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Abstract—Through tensile tests of uniaxial and planar type,
was proceeded to the mechanical characterization of SBR rubber
sheets filled with particles of carbon black. The analysis has
allowed defining the elastic features, the storage modulus, the
transversal contraction coefficient (both obtained from uniaxial
testing) and the shear modulus (from the planar/pure shear
tests). Due to the calendering process by which was obtained, the
elastomer sheet it’s shown transversely isotropic, with different
mechanical behavior in the direction of processing with respect to
the transverse direction. Therefore, it was essential to evaluate
two different values for each storage modulus, depending that
the sample was loaded in the direction of calendering or in that
orthogonal to it.

Index Terms—Transversal Isotropy, Hyperelasticity, SBR, Car-
bon Black, Calendering.

I. INTRODUCTION

The Styrene Butadiene Rubber (SBR) arises from copoly-
merization of Butadiene and Styrene. The latter, present to the
extent of 20-25% of the copolymer, increases both strength and
stiffness from SBR with respect to the butadiene rubber (BR)
[1], [2]. Often, it is filled with carbon black, carbon charges
of nanometric particles obtained from the combustion of
hydrocarbons, the presence of which improves the mechanical
properties and slows the aging. The SBR is the most usage
rubber [3], [4], [5], [6], [7], [8], [9], being able to provide
mechanical properties similar to those of natural rubber at a
lower cost. The elastomer is used mainly where there is a need
for high-friction surfaces, so that the 70% of the production
is for tires tread [10], [11], [12], [13].

The mechanical characterization of a material consists in
determining the current constitutive law between stress and
strain [3], [14], [15], [16].

The characterization process is particularly critical for elas-
tomers, due the large deformations that, for the same elastomer
definition [17], [18], can tolerate without reaching the failure.

The aim of this experimental analysis is reached the
mechanical characterization of styrene-butadiene rubber, im-
proved in its quality by the introduction of fillers of carbon
black (25%) in the blend [4], [19].

The analysis developed is focused on tracking of math-
ematical functions, which correlated stress and strain, and
on evaluation, starting with these functions, of the storage
modules assumed at the beginning of the rubber test.
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Transversely isotropic behavior, caused by the rubber cal-
endering process [20], has made more difficult the analysis.
The phenomenon is well known in the literature, so that were
already made attempts to characterize elastomers which have
transverse isotropy [21], [22], [23].

Therefore, tests were performed at different loading di-
rections, in order to assess the behavioral differences of the
material between the direction of calendering and the direction
orthogonal to it.

II. CONSTITUTIVE EQUATIONS

Most of engineering materials belongs to the category of
simple materials, for which the stress tensor T is a function
of the history of the position gradient F = ∇x [2]:

T (x, t) = T (F (x, τ), x0, t) τ ∈ [0, t] (1)

Among the simple materials, those elastic exhibit a stress
state as a function of the single value of the deformation
gradient:

T (x, t) = T (F (x, τ), x0, t) (2)

According to this constitutive relationship, stress does not
depend on the deformation path (Cauchy elasticity), but it
is not the same for the deformation work that it performs.
The hyperelastic materials are, instead, conservative elastic
materials (Green elasticity), i.e. for which, there being an
elastic potential function ϕ = ϕ(F), which can be derived
from stress, the differential form of the deformation work is
exact (

∂ϕ

∂F

)t
= TI (3)

where TI := JTF−t is the first tensor of Piola-Kirchhoff,
with J = detF.

The simple assumption of linear elastic material is correct if
you can overlook the time-dependent effects (such as sliding
and relaxation) [2], [24], [25] and for small deformations.
Circumstance, the latter, in which it is allowed the stress-
strain relationship linearization. The linear stress-strain law
is represented in classic form, tensorial, from equations Tij =∑3
h,k=1 CijhkEhk, which contain the 34 = 81 constants Cijhk

of the elastic tensor di of order 4. Since the stress and strain
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symmetry of the tensors requires six independent components
of the stress tensor as a function of the six independent
components of the strain tensor, only 36 independent constants
are needed to determine the linear elastic relationship.

[
σ
]
:=


σx
σy
σz
τxy
τxz
τyz

 =


σ(1)
σ(2)
σ(3)
σ(4)
σ(5)
σ(6)

 ;
[
ε̇
]
:=


ε̇x
ε̇y
ε̇z
γ̇xy
γ̇xz
γ̇yz

 =


ε̇(1)
ε̇(2)
ε̇(3)
ε̇(4)
ε̇(5)
ε̇(6)


We can express the linear relationship in a matrix simplified

using independent components vectors


σx
σy
σz
τxy
τxz
τyz

 =


c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66




εx
εy
εz
γxy
γxz
γyz


The linear elastic relationship is defined by 6 × 6 = 36

components of the C tensor of order 2 of elastic constants.
Assuming the occurrence of a potential elastic (hyperelastic
material), according to the Schwartz theorem, the elasticity
tensors are symmetrical and the constants are reduced to 21
[3].

They are called transversely isotropic those materials, which
have an isotropic response in the plane orthogonal to an axis,
said axis of transverse symmetry. By choosing a base having
the x-axis parallel to symmetry transverse


σx
σy
σz
τxy
τxz
τyz

 =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c22−c23

2




εx
εy
εz
γxy
γxz
γyz


In this case, the elastic response is described by 5 indepen-

dent parameters [26].
The constitutive equation can be formulated in terms of

engineering constants [3], inverting the stress-strain relation


εx
εy
εz
γxz
γxz
γyz

 = C−1


σx
σy
σz
τxy
τxz
τyz



and

C−1 =



1
Ex

−vxy

Ey
−vxy

Ey
0 0 0

−vyx

Ex

1
Ey

−vyz

Ey
0 0 0

−vyx

Ex
−vyz

Ey

1
Ey

0 0 0

0 0 0 1/Gxy 0 0
0 0 0 0 1/Gxy 0

0 0 0 0 0
2(1+vyz)

Ey


where the 6 modules present are defined as follows

Ei =
σi
εi

σ(i) 6= 0, σ(k) = 0 ∀k 6= i

vji =
εj
εi

σ(i) 6= 0, σ(k) = 0 ∀k 6= i

Gij =
τij
γij

The elements on the main diagonal are the modules of
normal deformability 1/Ei and tangential 1/Gij ; those that
appear outside of the same diagonal such as the modules
of transverse deformability −vji/Ei. The symmetry of the
previous matrix adds the condition vyx/Ex = vxy/Ey , which
reduces to 5 the independent components. In the case of
transversely isotropic material plates, which present the x or
y axis of transverse symmetry, assuming the status of plane
stress σz = τxz = τyz = 0 and writing separately the
equations:

εz = −
vyx
Ex

σx +
1

Ey
(σz − vyzσy)

γxz = 0

γyz = 0

the constitutive relation can be narrowed to only three
stress and three strain components in the x and y directions,
becoming [27], [3]:

σxσy
τxy

 =


Ex

1−vxyvyx

vxyEx

1−vxyvyx
0

vyxEy

1−vxyvyx

Ey

1−vxyvyx
0

0 0 Gxy

 =

 εxεy
γxy


 εxεy
γxy

 =


1
Ex

− vxy

Ey
0

vyx

Ex

1
Ey

0

0 0 1
Gxy

 =

σxσy
τxy


where there is a symmetry condition vyx/Ex = vxy/Ey ,

whose effect is that only 4 of the 5 elastic constants appearing
in the above matrix are independent.

8



III. PURE SHEAR IN PLANAR TEST

A valid constitutive model must properly describe the
material behavior for each stress state. A single test as a
simple uniaxial tensile test does not allow the construction
of a reliable model in every situation. It then requires the
programming of tests set that provide different stress mode.
The uniaxial tensile test is then flanked by planar tensile and
equibiaxial tests [4], [19].

The planar tensile test replaces the pure shear test (torsion of
cylindrical sample), not applicable on samples cut from rubber
sheets. The central portion of the specimen is subject to a pure
shear strain and stress [4], [24]. To prove this assumption, we
consider an orthogonal axes system, formed by the loading
direction, from the direction perpendicular to this plane in the
specimen and the direction normal to the sample itself. Noted
these directions, respectively, with the letters x, y, z (Figg. 1,
2):

The test consists to creating a stretching in the x-direction.
For implementation of the test (high ratio width/length of the
sample), it is considered negligible the strain along the y-
direction

λy = 1⇒ ε̇y = 0

Consequently, the incompressibility condition J = detF =
1⇒ ε̇V = ε̇x + ε̇y + ε̇z = 0 for planar test is written [2]:

J = λx λz ⇔= 1⇒ λz =
1

λx

ε̇V = ε̇x + ε̇z ⇔ ε̇z = ε̇x

Therefore, assuming the incompressibility of the mate-
rial, the coordinates of tensors F and V=1/2(grad v +
grad vt)(strain rate) respect to the system of axes x, y, z
are.,

[
F
]
xyz

=
[
FD
]
xyz

=

λx 0 0
0 1 0
0 0 1

λx


[
V
]
xyz

=

ε̇x 0 0
0 0 0
0 0 −ε̇x


being FD the right tensor of the deformation gradient. As

can be seen from the following image (Fig. 3), relative to the
circumferences of Mohr for the strain rate V, at each instant
of the test, the strain occurs in pure shear mode.

The deformation in the z-direction is free, therefore in the
absence of external loads in this direction is not generated
stress (σz = 0). Moreover, from the generalized Hooke’s law
ε̇y = σ̇y − ν(σ̇x + σ̇z), being for incompressible materials
ν = 1/2 [3], for the y-direction stress is σ̇y = νσ̇x = σ̇x/2. In
conclusion, during the planar test, the stress tensor T follows
the variation equation

Fig. 1. Reference system, x-y plane

Fig. 2. Reference system, x-z plane

[
dT
dt

]
xyz

=

σ̇x 0 0
0 σ̇x

2 0
0 0 0


Unlike from strain, a condition of pure shear not realized

for stress. However, the deviator stress tensor T′ still takes a
pure shear connotation (see Fig. 4):

[
dT′

dt

]
xyz

=

 σ̇x

2 0 0
0 0 0
0 0 − σ̇x

2


n and t are the orthogonal directions to the y-axis and
forming angles of 45◦ with the x- and z-axis (Fig. 2). Since
τ̇nt = σ̇x/2, and being γ̇nt = 2ε̇x, the calculation of the shear
modulus G is carried out using the formula

G =
dτnt
dγnt

=
1

4

dσx
dεx
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Fig. 3. Circumferences of Mohr of the strain rate tensor.

Fig. 4. Circumferences of Mohr of the stress rate deviator tensor.

IV. EXPERIMENTAL TESTS

The tested material is SBR filled with 25% of carbon black.
The tests were performed on specimens cut from a sheet
having a 3 mm thickness. These were carried out with a test
machine Zwick/Roel, model Z100, equipped with 1 kN load
cell, to imposed deformation, while maintaining constant the
speed of the movable crossbar.

The uniaxial tests were performed on rectangular specimens,

Fig. 5. Grid for the optical relief of the strain.

20 mm wide and 180 mm long, with a gauge length of 120
mm.

In the planar tests, was adopted a rectangular specimen, 150
mm wide and 70 mm long, having a gauge length of 50 mm.

For the measurement of deformations of the specimen was
adopted an optical method. In effect, the large deformations
do not allow easy application of the classic method of the
strain gages. The used solution is based on tracing a grid on
the specimen surface, which allows to highlight the location
of certain specific points. By known distances between various
points of the grid in the absence of load, just evaluate their
new position for load applied to achieve the deformation.

For image acquisition, carried out at a constant rate, it used
a digital camera Basler acA1300-30gm. It is equipped with a
Sony CCD sensor ICX445 that provides 8-bit greyscale images
at a maximum frame rate of 30 per second, with a resolution
of 1280x960 px.

To provide an accurate strain measurement, the Vision
Builder AI software of National Instruments acquires and
processes images through the Vision Assistant command. At
first a convolution filter is applied to emphasize the grid.
In fact, the alteration of the grid, caused by the specimen
stretching, reduces the brightness and thus the contrast with the
background, making difficult the identification of the points by
the software [33]. Finally, a median filter removes the image
residual noise.
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Fig. 6. Uniaxial Test Setup.

Fig. 7. Not processed image.

V. RESULTS

By the stress and strain values, the relationships of vari-
ous functional dependencies between the physical quantities
involved is obtained. The storage modules were determined
from the mathematical derivation of these functions.

The uniaxial testing allows to express both the normal stress
as a function of the normal strain in the vertical direction
(loading direction), and the normal strain in the horizontal
direction (orthogonal to the loading direction) as a function
of vertical strain. From the first of these applications the
normal storage modulus E = dσ/dεν [24] is obtained, from
the second application the transverse contraction coefficient
ν = −dεo/dεν .

As already verified during a previous study on a silicone,
developed at the University of Catania [25], a small strain
rate, lower than ASTM standards, could rise viscoelastic
relaxation phenomena in elastomers (decreasing of stress level
compared to the strain achieved). Increasing the execution
test rate, this aspect can be kept under control, drastically
mitigating the effects. As a consequence of this, the stress-
strain curve is higher for the higher test rate, then the rubber
manifests an increase of stiffness and mechanical resistance

Fig. 8. Localization of points on the processed image.

Fig. 9. Uniaxial Test: Normal Stress vs Normal Strain.

to the growing of the test speed. A decrease of the failure
strain is associated. It also occurs a different location of the
sample crack, depending on the execution test rate. At the
ends, near the gripping point, for tests with crossbar that moves
5 mm/min; at the center of the specimen for the tests with
speed of 60 mm/min.

In all performed tests, the value of Young’s modulus E at the
O(0, 0) ranged between 6.45 and 7.70 MPa, comparable with
values reported in the literature for PDMS filled by carbon
black (25%) [34]. The stretching at failure is much lower than
the average obtained in the styrene-butadiene rubber [34].

In addition, at the O(0, 0), the Poisson’s ratio ν is greater
for the high-speed tests (0.460 and 0.490) compared to those
at low speed (0.360 and 0.387). For the same rate of the
crossbar, instead, the tested elastomer shows a greater Young’s
modulus and Poisson’s ratio in the transverse test, but a lesser
failure strain. It is interesting to observe that for faster tests
the coefficient ν, evaluated by means of real strains, assumes
constant value and close to the theoretical limit value of 0.5,
maximum value for isotropic materials [26], which character-
izes the incompressibility, during the entire test. This statement
is true only for the Hencky’s tensor. Adopting instead other
tensors of deformation, it decreases during the experimental
test, being equal to about 0.5 only at the beginning of the test
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Fig. 10. Uniaxial Test: Horizontal Strain vs Vertical Strain.

Fig. 11. Planar Test: Normal Stress vs Normal Strain.

and reaching to several lower values for large deformations [8].
The shear modulus G = dτ

dγ = (dσx)/(dεx)/4 is calculated
based on information extracted in the planar test.

From the analysis carried out, the module G at the origin is
2.04 MPa for longitudinal test and 1.94 MPa for the transverse
direction to the calendering.

For each curve a high correlation coefficient value, greater
than 0.995, has achieved , demonstrating the low-degree
polynomial expressions are well suited to describing the rela-
tionships between the treated physical quantities [35], [36]. In
uniaxial test, the horizontal-vertical true strain function is well
represented by a linear expression. Instead, the appropriate
polynomial relationship in order to describe the trend of the
stress as a function of vertical strain is of 4th order, both in
uniaxial and planar tensile tests.

VI. CONCLUSION

The uniaxial and planar tensile tests on specimens of SBR
filled with carbon black are carried out.

Due to the high deformability, the material under stress,
undergoes marked deformation. In these circumstances the
classical methods of measuring deformation fall in default
and require alternative assessment criteria which take into

account the highly hyperelastic material characteristics. Then,
they applied optical methods for overcoming this limit to
characterize the elastomer.

The collected data were analyzed to determine the main
elastomer storage modules. Different responses in relation
to the different direction of load application are obtained,
studying anisotropy expressed by the material due to the
production process of calendering elastomeric sheet. Given
the high variability of the materials properties, the results
were compared with those indicated in the literature for the
styrene-butadiene rubber filled with carbon black. The normal
storage modulus (stiffness) and the transverse contraction
coefficient (Poisson’s ratio) of the SBR as a function of
the filler percentage have appeared, in accordance with the
data available, lower for the tests with load applied in the
calendaring direction.
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