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Abstract—This paper illustrates comparison of two methods,
which are used for solving systems of linear equations . The
aim of the research is to analyze, which method is faster solve
this equations and how many iteration required each method for
solving. This paper presents some ways to deal with this problem.
Also there are analyzed two methods. The first of them minimizes
the standard deviation of the next iteration of the solution, the
other constructs orthogonal vectors and is theoretically finite
method.

Index Terms—conjugate gradient method, steepest descent
method, comparison, analysis

I. INTRODUCTION

Computer algorithms are important methods for numerical
processing. In all implementations it is important to make
them more efficient and decrease complexity but without
loss of efficiency. Cryptographic algorithms are one of most
important methods for computer science therefore efficiency
and complexity of these is crucial for optimal processing
[14]. Knowledge systems demand fast and precise methods
for information processing [4], [6]. Similarly decision support
models need devoted techniques for lower complexity [12].

This publication present comparison of steepest descent
method and conjugate gradient method. These methods are
used for solving systems of linear equations. In our publica-
tion, we analyze, which method is faster and how many itera-
tion required each method. First, we describe these methods,
than we compare them and make conclusions.

II. THE STEEPEST DESCENT METHOD

The steepest descent method formulated by Stiefel. We will
present the mathematical description of the method of steepest
descent and we will make implementation in the form of code.
Consider the system linear equations in the general form

Ax = B (1)

We suppose that matrix A is symmetric and positive definite.
With x∗ we denote solution of the system equations 1, i.e.:
Ax∗ = b. The methods of gradient constructed a sequence of
successive approximations to determine the solutions x∗ with
using formula:

x(k+1) = x(k) + ckr
(k) (2)

Occurring in the equation 2 vector r(k) is called residuum of
system and takes the following form:

r(k) = b−Ax(k), (3)

or
r(k+1) = r(k) − ckAr(k) = (I − ckA)r(k). (4)

In iterative process this vector can be determined in each
iteration of the algorithm as a suitable combination of the
previous values, as described is in next formula:

r(k+1) = r(k) − ckAr(k) (5)

The coefficients ck iterations occurring in the equation 3 are
determined on the basis of the following equality:

‖x∗ − x(k+1)‖B = inf
ck
‖x∗ − x(k) − ckr

(k)‖B (6)

In contrast, norm ‖ · ‖B is defined as

‖x‖B
def
=
√
xTBx (7)

Matrix B occurring in formula 7 is symmetric and positive
definite. At the same time it fulfills the condition the alterna-
tion of the matrix A, i.e.: A·B = b·A. It is not difficult to show
that searched coefficients ck are described by the equation:

ck =
(r(k), B(x∗ − x(k)))

(r(k), Br(k))
. (8)

Just for some matrix B, you can determine the value of B(x∗−
x(k)). For example, if B = A(p), p ∈ N then there is following
equality:

A(p)(x∗ − x(k)) = A(p−1)(b−Ax(k)) = A(p−1)r(k). (9)

Also it can be described in specific cases. For example, for
p = 1, method is called steepest descent, while p = 2 method
minimizes the Euclidean norm, and we call it the method of
least residuum, where

ck =
(r(k), Ar(k)))

(Ar(k), Ar(k))
. (10)
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III. CONJUGATE GRADIENT METHOD

We use conjugate gradient method to solve the system of
linear equations given in the form of

Ax = b, (11)

where A is a positive definite matrix with n × n sizes.As a

result of operation of this method we obtain a sequence of
vectors starting from a vector initial x0

x0 → x1 → · · · → xn,

which stops after accurate calculations at most n steps, so
we get the required solution in the form of xn+1 = x.
Since the calculations performed occurs rounding error value,
so the value of xn+1 is generally not very accurate result.
Therefore, in this method, as in all other iterative methods
we conduct further steps xk → xk+1, respectively, until we
get the exact solution. Since the amount of work at each step
of the workload of the matrix multiplication A by the vector,
and therefore this method is not suitable for use in the matrix
band and solid. In contrast, as much as possible, this method
is suitable for a medium-sized array diluted. The general
idea of our method is based on the fact that the functional
F : Rn → R which has a form:

F (z) =
1

2
(b−Az)TA−1(b−Az) =

1

2
zT bT z−Az+

1

2
bTA−1b,

is minimized with accurate solution x, thus

0 = F (x) = min
z∈Rn

F (z).

This equality follows from the fact that the matrix A is positive
definite, and thus the matrix A−1 also has the same property.
While corresponding with the vector z residualny vector r :
Az = −b, disappears only z := x. It reminds us that the
method of steepest descent in which a string of x1 → x2 →
. . . is found with 1-dimensional minimize the functional F in
the direction of the gradient:

xk+1 : F (xk+1) = min
u

F (xk + urk),

where
rk := DF (xk)

T = b−Axk.

However, in the case of conjugate gradient method, we must

to carry out the minimization of the k dimensions:

xk+1 : F (xk+1) = min
u1,...,uk

F (xk + u1r1 + · · ·+ ukrk),

ri := b−Axi for i ≤ k.
(12)

It’s very easy to compute xk+1. In addition, vectors ri are
ortogonal, and hence lineary independent provided that rk 6=
0. Becouse, in space R, there are no more than n in depended
vectors, so in exact calculations, there is the smallest k ≤ n+1
such that rk is equal zero. Vector xk corresponds to number
rk. Now we well show step k xk → rk+1 of our method. The
matrix dimensions n× k we denote Rk,

Rk := (r1, r2, . . . , rk).

With the k-dimensional minimilizing point in formula 11 are
allowed all vectors from z being in the form of

z = xk +Rku, u ∈ Rk,

where r = rk +ARku is residual vector. Hence,

F (z) =
1

2
rTA−1r =

1

2
rTk A

−1rk+uTRT
k rk+

1

2
uTRT

k ARku.

Differentiating our functional by u, functional adopts a mini-
mum for

xk+1 = xk +Rkũ,

where ũ ∈ Rk is solution to the equation

RT
k ARkũ = −RT

k rk. (13)

We introduce the following designations

R := (r1, . . . , rk, . . . , rn), vk :=


ũ
0
...
0


}

n−k

∈ Rn

Then we get Rvk = Rkũ, and

xk+1 = xk +Rkũ = xk +Rvk, (14)

rk+1 = rk +ARkũ = rk +ARvk. (15)

From the above fact follows that: 1. RT
k rk+1 = 0 by (12),

after that we have ortogonal vector rk+1 to vectors r1, . . . , rk.
Thus the right-hand side of equation (12) is as follows:

−RT
k rk =


0
...
0

∗


}k−1

, so RTARvk =



0
...
0

∗
...
∗



}k−1

.

(16)
2. If vector rk 6= 0, then vectors r1, . . . , rk are linearly
independent, but matrix RT

k ARk is positively determined.
Thereafter, RT

k rk ≥ 0 hence to the equation (11) and (14)

0 < ũTRT
k ARkũ = −ũTRT

k rk,

where last component in vector ũ, and therefore k-th compo-
nent of the vector vk is negative.
3. In view of equations (13) and (15) for i < k we have next
equality:
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(xi+1 − xi)
TA(xk+1 − xk) = vTi [R

TARvk] =

= (∗ · · · ∗︸ ︷︷ ︸
i

, 0, . . . , 0)



0
...
0

∗
...
∗



}k−1

= 0,
(17)

it is mean, that directions pi := xi+1 − xi are A-coupled:
pTi Apk = 0 for i < k.
4. In view of equations (12), (1.1.13) and (1.1.14) we have
next equality

F (xk+1) =
1

2
rTk+1A

−1rk+1 =
1

2
rTk A

−1rk + ũTRT
k rk+

+
1

2
ũTRT

k ARkũ = F (xk)−
1

2
ũTRT

k ARkũ =

= F (xk)−
1

2
(xk+1 − xk)

TA−1(xk+1 − xk).

This formula explains the extend of decrease value of
functional F in k-th step xk → xk+1

5. If vector vk = (v1, . . . , vk, 0, . . . , 0)rk 6= 0 has k
components, where rk 6= 0 is negative. From formula (14)
follows next equality

rk+1 − rk = ARvk =

k∑
j=1

vjArj ,

then

Ark = ((rk+1 − rk)−
k−1∑
j=1

vjArj)/vk.

Applying induction we get description for Ark in following
form

Ark = qk+1(rk − rk+1)− ek(rk−1 − rk)−

−
k−2∑
j=1

cj(rj − rj+1), (e1 := 0)
(18)

where qk+1, ek are constans and additionally qk+1 = −1/vk >
0. By solving the above equation due tork+1 we get the

equality:

rk+1 = rk+[−Ark+ek(rk−rk−1)+
k−2∑
j=1

cj(rj+1−rj)]/qk+1.

(19)
If we take into account orthogonality of vectors
r1, . . . , rk, rk+1, then we can easily demonstrate that all

Fig. 1. Graph of time in ms

the constants cj disappear. Thus, we obtain formulas for qk+1

i ek. Then, for k − 2 ≥ 1 we get

rT1 rk+1 = 0⇒ 0 = rT1 Ark + c1r
T
1 r1 = rTk (Ar1) + c1r

T
1 r1.

(20)
By using the formula (17), we can conclude that vector

Ar1 also is a linear combination of vectors r1 and r2, then
rTk Ar1 = 0 providing that k > 2. Thus, from equality (18)
implies that c1 = 0.
We assume, that for some j ≥ 1, which satisfying the
following inequality 1 ≤ j ≤ k − 2, there is equality
c1 = c2 = · · · = cj−1 = 0. Therefore, by using formula(18)
as before, we obtain:

rTj rk+1 = 0⇒ 0 = rTk Arj + cjr
T
j rj =

= rTk (linear combination of vectors rj+1, rj , . . . , r1) +
cjr

T
j rj =

cjr
T
j rj ⇒ cj = 0, vectors r1, . . . , rk are linearly inde-

pendent, as is apparent from the fact that r0 6= 0. In this
connection, in particular, we have rj 6= 0. Therefore, all solid
cj , where j = 1, . . . , k − 2 disappear in equations (17) and
(18). Due to the fact, we get

rTk−1rk+1 = 0⇒ ek = − rTk Ark−1
rTk−1rk−1

= qk
rTk rk

rTk−1rk−1

rTk rk+1 = 0⇒ qk+1 =
rTk Ark
rTk rk

− ek

This gives us an algorithm conjugate gradient method.
Initial data: x1 is intended, r1 := b−Ax1, e1 := 0.
For k = 1, 2, . . . , n: ]1) If rk = 0, stop; xk is sought for
solution. 2) Otherwise, we must to calculate:

qk+1 :=
rTk Ark
rTk rk

− ek,
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Tab. I
COMPARISON OF METHODS

Conjugate gradient method Steepest descent method
N n Iteration Time in ms Time in ti Iteration Time in ms Time in ti
5 25 13 1 1983 128 0 1780

10 100 33 36 68281 405 34 64634
15 225 49 286 530934 837 272 505238
20 400 65 1680 3110493 1413 1621 3002271
25 625 79 6499 12032438 2093 6329 11716167
30 900 94 20053 37122809 2909 19606 36295497

rk+1 := rk + (−Ark + ek(rk − rk−1))/qk+1,

xk+1 := xk + (−rk + ek(xk − xk−1))/qk+1,

ek+1 := qk+1

rTk+1rk+1

rTk rk
.

IV. THE COMPARISON OF METHODS

A. Analysis of efficiency

There is a big difference between presented methods. The
steepest descent method is several times faster than conjugate
gradient method. But, if we look on iteration of this methods
in Table.1, we see, that conjugate method converge after less
number of iteration. For example, for n = 20, number of
iterations of conjugate gradient method equals 65, and achieve
the desired accuracy - 1413.

B. Analysis of time

On graph of time, we can see that, for example, for n = 15
time in ms of conjugate gradient method equals 286 and time
in ti of steepst descent method equals 271. After that, we
could see, that when number of n increases there is substantial
difference between methods. For example, when n = 20, time
in ms of conjugate gradient method is equals 1680, time in ti
of achieve the desired accuracy - 1621 iterations.

V. CONCLUSIONS

We have compared two method implemented to solve sys-
tems of linear equations. The steepest descent method is faster
method, because it solve equations in less amount of time.
Conjugate gradient method is slower, but more productive,
because, it converges after less iterations. So, we can see, that
one method can be used, when we want to find solution very
fast and another can be converge to maximum in less iteration.
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Fig. 2. Block Diagram of the Steepest Descent Method
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Fig. 3. Block Diagram of the Conjugate Gradient Method
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