
14

Implementation of an FPGA testbed

as an educational experiment for students of

informatics

Lukas Stasytis
Faculty of Informatics

Kaunas Technology University

Student g. 50, Kaunas 51368

e-mail: lukas.stasytis@ktu.edu

Abstract—The following paper describes a hardware imple-

mentation of a simulation platform on an FPGA board to provide
a test bed for machine learning experimentation. The educational
value that such a project can have for a student in putting
theoretical programming, digital logic and computer architecture
principles to practice.

I. INTRODUCTION

The author of this paper, while undertaking the 2nd semester

of a Computer Science program, took up the following project

as a means to put studied theoretical Digital Logic principles

to practical use beyond the typical course lab work and to

better understand how hardware is designed and implemented.

The goal of the project is to implement a two dimensional

simulation platform using the VHDL programming language

on to an FPGA (Field Programming Gate Array) board.

Machine learning implementations, like neural networks, could

then be attached to said implementation to run high speed

experiments. As such, this project is meant to lead up to an

artificial intelligence research project. A key focus of this

paper is to show how taking up such a project was extremely

valuable in revising old and learning new computer science

principles for the author.

II. IMPLEMENTATION OVERVIEW

As a whole, the implementation simulates a two dimensional

bit maze with ’1’ bit-wide entities that can traverse the maze

taking turns in sequence. The maze itself can have a set

configuration to either simulate a complex maze, a flat field or

a simple checker-board pattern. The entities are divided into

two groups: the player and a list of guards. The goals of these

entities can vary, but the primary goal of the player is to reach

a designated tile on the maze while the goal of the guards is

to catch the player. Figure 1 shows some of the possible maze

configurations that the implementation covers.

Fig. 1. Possible maze configurations

The black squares represent entities and the goal while the

grey squares represent walls. A surrounding wall is generated

around the structure, for reasons that will be discussed in the

level component implementation overview. The general

process run-down of the implementation is as follows:

(a) An external input command is given to start the simula-

tion after choosing a specific mode in which it will run.

(b) The initial maze is generated by taking into account the

chosen mode.

(c) Each entity is given a random starting position and initial

maze information to help make the initial decision.

(d) The simulation starts and over the course of a series of

counter clocks, each entity makes a decision of which

direction to either move to or turn to.

(e) The entity decisions are sent to the component holding

the maze’s information to check if the decision is legal.

(f) The newly generated maze information for the next

decision is sent back to each entity.

(g) A turn summary is generated and sent to the player and,

if chosen to, system output to store.

Copyright © 2017 held by the authors

mailto:lukas.stasytis@ktu.edu

15

(h) Based on the results of the turn, a new turn begins or the

simulation is reset.

Figure 2 shows the entire structure of the implementation

with all its components.

Fig. 2. The base structure of the platform

Going from right to left, the ten components are as follows:

(a) Random number generator

(b) Maze generator

(c) Maze storage

(d) Level

(e) Main command

(f) Transform

(g) Sub command

(h) Counter

(i) Player

(j) Guard (multiple)

The following is a short run down of each component and

how they function in the platform as a whole before going

deeper into the structure of each component and development

principles:

(a) The main command component controls all the other

components in the system. The system inputs go directly

to this component and based on those, the component

sends out a new state signal for each other component to

react to. This state signal defines what each component

should be doing - being on standby, preparing for a

simulation or running a simulation.

(b) Once the simulation request is made, the maze generator

starts generating the initial maze with the help of a

random number generation component.

(c) The newly generated maze is sent to the maze storage

component and from there, to the level component. The

maze generator continues to store new maps in the storage

component afterwards.

(d) Initial maze information is sent to each entity from the

level component via the sub command component, which

is in charge of routing entity requests and maze controller

(level) answers.

(e) With the initial configuration of each entity set, the actual

simulation starts. Each entity sends out a request for a

new move.

(f) The counter dictates which entity request will be handled

first, allowing for a parallel and iterative request handling.

This is done by limiting each component’s functions to

specific counter ticks.

(g) The level component, after checking each request -

making sure the move is legal and that no collisions

are present, sends an answer back to the entities and

modifies the maze array to reflect on a passed or rejected

movement request. At the same time, a small field view of

the maze is generated for the entity to use when making

the next move. This information is sent to a transform

component.

(h) The transform component modifies the maze information

that goes to the entities. Specifically, removes entity view

vision behind walls.

(i) After each entities request has been handled and all the

answers have been delivered, a turn summary is generated

inside the level component and sent to the player and

the system output/storage. Based on this summary, the

simulation can continue or be reset due to player loss or

victory.

III. COMPONENT OVERVIEW

A. State machines and the main command unit

At the highest level, the platform acts as a state machine.

The main command component, which connects to each other

component of the platform, has a three bit-wide variable

which determines which state the platform is in. Each other

component has a case statement at the very top, checking

which state the platform is in to decide on a specific task

that it will be performing. Figure 3 shows a bit dictionary of

the state signal.

Fig. 3. Bit dictionary of the state signal

By using such a state configuration, modularity can be

achieved within the simulation to allow for different types of

simulations to be run without needing to recompile and re-

upload the hardware configuration. There exist two more main

state machine implementations within the platform, namely

the use of a counter to decide what state the turn is at and a

state machine for the guard artificial intelligence, albeit only

for testing purposes. Both will be explored in their respective

sections.

16

B. Maze generator

The current primary maze generation module uses a re-

cursive backtracking generation algorithm implemented iter-

atively using a stack of 14 bits the size of the maze path. 7

for the x and y coordinates of each tile that has already been

traversed. Over a few hundred series of clocks, the component

generates a full maze of a given size and then sends the maze

one line at a time to the maze storage component. The

generator itself is fed with a random number each clock cycle

from the random number generation component and uses said

number to decide in which direction to continue digging paths.

All the variables are stored in registers and the maze’s size

goes up to 128*128 tiles wide, but could be adjusted with

only a few edits in the code.

A list of algorithms were looked at to determine which

one would best suit a hardware implementation. Some of the

algorithms looked at were:

(a) Kruskal’s algorithm - very easy and quick implementa-

tion, but produces a lot of dead-ends in the maze, which

can be very difficult for an AI to overcome.

(b) Recursive division algorithm - requires very large stacks

to implement iteratively, would likely consume too much

space on an FPGA.

The recursive backtracking algorithm was the final choice

because of its simple iterative implementation that requires a

single, easy to read stack and highly branching paths, which

could potentially allow for a more fluid machine learning

process. An iterative approach was picked, because there is

no value to be gained in generating mazes over a single clock

cycle, given the comparably long simulation times that require

hundreds of clock cycles to complete. Additionally, a recursive

method is very resource heavy and an FPGA board of any

variant is heavily limited in space.

C. Random number generator

A simple LFSR - Linear Feedback Shift Register was used

to create a pseudo-random number generator with minimal ef-

fort. The generator starts generating numbers from the moment

an input command by the user is sent and reset every time the

input is given again. Given how the FPGA of choice (Altera’s

DE0 Development and Education board) runs at 50 MHz clock

speeds, a human input should already add enough randomness

to the seed to allow for fairly random mazes to be generated.

Given the fact that different components of the FPGA board

can be accessed, some of which can hold highly random data

information, alternative, more random and automated methods

of generating seeds might be considered in the future. Given

that the random number generator is separated from the actual

maze generator, modularity is easy to accomplish.

D. Maze storage

The generated mazes are stored in a four-layer wide stack

of mazes, each consisting of ’map width’ x ’map width’ size

array of bits, where each one represents a wall. By saving

mazes in a stack, rather than generating only a single maze

and uploading that, we are able to instantly swap from an

older maze configuration to a new one once a maze has been

cleared. Given how a single maze can take a few hundred

clock cycles to build and a single turn takes ten cycles, we

can see in practice that a map buffer can easily be achieved

and used to not have to wait in between the player beating

mazes. The maze stack also allows for pre-generated mazes

to be input into the system from external memory.

E. Level component

The level component has four functions:

(a) Storing the current simulation maze array with all neces-

sary information of each tile

(b) Generating the starting positions of each entity and send-

ing them out.

(c) Checking for the legality of incoming movement requests

and making changes to the maze array appropriately. That

is, making an entity position change reflect in the actual

array that holds the maze for collision checking.

(d) Generating maze information for each entity when han-

dling a movement request

The level component is the heart of the platform that

practically holds the entire simulation within itself. Entity

information and stored mazes for future simulation cycles are

the only external pieces of information that the level

component does not hold within itself. The component’s basic

structure is based on a series of if statements that determine

if the entity making a request is a player or a guard, if it is

requesting to turn their vision or to make a movement and

if the entity has other entities in its field of view to count

damage checks. This is followed by a collision check by

testing if the tile that the entity wants to move to is already

filled with an entity or not. If a collision occurs, the entity’s

position is simply left unmodified. A core design principle

within the level component is that the request is handled by

simply modifying the incoming request signal and sending the

modified signal back to the entity that made the request. Figure

4 illustrates this signal.

Fig. 4. A movement request signal breakdown

In the table, going from left to right, we have:

(a) ’7’ bits to store the x axis position of the entity.

(b) ’7’ bits to store the y axis position of the entity.

(c) ’3’ bits saving the unique id of the entity.

(d) ’1’ bit telling if the entity is requesting to move or to turn

(e) ’2’ bits telling the direction in which the entity would

like to move or turn its vision.

Once a request arrives at the level component, the id tag

is checked to determine if the requesting entity is a player

or the guard, then it is checked if the entity is requesting

a move or a turn and based on that information the current

position of the entity and the requested movement direction

are added together and checked for validity. Once validity has

been confirmed, the position coordinates of the entity may or

17

may not be changed. All this information is then sent back

to the entity in an answer signal that is generated using the

same format as the request signal. Furthermore, a field view is

generated based on the direction the entity is facing and sent

to the transformation module.

The generation itself is achieved by simply multiplying the

entity coordinates by a number ranging from ’-4’ to ’4’,

excluding ’0’, which depends on the direction the entity is

facing. This way, every required maze array tile for a field

view can be obtained with minimal if statements. This does,

however, make any further mathematical operations in the

same clock cycle impossible on the generated map view.

Lastly, a ’3’ bit-wide wall is present at the edges of the

maze array to eliminate the need to worry about out-of-index

errors. In other words, rather than creating many positional

checks to make sure that the field view does not look past

the maze array, the array is simply expanded further and filled

with wall tiles. In doing so some register space is sacrificed

for an easier algorithm.

Figure 5 shows an example of what the field view looks

like.

Fig. 5. Entity field view visualization

Number 1 marks a guard entity facing northwards while

number 2 - a player entity facing eastwards.

The player entity is given one extra line of vision to give

it an advantage over the guards. The information is sent in

three or four data packets, each holding the tile information

of each specific tile in that line. The maze arrays have ’4’ bits

assigned to each tile, marking the wall, player entity, guard

entity and objective variables.

F. Sub command unit

The sub command unit, located between the level and the

entity components, acts as a router to make sure that the level

component is getting a single request each clock cycle and

that the entities are all receiving their answers. This unit is

not necessary, given that the entities could just be directly

connected to the level component, however the separation

allows to vastly simplify the level component, which is already

much more complex than the rest of the platform and so losing

one clock cycle per turn to achieve this result is deemed

a worthwhile trade. Listing 1 shows the code of the sub

command component.

Listing 1. Sub command component

b e g i n

i f (r i s i n g e d g e (c l k)) t h e n

i f s t a t e (2) = ’ 1 ’ or s t a t e = ” 011 ” t h e n

c a s e c o u n t e r i s

when ” 0001 ” =>

t o l e v e l <= sp 0 ; (1)

when ” 0010 ” =>
t o l e v e l <= sg 01 ;

when ” 0011 ” =>
t o l e v e l <= sg 02 ;

t o e n t i t i e s <= f r o m l e v e l ; (2

) when ” 0100 ” =>
t o l e v e l <= sg 03 ;

t o e n t i t i e s <= f r o m l e v e l

; when ” 0101 ” =>
t o l e v e l <= sg 04 ;

t o e n t i t i e s <= f r o m l e v e l

; when ” 0110 ” =>
t o l e v e l <= sg 05 ;

t o e n t i t i e s <= f r o m l e v e l

; when ” 0111 ” =>
t o e n t i t i e s <= f r o m l e v e l

; when ” 1000 ” =>
t o e n t i t i e s <= f r o m l e v e l ; (3

) when o t h e r s =>
end c a s e ;

end i f ;

end i f ;

end p r o c e s s main ;

The following is a list explanation of the three noted lines:

(1) A signal ’sp0’ (from the player entity) is being sent

forward to the level component using the ’to level’ signal.

(2) Later in the turn cycle, the component is sending forward

a request and also sending back an answer of a previous

request in parallel. In this case - sending forward ’sg02’

(second guard entity) and receiving ’sp0’ (the pre-last

forwarded request’s answer)

(3) At the end of the turn cycle, all that is left is for the

component to handle the remaining answer signals being

generated by the level component.

An important distinction is that the incoming entity requests

come from specific input signals, while the answer signal to

the entities goes into the same ”to entities” signal, this is

because only the sub command component is inputting an

answer signal, while all six entities are inputting the request

signals. So in the return trip, each entity can simply feed from

the same bus and check if the answer travelling matches their

identification number, while this is not possible while making

the requests, because the signals would clash. A master-slave

communication protocol could be used to make the entity

input also come from a single signal. This is not done for

simplicity sake, since the “slave” count is very limited in the

current implementation, leaving the protocol as a potential

18

future modification if deemed necessary.

19

G. Field view transform

The transform component is given the information that an

entity is meant to obtain from the level component and then

makes some changes to account for set rules. Specifically, the

current iteration of the implementation has a single bit

dedicated to saying that the tile is a wall. Naturally, an entity

should not be able to see what is behind a wall. Thus, a filter

is ran that removes all information that should not be visible to

the entity, because of walls obstructing vision. This is achieved

by a series of if statements. Each tile in the first few lines of

the cone is checked for holding a wall value and if it does -

each tile behind it is made null, mimicking a lack of vision.

The reasoning behind this component is that, in the level

component, a clock cycle is already used up when making a

mathematical transformation on the entity’s facing direction

and coordinates to determine which tiles to grab without

needing to input too many if statements. As such, the transfor-

mation component is separated from the level component to

make the scrambling transformation independently. This also

allows to easily modify the component to change how the

transformation is done.

H. Entities

A few practices present in object-oriented programming are

put into use. Namely, how all the entity components are

similar to objects in how they store functions and all entity

variables and are treated the same by other hardware

components within the system. However, unlike in true object-

oriented programming, the object count is fixed and requires

code readjustments to change, which does cause a scalability

issue. Each entity has a separate hardware component in which

all information about the entity is stored. The entities are each

given a unique identification tag at the start of the simulation

by a direct input command. Additionally, each component is

prepared to be connected to a separate component that would

decide which move the entity would make. This is how

machine learning would be implemented into the platform.

By attaching, for example, a neural network to each entity.

After receiving an answer to a turn, each entity would send

this answer with additional information from past turns to the

neural network, upon which, a move can be decided. The

answer would then be generated in a single clock cycle and

sent back to the entity to then generate a request to the level

component. Lastly, the player entity is different from the guard

entities, because at the end of each turn, it also receives a direct

turn summary from the level component. Using this summary,

the entity checks if the simulation should be reset because of

the objective being achieved or the player having lost.

I. The counter and platform parallelism

Figure 6 shows the main conveyor of the simulation.

Fig. 6. Platform simulation conveyer

The way the conveyor works is that by implementing a

counter component that counts up to a specific number of

choice and then resets, we are able to fully control what each

component is doing at each clock cycle while the simulation is

running. The conveyor greatly decreases the amount of clock

cycles each turn requires to be cycled by giving each entity a

piece of information to work with. For example, in the counter

= ’4’ cycle, going from up to down, it can be seen that:

(a) The sub command and transformation components are

sending out the 1st guard’s request answer to be picked

up by said guard.

(b) The 2nd guard’s answer is being handled and sent out to

the sub command and transformation components.

(c) The 3rd guard’s request is being sent to the level com-

ponent from the sub command.

(d) The 4th guard’s request is being sent from the entity to

the sub command component.

Additionally, at the end of the conveyor, the level component

generates a turn summary and sends that to the player entity.

If a component that implements machine learning is added

to the platform, it would be using up two additional clocks

(entity sends a request, the component sends back an answer)

after each entity has received its field view for that turn.

J. Discussion

The development process of the overviewed implementation

has proven to be an extremely educational experience for the

author with each part of the system acting as a tool to revise

and learn new computer science principles. The following is a

list of some of the lessons that were learned in the development

process:

(a) State machines.

(b) Hardware time dependency - at the hardware level, a

mathematical calculation can only be correctly made if

it is known that the variables that make up the formula

have already been calculated. Given the nature of clock

cycles, this had to be carefully looked at.

(c) Random number generation - a look at how random

numbers are generated at the hardware level is required.

Different algorithms have to be looked at to decide which

one is most fitting for the job.

(d) Random number generator seed randomness - different

approaches can be considered while designing a hardware

chip and how there exists a possibility to implement a

hardware random number generator by using physical

20

processes of the chip, such as thermal noise and clock

drifts, which could achieve much greater degrees of

randomness than software implementations.

(e) Signal handling, component structure and optimization

- the level component requires efficient handling of the

movement requests to send out an answer in the same

clock cycle without creating variable dependencies, but

at the same time keeping the implementation of a man-

ageable size. For example, the transformation component

was separated from the level component entirely to allow

for field view generation to be done very efficiently by

using a single entity’s coordinates and direction to apply

a mathematical transformation and obtain a field view.

(f) Routers - a simple router had to be implemented within

the platform. Signal handling and time planning were

necessary.

(g) An event - condition - action (ECA) system is put into

practice with the answer signal handling.

(h) Object oriented programming principles are practiced,

namely by separating entities into separate components

and treating them much like objects while developing the

platform. The answer and request handling is done by

state machines that work very much like object methods.

Such an implementation gives an interesting look into the

differences between software and hardware design.

(i) Artificial intelligence is looked at by implementing a state

machine to the guard entities for testing purposes.

(j) Hardware parallelism implementation using a conveyor

(k) Counter implementation and usage in hardware

K. Future work

After careful review, it has become apparent that the design

is highly inefficient when fully implemented in hardware. The

current design takes up over 12000 LUTs or 80% of the entire

matrix capacity of the FPGA board used for testing the system.

As such, the entire platform will be reimplemented in software

while creating a real-time interface between a computer and

the FPGA board and implementing only the machine learning

components within the FPGA board. The current plan is to

use a RS-232 communication protocol and send out entity

field data to the FPGA and take back only the answer from

the board. If the RS-232 standard turns out to be too much

of a bottleneck in the system, more sophisticated ways of

interfacing the devices will be looked into.

IV. CONCLUSION

In this paper, the implementation of an experimental test bed

platform as a personal educational project was covered with all

the informatics principles and mazes that were touched upon

while developing. Over the course of the implementation and

after reviewing the final design, it has become clear that having

the entire design implemented on an FPGA board is highly

impractical, because the greatest bottleneck is in the machine

learning process, not the platform simulation. Limiting the

hardware implementation to only the machine learning part

and moving the rest of the system to software would be a

more cost efficient approach and will be the next focus of the

research project. The implementation does still show a way

to simply implement an entity simulation within hardware and

acted as an excellent tool for the author to further his

education.

ACKNOWLEDGEMENT

I would like to express my deepest thanks to my mentor

Kazimieras Bagdonas for not only guiding me through every

step of the way towards realizing this project, but also helping

me find my direction and develop a deep passion for learning.

REFERENCES

[1] E. E. Almeida, J. E. Luntz, D. M. Tilbury, “Event-condition-action
systems for reconfigurable logic control,” IEEE Transac- tions on
Automation Science and Engineering, vol. 4(2), pp.167–181, 2007.

[2] K. L. Dittrich, S. Gatziu, A. Geppert, “The active database management
system manifesto: A rulebase of adbms features,” In International
Workshop on Rules in Database Systems, pp. 1–17. Springer, 1995.

[3] S. S. Huang, A. Hormati, D. F. Bacon, R. Rabbah, “Liquid metal: Object-
oriented programming across the hardware/software boundary,” In
European Conference on Object-Oriented Programming, pp. 76–103.
Springer, 2008.

[4] F. Islam, M. Ali, B. Y. Majlis, “FPGA implementation of an LFSR based
pseudorandom pattern generator for mems testing,” International Journal
of Computer Applications, vol. 75(11), pp. 30-34, 2013.

[5] B. Jun, P. Kocher, “The intel random number generator, “Cryptography
Research Inc. white paper, 1999.

[6] M. Smiroldo, “Method and apparatus for managing a number of time slots
during which plural bidding devices can request communication access to
a central device,” August 5, 1997. US Patent 5,654,968.

