the data on the web page and the instantiated Object Chunk. Let us clarify this
with an example. Imagine that a query asking for the surname of a person returns
“Plessers” and “Casteleyn”. In the generated HTML code, we surround them with a
span tag containing a unique ID:

Plessers
Casteleyn

Following the references to statements in object chunks that lead to the creation of
the query executed (see T4), we instantiate the associated object chunk c:

<Person rdf:ID=”001”>
 <surname>Plessers</name>
</Person>

<Person rdf:ID=”002”>
 <surname>Casteleyn</name>
</Person>

Finally, we link the generated HTML code and object chunk instantiations together
(semantic annotations) using XPointer expressions. Consider the following example
where ‘page.html’ is the generated HTML page and ‘c’ refers to the name of the
object chunk:

page.html#xpointer(id("7")) <=> c#xpointer(id("001")/surname)

5 Related Work

When reviewing the literature concerning semantic annotations, we can distinguish
three different, basic approaches: manual, (semi-)automatic and web engineering
approaches. The difference between manual and automatic approaches consists of the
fact that the former ones require a (manual) mapping between content and semantics,
while the latter attempt to extract the semantics automatically (e.g. with NLP tech-
niques). Examples of automatic approaches include Melita [1], KMI annotation
framework [11], etc.

Manual annotation approaches offer the user tool support to define annotations for
HTML documents. The first tool was the SHOE Knowledge Annotator [8] which
only supports static web pages. In course of time, other manual annotation tools
arose: SMORE [18] (adding authoring support by using an embedded HTML editor),
Ont-O-Mat [7] (adding support for dynamic web pages by annotating database im-
plementations).

Both manual and automatic approaches suffer some disadvantages that can be
solved by integrating the annotation process into a web engineering method. The
adequacy of automatically generated annotations is generally lower compared to
manual approaches, the disadvantage of manual approaches however is that the anno-
tations are defined on an implementation level (making them more vulnerable for
changes) and require a substantial effort from the designer after the website is already
implemented. Recently, research has therefore been focused on integrating semantic
web technology into web design methods. Examples of semantic web design methods

9

include SHDM [14], Hera [6], OntoWeaver [10], OntoWebber [9], Seal [13], etc.
These methods use ontology languages (e.g. RDFS, OWL) as modeling language for
their internal design models. This has the advantage that existing ontologies can be
reused in the design process and that a verification of the design models is feasible.
Some of these approaches offer the possibility to make the internally constructed data
models externally available (in the form of RDFS or OWL). However, none of these
approaches allow annotating the web content i.e. they rather offer the content (inde-
pendently) in user (e.g. HTML) and machine readable form (e.g. RDF). Explicitly
linking web content with its semantics (semantic annotations) is required to support
for example content rating and filtering3.

As far as the authors are aware of, the only similar approach to the one described
in this paper, is WEESA [17]. However, WEESA is not a design method by itself, but
rather an extension to existing design methods that specify their design models in
XML. It is able to generate semantic annotations by defining a mapping between the
XML schemas and existing ontologies. The disadvantage of WEESA is that they
cannot directly use domain ontologies created/reused during the web design process,
but instead need to define this mapping regardless if a domain ontology was used
during the design process or not. This means that data modeling is done twice: once
in the XML schema, once in the domain ontology used.

6 Conclusion

In this paper, we described how the website design method WSDM has been adapted
to suit the needs of the semantic web. The most important changes are the use of
semantic web technology (i.e. OWL) to formally describe (the semantics of) the dif-
ferent WSDM design methods, and to model the available data and functionality of
the website. We informally described the WSDM Ontology, and subsequently
showed how the use of OWL to model information and functionality during the de-
sign process can be exploited to (semi-) automatically generate semantic annotations
for the resulting website.

Our approach takes into account the different cases where 1) no existing domain
ontology is available, 2) an existing domain ontology is used, and 3) multiple existing
domain ontologies are used. In the latter case, we pointed out possible conflicts, and
indicated how to solve them. In any of those cases, the modeling effort of the web
designer is effectively re-used to generate semantic annotations. Furthermore, the
following advantages over existing annotation methods can be pointed out: imple-
mentation independence, consistency of generated annotations and support for both
static and dynamic websites.

To conclude this paper, we proposed an approach that bridges WSDM, a classical
website design method and the semantic annotation process to generate annotated
websites for the Semantic Web. The annotation process has become an intrinsic part
of web design.

3 See http://www.w3.org/TR/rdf-pics

10

References

1. Ciravegna, F., Dingli, A., Petrelli, D., Wilks, Y.: User-System Cooperation in Document
Annotation based on Information Extraction. In 13th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW 02), Sigüenza Spain (2002)

2. De Troyer, O. and Leune, C. : WSDM: A User-Centered Design Method for Web Sites. In
Computer Networks and ISDN systems Volume 30, Proceedings of the 7th International
World Wide Web Conference, Elsevier (1998) 85-94

3. De Troyer, O., Casteleyn, S.: Modeling Complex Processes for Web Applications using
WSDM. In Proceedings of the Third International Workshop on Web-Oriented Software
Technologies (2003)

4. De Troyer, O., Casteleyn, S.: Exploiting Link Types during the Conceptual Design of Web
Sites. In International Journal of Web Engineering Technology, Vol 1, No. 1, Inderscience,
ISSN 1476-1289 (2003) 17-40

5. De Troyer, O., Plessers, P., Casteleyn, S.: Conceptual View Integration for Audience Driven
Web Design. In CD-ROM Proceedings of the WWW2003 Conference, IW3C2 (also
http://www2003.org/cdrom/html/poster/), Budapest Hungary (2003)

6. Frasincar, F., Houben, G.-J.: Hypermedia presentation adaptation on the semantic web. In
Adaptive Hypermedia and Adaptive Web-Based Systems, Second International Conference,
AH 2002, volume 2347 of Lecture Notes in Computer Science. Springer, ISBN 3-540-
43737-1 (2002) 133-142

7. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM. The Eleventh
International World Wide Web Conference (WWW2002), Honolulu Hawaii USA (2002)

8. Heflin, J., Hendler, J.: Searching the web with SHOE. Artificial Intelligence for Web Search,
Papers from the AAAI Workshop, WS-00-01, AAAI Press (2000) 35-40

9. Jin, Y., Xu, S., Decker, S., Wiederhold, G.: OntoWebber: A Novel Approach for Managing
Data on the Web. In Proceedings of ICDE (2002) 488-489

10. Lei, Y., Motta, E., Domingue, J.: Modelling Data-Intensive Web Sites with OntoWeaver. In
proceedings of the International Workshop on Web Information Systems Modelling (WISM
2004), Riga Latvia (2004)

11. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation,
Indexing, and Retrieval. Elsevier's Journal of Web Semantics, Vol. 2, Issue (1) (2005)

12. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA - A Mapping Framework in the
Semantic Web. In Proceedings of the ECAI Workshop on Knowledge Transformation, Lyon
France (2002)

13. Maedche, A., Staab, S., Studer, R., Sure, Y., Volz, R.: Seal - Tying up Information Integra-
tion and Web Site Management by Ontologies. IEEE Data Engineering Bulletin, 25(1)
(2002) 10-17

14. Moura, S., Schwabe, D.: Interface Development for Hypermedia Applications in the Se-
mantic Web. In Proceedings of LA Web 2004, Ribeirão Preto, Brasil. IEEE CS Press, ISBN
0-7695-2237-8 (2004) 106-113

15. Paterno, F.: Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, ISBN 1-85233-155-0 (1999)

16. Plessers, P., De Troyer, O.: Annotation for the Semamtic Web during Website Develop-
ment, In Proceedings of the ICWE 2004 Conference, Lecture Notes in Computer Science
3140, Eds. Nora Koch, Piero Fraternali, and Martin Wirsing, ISBN 3-540-22511-0, Munich
Germany (2004) 349-353

17. Reif, G., Gall, H., Jazayeri, M.: WEESA - Web Engineering for Semantic Web Applica-
tions. In Proceedings of the 14th International World Wide Web Conference, Chiba Japan
(2005)

11

18. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna, F.: MnM:
Ontology Driven Semi-Automatic and Automatic Support for Semantic Markup. The 13th
International Conference on Knowledge Engineering and Management (2002)

12

