
Optimum size of feed forward neural network for
Iris data set.

Wojciech Masarczyk
Faculty of Applied Mathematics
Silesian University of Technology

Gliwice, Poland
Email: wojcmas042@polsl.pl

Abstract—This paper illustrates a process of finding optimum
structure of neural network which will be used to solve problem
of Iris data set. This work presents dependencies between number
of layers, neurons and efficiency of network providing the best
configuration for given data set.

Index Terms—feed forward neural network, Iris data set,
backpropagation algorithm

I. INTRODUCTION

Computers can help on automated models implemented to
co-work with other devices in service. We can find various ap-
plication of intelligent systems in medicine, technology, trans-
port, etc. We expect from computer to control possible dangers
and advise the best options, while assisting humans [3], [4].
However in these aspects it is necessary to process data of
various origins [13]. We have many possible approaches to
data analysis. There are solutions devoted to big data [8],
where we use some sophisticated methods implemented for
knowledge engineering.

Mainly computational intelligence is assisting in data pro-
cessing to discover knowledge from input data, there are
mathematical models implemented to find incomplete infor-
mation and work with this issues [1], [2]. Similarly we can
find reports on efficiency of neural networks in processing
incoming information [10]. Neural networks are efficient in
processing input data of various types, from voice samples
[15] to handwritings [11]. However to improve efficiency of
processing it is important to discuss optimum size of these
architectures, what will be done in this article using iris data
set as an example.

II. NEURAL NETWORK MODEL

A. Biological inspiration

Neural network is a biologically inspired model of
mathematical computations which structure is based on
architecture of human brain. In the simplest approach
brain consists of approximately 8.6 · 1010[5] neurons
that are connected with each other creating a network of
1015 connections through which impulses are being sent

Copyright c© 2017 held by the authors.

simultaneously resulting in brain processing speed close to
1018 operations per second.
Why one should even bother applying neural network into any
field of computations? Mostly due to the fact that artificial
neural networks are able to generalize obtained knowledge
which means that after proper training such network should
be able to predict correctly value of given example not
included in training data. Second advantage of these models
is robustness for random fluctuations or lack of part of values
in data set. Generally neural networks are used to solve
problems that seems to be incomputable or too complicated
to solve by classical algorithms.

B. Artificial neuron

One can observe that artificial neuron is really simplified
versions of human neuron, however still keeps three most
important features of neuron:
-taking input from other neurons (dendrites)
-computing and processing impulses taken as input
-sending on computed impulse to further neurons(axon)

Figure 1. Biological and artificial neuron

14

Christian Napoli
Rettangolo

One cycle of computations in neurons may be described
as follow: values are being multiplied by appropriate weights
and summed together in a cell of neuron after which sum is
taken as argument to activation function which value is set to
be impulse send as the output of neuron. Equation describing
this process is presented below:

y = f(
n∑

i=1

w(xi)j · xi), (1)

where
w(xi)j − weight between i and j neuron in consecutive layers,
xi − value of neuron i,
f − activation function

In (1) it is assumed that previous layers consists of n neurons.

C. Activation function

Activation functions is an abstract indicator that says about
action taken in neuron. In simplest case once information is
important it outputs 1 otherwise neuron outputs 0. This model
is called a binary step function, despite its simplicity it is
able to solve a few problems, however it is insufficient with
more complex problems due to the lack of desired features
detailed in following list:
- Finite range results in stability while gradient - based
method are used for learning
- Continuous differentiable is necessary for every gradient -
based method, because of that feature binary step function
cannot be used in models with gradient based learning
algorithms.
- Identity near origin fasten the learning process once initial
weights are small numbers.
In this paper results will be obtained using only four different
activation functions:

Logistic function:

f(x) = 1
1+e−βx (2)

where
β − determines steepness of function near origin,

Hyperbolic tangent:

f(x) = tanh (x) = 2
1+e−2x − 1 (3)

Arctangent

f(x) = 1
tan x (4)

Modified Hyperbolic tangent:
Modification proposed by Yann LeCun [6]

f(x) = 1.7159 tanh(23x) (5)

Figure 2. Graph of different activation functions tested in this paper

D. Neural network

Feed forward neural network is constructed by neurons
stacked in a rows called layers that are fully connected
with previous and subsequent layer. First and last layer are
respectively called input and output layer, each layer between
these two is called a hidden layer. Role of neurons in input
layer is to store the initial data and send it further. Flow of
information takes place from left to right, so once initial data
is provided the result will appear at the output layer which
ends one full cycle of computations for network.

Figure 3. Example of feed forward neural network with 2 hidden layers

According to (1) output of neural network is just a sum of
random weights multiplied by initial values, the only param-
eter that might be modified in neural network are weights so
learning algorithm is just a process of changing weights in
such way that output is exactly the same as presented in data
set. In this paper backpropagation algorithm will be discussed.

E. Backpropagation algorithm

To train the network it is necessary to provide a data
set that consists of vector of input signals (x1, x2, ..., xn)
and corresponding desired output z. Thanks to this fact it is
possible to compute the difference between output signal y
and desired value z. Let δ = z − y. Next step is to propagate
δ error through every neuron according to equation:

δj =
n∑

i=1

w(j)iδi, (6)

where
w(i)j − weight between i and j neuron in consecutive layer,
δi − value of error on neuron i in consecutive layer,

15

Once δ error is computed for each neuron following step is
to actualize weights using equation below:

w(j)i = w(j)i + ηδi
dfi(x)
dx yj (7)

where
w(i)j − weight between i and j neuron in consecutive layers,
yj − value of neuron j,
fi − activation function on neuron i
δi − value of error on neuron i in consecutive layer,
η − coefficient that affects speed of learning.

Learning is an iterative process that takes place until δ for
output layer is smaller than desired precision.

III. CONVERGENCE OF GRADIENT DESCENT ALGORITHM
WITH RESPECT TO η

While analyzing equation (7) it is obvious that η has a
direct impact on pace of learning of neural network since
derivative determines direction where error function descends.
It is crucial to select balanced value of η. Too small value
may result in slow learning process while value bigger than
necessary will end with divergence of algorithm. Four different
scenarios of η values are presented in graphical interpretation.
Every test in this paper was carried out with η = 0.02 as it
appears to be most suitable value of this parameter.

IV. IRIS DATA SET

Iris data set is a classic and one of the best known sets
for pattern recognition described in [7]. It consists of 150
instances that are equally divided into three different classes.
Each class refers to a different type of iris plant. Every sample
is a vector of length equal four, where vector components
describes:
1. sepal length [cm]
2. sepal width [cm]
3. petal length [cm]
4. petal width [cm].
In order to create training data set, 35 samples were chosen
from each class, so that 30% of whole set is left for testing
accuracy of trained model. The aim for neural network is to
classify Iris, described by these four dimensions, into one of
three given classes.

V. TESTS

For further tests η is equal to 0.02, it will be pointed out
once η will change. In every case desired error is set to be
smaller than 10−5. Maximum epochs are set to 20000.
In order to compare obtained results it is necessary to come up
with general formula determining number of weights in single
network:

q = 4 · 3
n∏

i=1

i, (8)

where
i − neurons on each hidden layer,
n − number of hidden layers,

As batch learning approach is used in this case every iteration
is equal to updating every weight in whole neural network
structure. Since then it seems natural to come up with equation
describing numbers of updates done throughout whole process
of learning each network.

Q = q · r (9)

where
r − number of iterations,
q − number of neurons in network,

Q from equation (9) will be used in next section to compare
efficiency of different network structures.

A. Results
It is clearly visible in table below that in case network

consists of only input and output layers (0 hidden layers) it
fails to classify properly each of three types, usually being
able to classify correctly two of them while having issues
with third one. This is caused by the fact that one class is
linearly separable from the other two, however the latter are
not linearly separable from each other.

One can observe that Hyperbolic Tangent function is most
uniform function while being most effective taking into con-
sideration number of iterations and number of neurons needed
to obtain desired precision. Similar behaviour can be viewed
with Arctangent function, however it fails to work for networks
that were properly computed with Hyperbolic Tan.
On the other side Modified Tangent performed below expecta-
tions, however it is important to remember that all tests were
carried out for fixed η. Since steepness of this function is mod-
ified and value of η should be set with respect to derivatives
[6] its underperformance seems to be understandable.

After analyzing table it is clear that adding additional hidden
layers is not worth the effort since optimum is obtained for 1 or
2 hidden layers. Note that each hidden layer with 10 neurons
added have to result in decreasing iterations tenfold to be
computationally profitable, unfortunately this does not happen
with any function. Moreover, as shown, network that is too
big (5 hidden layers and more) tend to fail this classification
task at all. It might caused by the fact that Iris Data set is
relatively small (150 examples) and it is not enough to adjust
properly so many weights.

Three graphs presented in this paper represents Error func-
tion over consecutive iterations. Figure 6 presents nearly
perfect plot that is smooth and monotonic at most of a time. On
contrary to the Figure 5 which presents heavy oscillations of
Error function caused by wrong η coefficient. Exactly the same
situations appears to be on Figure 7 at around 400 iteration,
luckily it is a situation when η > ηopt and after a few iterations
of oscillations it finally converges. Values presented in table
show that network failed to obtain desired precision in 20000
iterations.

16

Figure 4. Graphical interpretation of η coefficient.

Figure 5. Error function over iterations in 0 hidden layer network

Figure 6. Error function over iterations in 1 hidden layer network

VI. REMARKS

During designing artificial neural network there is a list
of crucial parameters that need to be set precisely in order

17

Activation function Number of hidden layers Neurons on hidden layers Total weights Iterations Weights · iterations

Logistic Function

0 0 12 F F

1 5 60 F F
10 120 10811 1297320

2
10 - 10 1200 8467 10160400
10 - 5 900 F F
5 - 10 900 5909 5318100

3
8 - 8 - 8 6144 F F
10 - 8 - 6 10800 3867 41763600
6 - 8 - 10 10800 553 5972400

4
6 - 6 - 6 - 6 15552 F F
10 - 9 - 8 - 6 51840 F F
6 - 8 - 9 - 10 51840 F F

5
7 - 7 - 7 - 7 - 7 201684 F F
12 - 10 - 9 - 8 - 7 725760 F F
7 - 8 - 9 - 10 - 12 725760 F F

Hyperbolic Tangent

0 0 12 F F

1 5 60 259 15540
10 120 2047 245640

2
10 - 10 1200 1124 1348800
10 - 5 900 1266 1139400
5 - 10 900 F F

3
8 - 8 - 8 6144 F F
10 - 8 - 6 10800 313 3380400
6 - 8 - 10 10800 1359 14677200

4
6 - 6 - 6 - 6 15552 1512 23514624
10 - 9 - 8 - 6 51840 1566 81181440
6 - 8 - 9 - 10 51840 874 45308160

5
7 - 7 - 7 - 7 - 7 201684 1072 216205248
12 - 10 - 9 - 8 - 7 725760 F F
7 - 8 - 9 - 10 - 12 725760 F F

Arctangent

0 0 12 F F

1 5 60 699 41940
10 120 311 37320

2
10 - 10 1200 2824 3388800
10 - 5 900 2567 2310300
5 - 10 900 4026 3623400

3
8 - 8 - 8 6144 F F
10 - 8 - 6 10800 777 8391600
6 - 8 - 10 10800 831 8974800

4
6 - 6 - 6 - 6 15552 1072 16671744
10 - 9 - 8 - 6 51840 235 12182400
6 - 8 - 9 - 10 51840 F F

5
7 - 7 - 7 - 7 - 7 201684 F F
12 - 10 - 9 - 8 - 7 725760 F F
7 - 8 - 9 - 10 - 12 725760 F F

Modified Tangent

0 0 12 F F

1 5 60 248 14880
10 120 1245 1297320

2
10 - 10 1200 F F
10 - 5 900 F F
5 - 10 900 F F

3
8 - 8 - 8 6144 F F
10 - 8 - 6 10800 F F
6 - 8 - 10 10800 F F

4
6 - 6 - 6 - 6 15552 F F
10 - 9 - 8 - 6 51840 F F
6 - 8 - 9 - 10 51840 F F

5
7 - 7 - 7 - 7 - 7 201684 F F
12 - 10 - 9 - 8 - 7 725760 F F
7 - 8 - 9 - 10 - 12 725760 F F

to achieve properly working model. As most important and
discussed in this paper are:

• Activation function - as turned out, it has a huge impact
on capabilities of network, not only these provided by
differentiability but also can significantly accelerate
process of learning,

• Learning coefficient - highly depends on activation
function, is a crucial factor in converging process of
gradient - based methods of learning,

• Number of hidden layers and neurons - in simple
problems like that one discussed in this paper 2 hidden
layers are enough,

18

Figure 7. Error function over iterations in 2 hidden layer network

• Number of iterations and desired precision - again,
strongly depends on problem one tries to solve, there is
no general rule that describes how to set these values,
however it is important to set upper limit of iterations
in order to stop the computations at some point once
learning algorithm is unable to achieve desired precision,

VII. SUMMARY

Among various architectures neural networks are one of
most efficient processors of information about controlled ob-
jects, moreover these architectures can cooperate with infor-
mation presented in a form of image, voice sample, network
statistics, etc.

Each implemented solution needs adjusted architecture to
exactly fit the model of decision support. Therefore research
on performance of various types can give valuable information
about performance, what can improve implementations of
neural networks.

REFERENCES

[1] P. Artiemjew, Stability of Optimal Parameters for Classifier Based on
Simple Granules of Knowledge, Technical Sciences, vol. 14, no. 1, pp.
57-69. UWM Publisher, Olsztyn 2011.

[2] P. Artiemjew, P. Gorecki, K. Sopyła, Categorization of Similar Objects
Using Bag of Visual Words and k – Nearest Neighbour Classifier,
Technical Sciences, vol. 15, no.2, pp. 293-305, UWM Publisher, Olsztyn
2012.

[3] R. Damasevicius, M. Vasiljevas, J. Salkevicius, M. Woźniak, “Human
Activity Recognition in AAL Environments Using Random Projec-
tions” Comp. Math. Methods in Medicine, vol. 2016, pp. 4073584:1–
4073584:17, 2016, DOI: 10.1155/2016/4073584.

[4] R. Damasevicius, R. Maskeliunas, A. Venckauskas, M. Woźniak,
“Smartphone User Identity Verification Using Gait Characteris-
tics” Symmetry, vol. 8, no. 10, pp. 100:1–100:20, 2016, DOI:
10.3390/sym8100100.

[5] S. Herculano-Houzel, The human brain in numbers: a linearly scaled-up
primate brain, Frontiers in Human Neuroscience vol. 3, pp. 31:1-31:11,
2009, DOI: 10.3389/neuro.09.031.2009

[6] Y. Le Cun, L. Bottou, G. Orr, K. Muller, Efficient backprop. Neural
Networks: Tricks of the trade, 1998.

[7] R. Fisher, The use of multiple measurements in taxonomic problems,
Annual Eugenics, vol. 7, pp. 179-188, 1936.

[8] Z. Marszałek, “Novel Recursive Fast Sort Algorithm,” in Communica-
tions in Computer and Information Science, vol. 639, pp. 344–355, 2016,
DOI: 10.1007/978-3-319-46254-7_27.

[9] C. Napoli, E. Tramontana, E., “An object-oriented neural network tool-
box based on design patterns,” in International Conference on Informa-
tion and Software Technologies, pp. 388-399, 2015, DOI: 10.1007/978-
3-319-24770-0_34.

[10] C. Napoli, G. Pappalardo, E. Tramontana, “A mathematical model for
file fragment diffusion and a neural predictor to manage priority queues
over BitTorrent,” in Applied Mathematics and Computer Science, vol.
26, no. 1, pp. 147-160, 2016, DOI: 10.1515/amcs-2016-0010.

[11] D. Połap, M. Woźniak, “Flexible Neural Network Architecture for
Handwritten Signatures Recognition” International Journal of Electron-
ics and Telecommunications, vol. 62, no. 2, pp. 197–202, 2016, DOI:
10.1515/eletel-2016-0027.

[12] C. Napoli, G. Pappalardo, G. M. Tina, E. Tramontana, “Cooper-
ative strategy for optimal management of smart grids by wavelet
rnns and cloud computing” IEEE transactions on neural networks
and learning systems, vol. 27, no. 6, pp. 1672–1685, 2016, DOI:
10.1109/TNNLS.2015.2480709.

[13] D. Połap, M. Woźniak, “Introduction to the Model of the Active
Assistance System for Elder and Disabled People,” in Communications
in Computer and Information Science, vol. 639, pp. 392–403, 2016,
DOI: 10.1007/978-3-319-46254-7_31.

[14] C. Napoli, G. Pappalardo, E. Tramontana, R. K. Nowicki, J. T. Star-
czewski, J. T., M. Woźniak, “Toward work groups classification based
on probabilistic neural network approach” in International Conference
on Artificial Intelligence and Soft Computing, pp. 79–89. 2016, DOI:
10.1007/978-3-319-19324-3_8.

[15] D. Połap, “Neuro-heuristic voice recognition,” in 2016 Federated Con-
ference on Computer Science and Information Systems, FedCSIS 2016,
Proceedings. 11-14 September, Gdańsk, Poland, IEEE 2016, pp. 487–
490, DOI: 10.15439/2016F128.

19

