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Abstract—The following paper describes a hardware imple- 

mentation of a simulation platform on an FPGA board to provide 
a test bed for machine learning experimentation. The educational 
value that such a project can have for a student in putting 
theoretical programming, digital logic and computer architecture 
principles to practice. 

 

 
I. INTRODUCTION 

 
The author of this paper, while undertaking the 2nd semester 

of a Computer Science program, took up the following project 

as a means to put studied theoretical Digital Logic principles  

to practical use beyond the typical course lab work and to 

better understand how hardware is designed and implemented. 

The goal of the project is to implement a two dimensional 

simulation platform using the VHDL programming language 

on to an FPGA (Field Programming Gate Array) board. 

Machine learning implementations, like neural networks, could 

then be attached to said implementation to run high speed 

experiments. As such, this project is meant to lead up to an 

artificial intelligence research project. A key focus of this 

paper is to show how taking up such a project was extremely 

valuable in revising old and learning new computer science 

principles for the author. 

 

 

 
II. IMPLEMENTATION OVERVIEW 

 
As a whole, the implementation simulates a two dimensional 

bit maze with ’1’ bit-wide entities that can traverse the maze 

taking turns in sequence. The maze itself can have a set 

configuration to either simulate a complex maze, a flat field or 

a simple checker-board pattern. The entities are divided into 

two groups: the player and a list of guards. The goals of these 

entities can vary, but the primary goal of the player is to reach 

a designated tile on the maze while the goal of the guards is   

to catch the player. Figure 1 shows some of the possible maze 

configurations that the implementation covers. 

 

Fig. 1.   Possible maze configurations 

 
 

 

The black squares represent entities and the goal while the 

grey squares represent walls. A surrounding wall is generated 

around the structure, for reasons that will be discussed in the 

level component implementation overview. The general 

process run-down of the implementation is as   follows: 

(a) An external input command is given to start the simula- 

tion after choosing a specific mode in which it will    run. 

(b) The initial maze is generated by taking into account the 

chosen mode. 

(c) Each entity is given a random starting position and initial 

maze information to help make the initial   decision. 

(d) The simulation starts and over the course of a series of 

counter clocks, each entity makes a decision of which 

direction to either move to or turn   to. 

(e) The entity decisions are sent to the component holding 

the maze’s information to check if the decision is   legal. 

(f) The newly generated maze information for the next 

decision is sent back to each entity. 

(g) A turn summary is generated and sent to the player and, 

if chosen to, system output to   store. 
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(h) Based on the results of the turn, a new turn begins or the 

simulation is reset. 

Figure 2 shows the entire structure of the implementation 

with all its components. 

 
Fig. 2.   The base structure of the platform 

 
 

Going from right to left, the ten components are as follows: 

(a) Random number generator 

(b) Maze generator 

(c) Maze storage 

(d) Level 

(e) Main command 

(f) Transform 

(g) Sub command 

(h) Counter 

(i) Player 

(j) Guard (multiple) 

The following is a short run down of each component and 

how they function in the platform as a whole before going 

deeper into the structure of each component and development 

principles: 

(a) The main command component controls all the other 

components in the system. The system inputs go directly 

to this component and based on those, the component 

sends out a new state signal for each other component to 

react to. This state signal defines what each component 

should be doing - being on standby, preparing for a 

simulation or running a simulation. 

(b) Once the simulation request is made, the maze generator 

starts generating the initial maze with the help of a 

random number generation component. 

(c) The newly generated maze is sent to the maze storage 

component and from there, to the level component. The 

maze generator continues to store new maps in the storage 

component afterwards. 

(d) Initial maze information is sent to each entity from the 

level component via the sub command component, which 

is in charge of routing entity requests and maze controller 

(level) answers. 

(e) With the initial configuration of each entity set, the actual 

simulation starts. Each entity sends out a request for a 

new move. 

(f) The counter dictates which entity request will be handled 

first, allowing for a parallel and iterative request handling. 

This is done by limiting each component’s functions to 

specific counter ticks. 

(g) The level component, after checking each request - 

making sure the move is  legal  and  that  no  collisions 

are present, sends an answer back to the entities and 

modifies the maze array to reflect on a passed or rejected 

movement request. At the same time, a small field view of 

the maze is generated for the entity to use when making 

the next move. This information is sent to a transform 

component. 

(h) The transform component modifies the maze information 

that goes to the entities. Specifically, removes entity view 

vision behind walls. 

(i) After each entities request has been handled and all the 

answers have been delivered, a turn summary is generated 

inside the level component and sent to the player and    

the system output/storage. Based on this summary, the 

simulation can continue or be reset due to player loss or 

victory. 

 

III. COMPONENT OVERVIEW 

 
A. State machines and the main command unit 

At the highest level, the platform acts as a state machine. 

The main command component, which connects to each other 

component of the platform, has a three bit-wide variable  

which determines which state the platform is in. Each other 

component has a case statement at the very top, checking 

which state the platform is in to decide on a specific task     

that it will be performing. Figure 3 shows a bit dictionary of 

the state signal. 

 
 

Fig. 3.   Bit dictionary of the state signal 

 
 
 

By using such a state configuration, modularity can be 

achieved within the simulation to allow for different types of 

simulations to be run without needing to recompile and re- 

upload the hardware configuration. There exist two more main 

state machine implementations within the platform, namely  

the use of a counter to decide what state the turn is at and a 

state machine for the guard artificial intelligence, albeit only 

for testing purposes. Both will be explored in their respective 

sections. 
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B. Maze generator 

The current primary maze generation module uses a re- 

cursive backtracking generation algorithm implemented iter- 

atively using a stack of 14 bits the size of the maze path. 7    

for the x and y coordinates of each tile that has already been 

traversed. Over a few hundred series of clocks, the component 

generates a full maze of a given size and then sends  the maze 

one line at a time to the maze storage component. The 

generator itself is fed with a random number each clock cycle 

from the random number generation component and uses said 

number to decide in which direction to continue digging paths. 

All the variables are stored in registers and the maze’s size 

goes up to 128*128 tiles wide, but could be adjusted with   

only a few edits in the   code. 

A list of algorithms were looked at to determine which    

one would best suit a hardware implementation. Some of the 

algorithms looked at were: 

(a) Kruskal’s algorithm - very easy and quick implementa- 

tion, but produces a lot of dead-ends in the maze, which 

can be very difficult for an AI to   overcome. 

(b) Recursive division algorithm - requires very large stacks 

to implement iteratively, would likely consume too much 

space on an FPGA. 

The recursive backtracking algorithm was the final choice 

because of its simple iterative implementation that requires a 

single, easy to read stack and highly branching paths, which 

could potentially allow for a more fluid machine learning 

process. An iterative approach was picked, because there is   

no value to be gained in generating mazes over a single clock 

cycle, given the comparably long simulation times that require 

hundreds of clock cycles to complete. Additionally, a recursive 

method is very resource heavy and an FPGA board of any 

variant is heavily limited in space. 

C. Random number generator 

A simple LFSR - Linear Feedback Shift Register was used 

to create a pseudo-random number generator with minimal ef- 

fort. The generator starts generating numbers from the moment 

an input command by the user is sent and reset every time the 

input is given again. Given how the FPGA of choice (Altera’s 

DE0 Development and Education board) runs at 50 MHz clock 

speeds, a human input should already add enough randomness 

to the seed to allow for fairly random mazes to be generated. 

Given the fact that different components of the FPGA board 

can be accessed, some of which can hold highly random data 

information, alternative, more random and automated methods 

of generating seeds might be considered in the future. Given 

that the random number generator is separated from the actual 

maze generator, modularity is easy to accomplish. 

D. Maze storage 

The generated mazes are stored in a four-layer wide stack  

of mazes, each consisting of ’map width’ x ’map width’ size 

array of bits, where each one represents a wall. By saving 

mazes in a stack, rather than generating only a single maze  

and  uploading  that,  we  are  able  to  instantly  swap  from an 

older maze configuration to a new one once a maze has been 

cleared. Given how a single maze can take a few hundred 

clock cycles to build and a single turn takes ten cycles, we  

can see in practice that a map buffer can easily be achieved 

and used to not have to wait in between the player beating 

mazes. The maze stack also allows for pre-generated mazes   

to be input into the system from external   memory. 

E. Level component 

The level component has four functions: 

(a) Storing the current simulation maze array with all neces- 

sary information of each  tile 

(b) Generating the starting positions of each entity and send- 

ing them out. 

(c) Checking for the legality of incoming movement requests 

and making changes to the maze array appropriately. That 

is, making an entity position change reflect in the actual 

array that holds the maze for collision   checking. 

(d) Generating maze information for each entity when han- 

dling a movement request 

The level component is the heart of the platform that 

practically holds the entire simulation within itself. Entity 

information and stored mazes for future simulation cycles are 

the only external pieces of information that the level 

component does not hold within itself. The component’s basic 

structure is based on a series of if statements that determine    

if the entity making a request is a player or a guard, if it is 

requesting to turn their vision or to make a movement and      

if the entity has other entities in its field of view to count 

damage checks. This is followed by a collision check by 

testing if the tile that the entity wants to move to is already 

filled with an entity or not. If a collision occurs, the entity’s 

position is simply left unmodified. A core design principle 

within the level component is that the request is handled by 

simply modifying the incoming request signal and sending the 

modified signal back to the entity that made the request. Figure 

4 illustrates this signal. 

 
Fig. 4.   A movement request signal breakdown 

 
 

In the table, going from left to right, we    have: 

(a) ’7’ bits to store the x axis position of the    entity. 

(b) ’7’ bits to store the y axis position of the    entity. 

(c) ’3’ bits saving the unique id of the   entity. 

(d) ’1’ bit telling if the entity is requesting to move or to turn 

(e) ’2’ bits telling the direction in which the entity would  

like to move or turn its  vision. 

Once a request arrives at the level component, the id tag     

is checked to determine if the requesting entity is a player     

or the guard, then it is checked if the entity is requesting          

a move or a turn and based on that information the current 

position of the entity and the requested movement direction  

are added together and checked for validity. Once validity has 

been confirmed, the position coordinates of the entity may   or 
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may not be changed. All this information is then sent back     

to the entity in an answer signal that is generated using the 

same format as the request signal. Furthermore, a field view is 

generated based on the direction the entity is facing and sent  

to the transformation module. 

The generation itself is achieved by simply  multiplying the 

entity coordinates by a number ranging from ’-4’ to ’4’, 

excluding ’0’, which depends on the direction the entity is 

facing. This way, every required maze array tile for a field 

view can be obtained with minimal if statements. This does, 

however, make any further mathematical operations in the 

same clock cycle impossible on the generated map   view. 

Lastly, a ’3’ bit-wide wall is present at the edges of the 

maze array to eliminate the need to worry about out-of-index 

errors. In other words, rather than creating many positional 

checks to make sure that the field view does not look past    

the maze array, the array is simply expanded further and filled 

with wall tiles. In doing so some register space is sacrificed  

for an easier  algorithm. 

Figure 5 shows an example of what the field view looks 

like. 

 
Fig. 5.   Entity field view visualization 

 
 

Number 1 marks a guard entity facing northwards while 

number 2 - a player entity facing   eastwards. 

The player entity is given one extra line of vision to give    

it an advantage over the guards. The information is sent in 

three or four data packets, each holding the tile information   

of each specific tile in that line. The maze arrays have ’4’ bits 

assigned to each tile, marking the wall, player entity, guard 

entity and objective variables. 

F. Sub command unit 

The sub command unit, located between the level and the 

entity components, acts as a router to make sure that the level 

component is getting a single request each clock cycle and  

that the entities are all receiving their answers. This unit is  

not necessary, given that the entities could just be directly 

connected to the level component, however the separation 

allows to vastly simplify the level component, which is already 

much more complex than the rest of the platform and so losing 

one clock  cycle  per  turn  to  achieve  this  result  is  deemed 

a worthwhile trade. Listing 1 shows the code of the sub 

command component. 
 

Listing 1.   Sub command component 

b e g i n 

i f ( r i s i n g   e d g e ( c l k ) )   t h e n 

i f  s t a t e ( 2 )   =   ’ 1 ’   or  s t a t e   =  ” 011 ”   t h e n 

c a s e   c o u n t e r   i s 

when  ” 0001 ” => 

t o l e v e l <= sp 0 ; ( 1 ) 

when  ” 0010 ” => 
t o l e v e l <= sg 01 ; 

when  ” 0011 ” => 
t o   l e v e l  <=  sg 02 ; 

t o   e n t i t i e s  <=   f r o m   l e v e l ; ( 2 

) when  ” 0100 ” => 
t o   l e v e l  <=  sg 03 ; 

t o   e n t i t i e s  <=   f r o m l e v e l 

; when  ” 0101 ” => 
t o   l e v e l  <=  sg 04 ; 

t o   e n t i t i e s  <=   f r o m l e v e l 

; when  ” 0110 ” => 
t o   l e v e l  <=  sg 05 ; 

t o   e n t i t i e s  <=   f r o m l e v e l 

; when  ” 0111 ” => 
t o   e n t i t i e s  <=   f r o m l e v e l 

; when  ” 1000 ” => 
t o   e n t i t i e s  <=   f r o m   l e v e l ; ( 3 

) when  o t h e r s => 
end c a s e ; 

end  i f ; 

end  i f ; 

end  p r o c e s s main ; 

 

The following is a list explanation of the three noted   lines: 
 

(1) A signal ’sp0’ (from the player entity) is being sent 

forward to the level component using the ’to level’ signal. 

(2) Later in the turn cycle, the component is sending forward 

a request and also sending back an answer of a previous 

request in parallel. In this case - sending forward ’sg02’ 

(second guard entity) and receiving ’sp0’ (the pre-last 

forwarded request’s answer) 

(3) At the end of the turn cycle, all that is left is for the 

component to handle the remaining answer signals being 

generated by the level component. 
 

An important distinction is that the incoming entity requests 

come from specific input signals, while the answer signal to 

the entities goes into the same ”to entities” signal, this is 

because only the sub command component is inputting an 

answer signal, while all six entities are inputting the request 

signals. So in the return trip, each entity can simply feed from 

the same bus and check if the answer travelling matches their 

identification number, while this is not possible while making 

the requests, because the signals would clash. A master-slave 

communication protocol could be used to make the entity 

input also come from a single signal. This is not done for 

simplicity sake, since the “slave” count is very limited in the 

current implementation, leaving the protocol as a potential 
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future modification if deemed necessary. 
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G. Field view transform 
 

The transform component is given the information that an 

entity is meant to obtain from the level component and then 

makes some changes to account for set rules. Specifically, the 

current iteration of the implementation has a single bit 

dedicated to saying that the tile is a wall. Naturally, an entity 

should not be able to see what is behind a wall. Thus, a filter  

is ran that removes all information that should not be visible to 

the entity, because of walls obstructing vision. This is achieved 

by a series of if statements. Each tile in the first few lines of 

the cone is checked for holding a wall value and if it does - 

each tile behind it is made null, mimicking a lack of vision. 

The reasoning behind this component is that, in the level 

component, a clock cycle is already used up when making a 

mathematical transformation on the entity’s facing direction 

and coordinates to determine which tiles to grab without 

needing to input too many if statements. As such, the transfor- 

mation component is separated from the level component to 

make the scrambling transformation independently. This also 

allows to easily modify the component to change how the 

transformation is done. 

 

 
H. Entities 

 

A few practices present in object-oriented programming are 

put into use. Namely, how all the entity components are 

similar to objects in how they store functions  and  all entity 

variables and are treated the same by other hardware 

components within the system. However, unlike in true object- 

oriented programming, the object count is fixed and requires 

code readjustments to change, which does cause a scalability 

issue. Each entity has a separate hardware component in which 

all information about the entity is stored. The entities are each 

given a unique identification tag at the start of the simulation 

by a direct input command.  Additionally, each component is 

prepared to be connected to a separate component that would 

decide which move the entity would make. This is how 

machine learning would be implemented into the platform.   

By attaching, for example, a neural network to each entity. 

After receiving an answer to a turn, each entity would send 

this answer with additional information from past turns to the 

neural network, upon which, a move can be decided. The 

answer would then be generated in a single clock cycle and 

sent back to the entity to then generate a request to the level 

component. Lastly, the player entity is different from the guard 

entities, because at the end of each turn, it also receives a direct 

turn summary from the level component. Using this summary, 

the entity checks if the simulation should be reset because of 

the objective being achieved or the player having   lost. 

 

 
I. The counter and platform  parallelism 

 

Figure 6 shows the main conveyor of the   simulation. 

 

Fig. 6.   Platform simulation conveyer 

 
 

The way the conveyor works is that by implementing a 

counter component that counts up to a specific number of 

choice and then resets, we are able to fully control what each 

component is doing at each clock cycle while the simulation is 

running. The conveyor greatly decreases the amount of clock 

cycles each turn requires to be cycled by giving each entity a 

piece of information to work with. For example, in the counter 

= ’4’ cycle, going from up to down, it can be seen that: 

(a) The sub command and transformation components are 

sending out the 1st guard’s request answer to be picked 

up by said guard. 

(b) The 2nd guard’s answer is being handled and sent out to 

the sub command and transformation components. 

(c) The 3rd guard’s request is being sent to the level com- 

ponent from the sub command. 

(d) The 4th guard’s request is being sent from the entity to 

the sub command component. 

Additionally, at the end of the conveyor, the level component 

generates a turn summary and sends that to the player entity.  

If a component that implements machine learning is added     

to the platform, it would be using up two additional clocks 

(entity sends a request, the component sends back an answer) 

after each entity has received its field view for that    turn. 

J. Discussion 

The development process of the overviewed implementation 

has proven to be an extremely educational experience for the 

author with each part of the system acting as a tool to revise 

and learn new computer science principles. The following is a 

list of some of the lessons that were learned in the development 

process: 

(a) State machines. 

(b) Hardware time dependency - at the hardware level, a 

mathematical calculation can only be correctly made if   

it is known that the variables that make up the formula 

have already been calculated. Given the nature of clock 

cycles, this had to be carefully looked   at. 

(c) Random number generation - a look at how random 

numbers are generated at the hardware level is required. 

Different algorithms have to be looked at to decide which 

one is most fitting for the job. 

(d) Random number generator seed randomness - different 

approaches can be considered while designing a hardware 

chip and how there exists a possibility to implement a 

hardware  random  number  generator  by  using  physical 
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processes of the chip, such as thermal noise and clock 

drifts, which could achieve much greater degrees of 

randomness than software implementations. 

(e) Signal  handling,  component  structure  and optimization 

- the level component requires efficient handling of the 

movement requests to send out an answer in the same 

clock cycle without creating variable dependencies, but  

at the same time keeping the implementation of a man- 

ageable size. For example, the transformation component 

was separated from the level component entirely to allow 

for field view generation to be done very efficiently by 

using a single entity’s coordinates and direction to apply 

a mathematical transformation and obtain a field   view. 

(f) Routers - a simple router had to be implemented within  

the platform. Signal handling and time planning were 

necessary. 

(g) An event - condition - action (ECA) system is put into 

practice with the answer signal handling. 

(h) Object oriented programming principles are practiced, 

namely by separating entities into separate components 

and treating them much like objects while developing the 

platform. The answer and request handling is done by 

state machines that work very much like object methods. 

Such an implementation gives an interesting look into the 

differences between software and hardware design. 

(i) Artificial intelligence is looked at by implementing a state 

machine to the guard entities for testing   purposes. 

(j) Hardware parallelism implementation using a  conveyor 

(k) Counter implementation and usage in  hardware 

K. Future work 

After careful review, it has become apparent that the design 

is highly inefficient when fully implemented in hardware. The 

current design takes up over 12000 LUTs or 80% of the entire 

matrix capacity of the FPGA board used for testing the system. 

As such, the entire platform will be reimplemented in software 

while creating a real-time interface between a computer and 

the FPGA board and implementing only the machine learning 

components within the FPGA board. The current plan is to  

use a RS-232 communication protocol and send out entity 

field data to the FPGA and take back only the answer from   

the board. If the RS-232 standard turns out to be too much     

of a bottleneck in the system, more sophisticated ways of 

interfacing the devices will be looked into. 

IV. CONCLUSION 

In this paper, the implementation of an experimental test bed 

platform as a personal educational project was covered with all 

the informatics principles and mazes that were touched upon 

while developing. Over the course of the implementation and 

after reviewing the final design, it has become clear that having 

the entire design implemented on an FPGA board is highly 

impractical, because the greatest bottleneck is in the machine 

learning process, not the platform simulation. Limiting the 

hardware implementation to only the machine learning part 

and moving the rest of the system to software would be a 

more cost efficient approach and will be the next focus of the 

research project. The implementation does still show a way    

to simply implement an entity simulation within hardware and 

acted as an excellent tool for the author to further his 

education. 
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