
Dynamic task scheduling in cloud computing

based on Naïve Bayesian classifier

Fatemeh Ebadifard

Department of Computer Engineering
University of Kashan

Kashan, Iran

e-mail: ebadifard.fatemeh@gmail.com

Seyed Morteza Babamir

Department of Computer Engineering
 University of Kashan

Kashan, Iran

e-mail: babamir@kashanu.ac.ir

 Abstract—the issue of task scheduling in a cloud environment
is one of the most important issues that must be considered
by the cloud platform providers in data centers. The use of the
right solution to solve this problem enables cloud platform
providers to have the most use of available resources; and also
increase the customer satisfaction by providing quality
of service parameters. In this paper it has been tried to provide
a dynamic scheduling algorithm using machine learning
techniques and naïve-Bayes classifier in a cloud
environment. The proposed method is one of the dynamic task
scheduling methods and load distribution at any moment is
conducted according to the latest information from previous
and current server status. The distinction of this method
with previous studies is the use of data mining techniques
(classification) in load distribution. Since this classification
method has higher accuracy and speed compared with
other methods, therefore this classifier helps us to achieve the
optimal solution in less time. Simulation results show that
the proposed method has a good improvement in terms of
Makespan time and load balancing degree.

Keywords—task scheduling; cloud computing; naïve-
Bayes classifier; Virtual machine; Makespan

I. INTRODUCTION

Cloud environment provides a huge context of servers in the

data center, so that when users request resources, provides

them in shared mode. To enable the applications to use the

resources in accordance with their requirements, an

appropriate mechanism to distribute requests to virtual

machines is required. That is why the scheduling of the

requests is one of the most important issues in cloud

environment and in recent years it has attracted much

attention of researchers. Task scheduling in cloud

computing means optimal allocation of requests to the

computing resources in the data center [1]. In scheduling,

tasks are allocated to different types of virtual

machines with regard to the limitations specified by the

user and service provider. One of the major challenges in

task scheduling is the equitable distribution requests on

the resources according to application requirements.

Providing scheduling algorithm with the aim of load

balancing can reduce makespan time and increase

productivity of machines.

In this paper, a dynamic task scheduling algorithm has

been proposed to increase the load balancing in the

cloud environment. Using Naïve Bayesian classifier

technique, the proposed algorithm has tried to put the requests

on the machines in a balanced way; as in addition to the

reduction of makespan

time, increases the efficiency of resources. The advantage of the

proposed algorithm in the above method is to reduce the

overload and increase resource utilization. Simulation results

show that this method performs well in completion time of the

longest task and increasing the level of load balancing. In

summary it can be said that our main focus in this article

includes the following:

1. Providing an appropriate method for scheduling the requests

using data mining techniques to reduce makespan time and

increase resource utilization;

2. The use of classification techniques for equitable distribution

of requests;

3. Targeted analysis to show the effectiveness of the proposed

algorithm, compared to previous algorithms;

The remainder of this paper consists of the following sections:

Section 2 reviews related work, in section 3 after the

introduction of Naïve Bayesian classifier and formulation of the

problem, details of the proposed method is described in detail.

In Section 4, simulation and evaluation of the proposed method

is presented and finally, in Section 5, conclusions and future

works are expressed.

II. RELATED WORK

Different studies are carried out in conjunction with load

balancing in cloud environment, load balancing algorithms are

generally divided into two categories: static and dynamic: In the

static method, the allocation of tasks to virtual machines is based

on the functionality of virtual machine and initial condition of

each machine; in other words, this process is only based on the

data of the nodes and their features. This information includes

the amount of processing power, internal memory and storage

capabilities and the power of communications between other

virtual machines. An important feature of static algorithms is

that, these algorithms do not consider changes occurred

dynamically on virtual machines at any moment. In addition,

they do not have the ability to adapt to changing workloads on

each virtual machine over time. Some static algorithms are

Round Robin (RR) algorithms or weighted RR or load balancing

algorithm using ant colony algorithm [2] or procedures based on

the amount of the resources of physical machines [3].

Unlike static algorithms, dynamic method of distribution in

addition to the basic functionality of each virtual machine,

91

Christian Napoli
Casella di testo
Copyright © 2017 held by the authors

assigns tasks to virtual machines based on the current status of

the machine and the workload on it. Such algorithms are

required to review each moment of machines and based on the

results of this review, the requests are transferred from one

machine to another. These methods, however, are of greater

complexity than the static method, but they are more efficient

[4]. A lot of related work has been done on dynamic load

balancing and each has been presented with different objective

such as response time[5,6,7], scalability[6,8], reducing

migration time in requests [9,10] and etc. since our objective in

load balancing is reducing the response time, we mention some

new studies in this field. Nakai et al. have presented a load

balancing mechanism in 2014 [6] based on reserve policy to

distribute requests between replicated servers. This allowed

overload servers to reserve a part of the capacity of remote

servers before receiving a new request and if requests were

higher than the amount of shared capacity of remote server,

some of requests were discarded. Simulation results show that

the proposed method reduces the response time and increases

load balancing. Even though the proposed method reduced the

response time, still some of the requests would be discarded and

that is why this method was not appropriate for our work.

Yuan et al. [7] tried to improve the performance of load

balancing algorithm in 2015. They considered the network

structure in addition to technical factors of load balancing. Thus,

they provided a method which was efficiently applicable in

network and reduced the level of overhead in network in

addition to reducing response time. This proposed algorithm was

also not suitable for cloud environment due to low productivity

and lack of scalability.

Mittal et al. [16] provided a method for scheduling requests in

2016 with the objective of reducing makespan time using load

balancing algorithm in cloud platform. They compared their

algorithm with some of the most well-known algorithms of load

balancing such as MIN-MIN [13], MAX-MIN [11] and

improved algorithms of MAX_MIN [14, 15] and RASA [12].

Simulation results show that their algorithm has better

performance than other listed algorithms. We have also

compared our proposed algorithm with this algorithm.

III. PROPOSED METHOD

A. Naïve Bayesian Classification Method

Naïve Bayesian is a statistical method for classification.

Research shows that although this method compared with other

methods such as classification decision tree and selected neural

network classifiers have equal efficiency; in contrast has higher

accuracy and speed than other methods [17].

Assume that, there is m classes called {Y1, Y2, … , Ym} and tuple

X have been given as input. Using the Classifier it is predicted

that X belongs to the class with the highest posterior probability,

in other words, X belongs to the class Yi if and only if the Eq.

(3-1) is true.

 P(Yi|X) ≥ P(Yj|X) j ∈ 1, . . m (3-1)

In Eq. (3-11) probability is calculated using Eq. (3-2).

 P(Yi|X) =
P(X|Yi)×P(Yi)

P(X)
 (3-2)

In the Eq. (3-2), P (X) is constant for all classes and only the

values P (X | Yi) × P (Yi) should be highest value. To calculate

P (X | Yi) under the assumptions of Naïve Bayes, it is assumed

that class conditional is independent and based on previous

training is obtained according to Eq. (3-3).

 P(X|Yi) = ∏ P(xk|Yi)n
k=1 (3-3)

In Eq. (3-3) if the values of P (X | Yi) × P (Yi) is more than most

other classes in Yi class, this class is selected.

B. Details of the proposed method

Suppose VM = {VM1, VM2… VMm} is a set of virtual

machines used to host user requests. Also Task = {T1, T2... Tn}

is a set of tasks that are intended to be run on virtual machines.

Details of the proposed method for assigning requests are as

follows:

1. First for initial allocation of the requests on virtual machines

MAX-MIN method is used. As from the request queue the

request with the highest runtime is selected and put on the

machine where the runtime of this request is less. Then the

requests in the queue waiting and the runtime of requests on

each machine are updated. And it will continue until the

completion of all requests.

2. After the initial allocation of the requests to the method by

Max-Min, in this step, the load balancing status of the

system is investigated. To do this, the standard deviation of

the system load is obtained and thereby the load balancing

of the system will be evaluated. To calculate the standard

deviation of the load in the system the Eq.(3-4) can be used:

σ = √
1

m
∑ (PTi − PT)2m

i=1 (3-4)

Where m is the number of machines in the system and PTi

is the processing time of virtual machine i and PT is the

processing time of the system. If the standard deviation is

greater than the desired threshold, the system is unbalanced

and requires a request transfer from overloaded machines to

under-loaded machines. For this, the machines are divided

into three categories: overload, balanced and under load and

the request is then removed from the overload set and then

in accordance with the following procedure they will

transfer to the members of the set of under-load machines.

3. To transfer the requests from the overload class to the

under-load class, Naïve Bayesian Classification Method is

used. For this purpose, each of the machines of under-load

class is considered as a class. Request tk is selected from the

overload class, and then Eq. (3-5) is calculated for it.

92

P(VMi|tk = compatible) =
P(tk = cmpatible|VMi) × P(VMi)

P(tk=compatible)

(3-5)

For all virtual machines P(tk=compatible) is constant and is

obtained according to Eq. (3-6).

if(Global Capacity on all VM > Requested Capacity for Task)

 P(tk=compatible) = 1

else

 P(tk=compatible) =
−(Global Capacity on all VM−Requested Capacity for Task)

Requested Capacity for Task

(3-6)

P(VMi) For each machine is based on the utilization of the

machine. Since the utilization of each machine is less, it is better

to be selected, to achieve this goal, the probability of the

machine with less utilization increases; therefore P(VMi) is
obtained according to the Eq. (3-7):

(3-7)

P(VMi) = 1 − Ucpu

 Where Ucpu =
used CPU Capacity

ALL CPU Capacity

The amount of P(tk = cmpatible|VMi) is also calculated

according to Eq. (3-3) based on the product of the probability of

previous requests put on that machine.

As a result, using Naïve Bayesian Classification Method for

transfer of requests from overload machine to under-load

machines, a machine from under-load machines is selected

which its compatibility with the considered request is higher

than other machines and it has less utilization. This trend has

continued until load balancing in the whole system. Figure (1)

shows the pseudo-code of the proposed algorithm.

IV. RESULT EVALUATION

In this section we will discuss the details of the simulation of the

algorithm presented in the previous section. Then through the

charts the proposed method are evaluated. This fact that, the

environment is software as a service and also our tools for

simulation is CloudSim software [18], would be useful. This

simulator allows us to create a virtualized environment and

supports the allocation of resources based on the request. In fact,

the core of the simulator for modeling our method is extended.

Cloud computing has been simulated to assess this sector of a

data center consisting 3 hosts with virtualization capabilities. In

fact, it is assumed that the virtual instruments such as Xen have

been installed, which can share resources. The properties of each

host are according to Table (1).

16 virtual machines with different characteristics are put on this

data center. Each virtual machine runs some applications with

variable number of instructions between 500 and 4500. As

mentioned earlier, we aim to provide comprehensive and

appropriate algorithms for request scheduling in the cloud

platform, as it has the minimum makespan time and maximum

load balancing degree with equitable distribution requests on the

virtual machines.

Figure 1. pseudo code of the proposed method

TABLE I. HOST SPECIFICATION

Bandwidth

(Mbps)

Hard

(MB)

Ram

(MB)

Processing

speed(MIPS)

Number of

processing

Cores

HostId

102400 1048576 204800 50000 4 1

102400 1048576 102400 25000 2 2

102400 1048576 51200 10000 1 3

If Makespan is calculated according to the Eq. (4-1); Figure (2)

indicates a comparison between the Makespan in the Round

Robin method and scheduling of paper [16] and improved

algorithm MAX-MIN [18] and the proposed algorithm.

 Makespan = max {CTij|i ∈ T, i = 1,2, … , n and j ∈ VM, j =

1,2, … , m} (4-1)

Figure. (2) Shows the use of proposed method has relatively

better Ref. [16] at Makespan time. Since in ref. [16] the

combination of algorithms MIN-MIN and RASA are used and

in these algorithms only the runtime of the request on the virtual

machine is considered but in the proposed algorithm in addition

to the selection of algorithm MAX-MIN, load balancing

algorithm is also used for suitable primary distribution and use

of its benefits; and with the displacement of requests from

overload machines and putting them on the under-load

machines, based on the utilization of the machine and

compatibility of the request with machine with classification

techniques, the amount of Makespan decreases.

Input :list of tasks output : list of Vm Id for running any task;

1. Allocate Tasks to VMs Base on MAX-MIN Algorithm.

2.Calculate Standard deviation for load of all VMs

 If (Standard deviation>threshold)

Group VMs based on load as UVM, BVM and OVM

if (OVM≠ 𝜑)

 Select VM by maximum processing Time in OVM

TaskID: Select task by minimum processing time in Selected

VM in OVM

Calculate Probablity value Of any VM in UVM based on

equation (3-5)

Sort Probablity value any VMs in UVM by ascending order.

Select VM by maximum Probablity value

VMID=selected VM id

Allocate selected task to VMID

 Else

break;

3. Repeat step 2 for load of all VMs

93

Figure 2. Makespan Comparison

Figure (3) indicate a comparison between the average response

time for the requests, between the proposed method and Round

Robin method and task scheduling of paper [16].

Figure 3. Response time Comparison

 Another criterion which is important is the degree of imbalance

defined as the Eq. (4-2) [5].

DI =
Tmax−Tmin

Tavg
 (4-2)

In Eq. (4-2), Tmax and Tmin are the highest and lowest runtimes

between virtual machines and Tavg is the average runtime among

all virtual machines. Figure. (4) Shows the comparison between

the degree of imbalance in the method provided in algorithm of

paper [16] and the proposed algorithm. The horizontal axis

shows the number of requests and vertical axis shows the degree

of imbalance.

Figure 4. degree of imbalance Comparison

It is clear that the use of load balancing methods reduces the

degree of imbalance and thus the proposed method has lower

load balancing degree than other methods. This is due to the

reduction in the runtime of the longest duration and balancing

the requests between virtual machines in the proposed method.

As indicated in the Figure (4), if the number of requests is lower,

due to fewer machines with overload and equal longest runtime

in both methods, the degree of load imbalance is close to each

other, with the increasing requests of the proposed method, and

decreasing runtime of the longest task and balanced distribution

of requests, the degree of imbalance decreases. There are many

classification methods available including linear classifiers,

support vector machines, decision trees and neural networks.

Figure. (5) Shows the comparison between the makespan for

proposed method by using support vector machines

Classification and proposed method by using Naïve Bayesian

Classification.

Figure 5. Makespan Comparison

0

5

10

15

20

0 20 40 60 80 100

M
ak

es
p

an
(s

)

Number Of Task

RR Improved RASA[16]

Improved Max-MIN[18] Proposed

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100

R
es

p
o

n
se

 T
im

e(
S)

Number Of Tasks

RR Improved RASA[16]

Improved Max-MIN[18] Proposed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

D
eg

re
e

O
f

Iim
b

al
an

ce

Number Of Tasks

Improved RASA[16] Proposed

0

5

10

15

0 20 40 60 80 100

M
ak

es
p

an

Number of Tasks

Proposed by using SVM Proposed

94

V. Conclusions and future works

In this paper we have provided a task scheduling method with

Naïve Bayesian Classification Method aim at creating load

balancing. This algorithm with classification of virtual machines

and selection of suitable machine for the existing requests

reduces the makespan time and increases the level of load

balancing. In the following, the proposed method is compared

with the basic Round Robin method and the scheduling method

[16] in terms of the criteria of Makespan, response time and load

balancing level. In the future we plan to do this proposed method

for workflow scheduling; and also consider other criteria such as

reduced cost for the service providers.

REFERENCES

[1] K. A. Nuaimi, N. Mohamed, M. A. Nuaimi, J. Al-Jaroodi, "A survey of
load balancing in cloud computing: Challenges and algorithms," in
Network Cloud Computing and Applications (NCCA), 2012 Second
Symposium on, pp. 137-142, 2012.

[2] S. K. Chaharsooghi, A. H. M. Kermani, "An effective ant colony
optimization algorithm (ACO) for multi-objective resource allocation
problem (MORAP)," Applied Mathematics and Computation, vol.
200, pp. 167-177, 2008.

[3] M. Ajit, G. Vidya, "VM level load balancing in cloud environment," in
2013 Fourth International Conference on Computing, Communications
and Networking Technologies (ICCCNT), pp. 1-5, 2013.

[4] L. Guo, S. Zhao, S. Shen, C. Jiang, "Task scheduling optimization in
cloud computing based on heuristic algorithm," Journal of Networks,
vol. 7, pp. 547-553, 2012.

[5] P. V. Krishna, "Honey bee behavior inspired load balancing of tasks
in cloud computing environments," Applied Soft Computing, vol.
13, pp. 2292-2303, 2013.

[6] A. Nakai, E. Madeira, L. E. Buzato, "On the Use of Resource
Reservation for Web Services Load Balancing," Journal of
Network and Systems Management, vol. 23(3), pp. 502-538, 2014.

[7] Daraghmi, E. Y. and S.-M. Yuan. "A small world based overlay
network for improving dynamic load-balancing." Journal of Systems and
Software, vol. 107, pp. 187-203, 2015.

[8] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. Larus, A. Greenberg, "Join-Idle-
Queue: A novel load balancing algorithm for dynamically scalable web
services," Performance Evaluation, vol. 68(11), pp. 1056-1071, 2011.

[9] F. Ramezani, J. Lu, F. K. Hussain, "Task-Based System Load Balancing
in Cloud Computing Using Particle Swarm Optimization," International
Journal of Parallel Programming, vol. 42(5), pp. 739-754, 2013.

[10] Y. Fang, F. Wang, J. Ge, "A Task Scheduling Algorithm Based on
Load Balancing in Cloud Computing," Web Information Systems and
Mining: International Conference, WISM 2010, Sanya, China,
October 23-24, 2010. Proceedings. F. L. Wang, Z. Gong, X. Luo and
J. Lei. Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 271-277,
2010.

[11] T. Kokilavani, G. Amalarethinam,"Load Balanced Min-Min Algorithm
for static Meta-Task Scheduling in Grid Computing," International
Journal of Computer Applications (0975-8887), vol. 20(2), 2011.

[12] S. Parsa, R. Entezari-Maleki, "RASA: A New Grid Task
Scheduling Algorithm," International Journal of Digital
Content Technology and its Applications, vol. 3(4), pp. 91-99, 2009.

[13] G. Amalarethinam, V. Kfatheen, "Max-min Average Algorithm for
Scheduling Tasks in Grid Computing Systems," International Journal of
Computer Science and Information Technologies, vol. 3(2), 3659-3663,
2012.

[14] O. M. Elzeki, M. Z. Reshad, M. A. Elsoud, "Improved Max-Min
Algorithm in Cloud Computing", International Journal of
Computer Applications (0975 – 8887), vol. 50(12), pp. 22-27, 2012.

[15] U. Bhoi, P. N. Ramanuj, "Enhanced Maxmin Task Scheduling
Algorithm in Cloud Computing," International Journal of Application
or Innovation in Engineering & Management, ISSN2319-4847, vol.
2(4), 2013.

[16] S. Mittal, A. Katal, "An Optimized Task Scheduling Algorithm
in Cloud Computing," in 2016 IEEE 6th International Conference
on Advanced Computing (IACC), pp. 197-202, 2016.

[17] H. W. Lijuan Zhou, W. Wang, "Parallel Implementation
of Classification Algorithms Based on Cloud Computing
Environment," Indonesian Journal of Electrical Engineering and
Computer Science, vol. 10(5), pp. 1087-1092, 2012.

[18] R. Kuar, P. Luthra, "Load Balancing in Cloud System using Max
Min and Min Min Algorithm", International Journal of
Computer Applications, National Conference on Emerging
Trends in Computer Technology (NCETCT-2014).

95

