
33

Efficient Hausdorff distance metric calculation

algorithm for human position comparison to

template and its performance and precision research

Karolis Ryselis, Tautvydas Petkus
Department of Software Engineering

Kaunas University of Technology

Kaunas, Lithuania

e-mail: Karolis.Ryselis@ktu.edu, Tautvydas.Petkus@ktu.edu

Abstract–This article presents efficient algorithm to calculate

Hausdorff distance metric and heuristic algorithm that

maximizes amount of intersecting points in two point sets very

quickly. Performance and precision research of those algorithms

is presented. It is shown that algorithm is applicable for real time

position tracking using “Kinect” device.

Keywords–Kinect; Hausdorff distance; pattern matching

I. INTRODUCTION

“Kinect” sensor is a motion tracking device presented by

“Microsoft”. It is one of the most popular motion tracking

devices used at home. “Kinect’s” application programmable

interface presents external applications with current human

position [1]: skeleton stream that consists of processed human

joint position information; depth stream, which is a two-

dimensional matrix with data about every pixel’s distance

from the sensor to the closest object in its direction; body index

matrix which assigns every pixel to a tracked player’s body.

Skeleton stream is processed by “Kinect” and presents external

application with information about human body parts.

Therefore, it is applicable when information about separate

body parts is needed. However, it is shown by some researches

[2] that skeleton stream is only accurate when the user is

visible by “Kinect” comfortably and the user is standing.

Skeleton is warped under different conditions.

Specialized algorithms are needed to process data from

other data streams and compare them to a template. All data

streams present the user with large amount of data compared

to preprocessed skeleton stream. Thus, they require efficient

algorithms to process them if real time or near real time

tracking is required.

The easiest and simplest to process data stream is body

index stream. If only one human is tracked this stream is easily

deduced to a binary matrix where 1 represents a pixel that

belongs to human body, 0 – that is does not. Hausdorff distance

metric is a good metric for this kind of data [3]. Say that 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑚} are finite sets of

points. Then Hausdorff distance is defined as follows:

𝐻(𝐴, 𝐵) = max⁡(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)), kur (1)

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ (2)

Here ‖𝑎 − 𝑏‖ could be any distance metric between points

𝑎 and 𝑏, e, g., Euclidean norm or 𝐿2 norm. Semantically this

metric shows the distance to the most distance point from the

other set corresponding to a chosen distance metric.

Looking at (2) formula it is trivial to see that direct

calculation of the metric has computational complexity of

𝑂(𝑛𝑚) because all points of both sets must be compared. If

𝑚 ≈ 𝑛, complexity approaches to 𝑂(𝑛2) and is not applicable

for real time use.

II. HAUSDORFF DISTANCE CALCULATION METHODS

A. Yanir Taflev’s method

Yanir Taflev presents an open source solution to compute

Hausdorff distance metric [4]. This algorithm does not

calculate the distance itself, it produces Hausdorff distance

matrices instead. Each point of such matrix shows the distance

to the closest point from set 𝐵 for each point of set 𝐴.

Hausdorff distance is then equal to the maximum value of both

distance matrices.

Hausdorff distance matrix is calculated by constructing

initial matrix first. A value of 0 is assigned to every point of

set 𝐵 and ∞ for all other points. For all points of set 𝐵 the

matrix is traversed in squares of increasing size and a value of

square edge length is assigned if the value of that point is not

less that the length of square edge. Chebyshev distance is

computed because of such matrix construction.

Algorithm is implemented in C# language and is used in

C# framework “Shape Matching Framework”.

B. “Elastic Search” method

“ElasticSearch” client created by “Vivid Solutions” is an

open source Java project [5]. It used discrete Hausdorff

distance implementation. The computed distance is

approximate. The algorithm is not given by “Vivid Solutions”.

The implementation is used to compare geometries in “Elastic

Search” engine internally.

C. Princeton University’s method

Princeton University’s resolving library “RgResolve” uses

Hausdorff algorithm’s Java implementation [6]. Algorithm

relies on assumption that all points are sorted either clockwise

or counterclockwise. Points are then analyzed in this order.

Data is analyzed as a list of points instead of two-dimensional

Copyright © 2017 held by the authors

mailto:Karolis.Ryselis@ktu.edu
mailto:Tautvydas.Petkus@ktu.edu

34

matrix, which is different from Yanir Taflev’s implementation.

The distance is calculated using Euclidean norm.

III. PROPOSED HAUSDORFF DISTANCE CALCULATION METHOD

The human could be in any part of “Kinect’s” frame. The

result of the algorithm must not depend on where the human is

standing. A transformation of human’s silhouette is needed

before computing Hausdorff distance. It must move the

silhouette to the position where it would intersect with the

template the most.

These requirements must be met by efficient Hausdorff

distance calculation algorithm:

1. Execution time is close to 30 ms with “Kinect’s” body

index stream data

2. Algorithm must find an optimal linear transformation

that makes the template and user’s silhouette be

oriented in such a way that the amount of intersecting

points is maximum and the Hausdorff distance is

minimum

A. Proposed algorithm to find the optimal

transformation

Say that we have two finite sets of points 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . , 𝑏𝑚}. Let us assume that the

human will be oriented vertically in the frame, i.e., the normal

vector of the base that the user is standing on is vertical. This

assumption eliminates the need of rotation transformation.

Two linear transformations need to be made: scale and shift.

Say that the center point of set 𝐵 is 𝑏𝑚. The shape will be

scaled using this point as the center. Say that optimal scale

coefficient is 𝑠, optimal shift transformation vector - 𝑡. Then

the transformed point set is

𝐵𝑡 = {𝑏𝑡1, 𝑏𝑡2, … , 𝑏𝑡𝑛} = 𝑏𝑚 +
(𝑏1−𝑏𝑚+𝑡)

𝑠
, 𝑏𝑚 +

(𝑏2−𝑏𝑚+𝑡)

𝑠
, … , 𝑏𝑚 +

(𝑏𝑛−𝑏𝑚+𝑡)

𝑠
 (3)

After the transformation set 𝐵𝑡 should maximize

cardinality function

𝑖(𝐴, 𝐵𝑡) = |𝐴 ∩ 𝐵𝑡| (4)

Precise calculation of such function is computationally

intensive, so heuristic algorithm is used instead.

A fast and quite accurate heuristic for scale transformation

is to compute scale coefficient as the ratio of heights of the two

shapes. If template and user are in similar positions, e.g., both

are standing, both silhouettes could be made the same height.

Then

𝑠 =
ℎ𝐴

ℎ𝐵
, where (5)

ℎ𝐴 = max
𝑎∈𝐴

𝑎𝑦 −min
𝑎∈𝐴

𝑎𝑦, (6)

where 𝑎𝑦- coordinate in vertical axis.

A fast to compute shift transformation algorithm is to shift

one of the two silhouettes using a vector that is equal to

difference between centroids of both shapes. Centroid is

defined as

𝐴𝐶 = (
∑ 𝑎𝑥𝑎∈𝐴

𝑛
;
∑ 𝑎𝑦𝑎∈𝐴

𝑛
) (7)

Then

𝑏𝑖 = 𝐶𝐵 +
(𝑏𝑖−𝐶𝐵+𝐶𝐵−𝐶𝐴)

𝑠
 (8)

If silhouettes of template and human belong to the same

sequence of movement, we can assume that these

transformation parameters will stay constant during the

process of matching. Thus, they can be calculated in the

beginning and used later. This should speed up the tracking

even more. Then

𝑡 = 𝐶𝐵1 − 𝐶𝐴1 (9)

𝑠 =
ℎ2

ℎ1
 (10)

𝑏𝑖 = 𝐶𝐵 +
(𝑏𝑖−𝐶𝐵+𝑡)

𝑠
 (11)

B. Proposed Hausdorff distance calculation algorithm

Proposed algorithm is based on Yanir Taflev’s ideas, but is

better optimized for speed. The use of this algorithm

eliminates the need to convert data from two-dimensional

matrix to other formats, e.g., a list of points. Chebyshev

distance is used as distance metric. Firstly, a two-dimensional

matrix is set up. All points with coordinates that belong to the

silhouette are set to 0, others – with ∞. A point queue is

constructed. Initially it consists of all points that belong to the

silhouette. A point is taken from the queue and 8 surrounding

equidistant points are analyzed. The distance from the original

points to those surrounding points is always 1, so the distance

from the other silhouette to those points cannot be larger than

the original point’s distance increased by one. If this value is

less than already computed value for this point, this value is

updated and the point is added to the queue. Distance is

calculated for all points this way. All points that do not belong

to the other set are then removed because they do not

contribute to Hausdorff distance. Elements of this matrix show

the differences between the silhouettes. Two such matrices

must be calculated, so the computation of them can be made

parallel – their computation is independent.

To reduce the amount of calculation matrix edges without

silhouette points are cut. The resulting cut matrix is minimum

rectangle matrix that contains all the points that belong to

silhouette.

Common maximum of both matrices is Hausdorff distance.

Algorithm pseudocode is given below.

matrices ← template matrix and user matrix

find common left upper corner of matrices

find common right lower corner of matrices

∀ matrix ∈ matrixes

 do initialize queue and ret

 while queue ≠ ø

 do p ← take from queue

 val ← get p value from ret

 val ← val + 1

 ret ← min(r, val) ∀⁡adjacent point

r to p

set points of res that do not belong to

opposing matrix to 0

hausdorff distance = max(max(res[1]),

max(res2))

35

IV. METHOD OF RESEARCH

Two properties of the algorithm are evaluated:

performance and precision.

To evaluate performance different types of frames are set

up. The frames differ in size and distance between silhouettes.

Used frame sizes are 10% to 300% “Kinect’s” frame size in

steps of 10%. For each frame size, real human silhouette is

analyzed. Performance is measured when the human and the

template are in similar parts and in opposite parts of the frames.

Performance is compared to other existing algorithms’

performance. Each measure is run 10 times and execution time

average is found. Three modifications of the proposed

algorithm are measured – Hausdorff distance only, Hausdorff

distance with transformation and Hausdorff distance with

cached transformation parameters. Algorithm should work in

less than 30 ms, i.e., faster than “Kinect’ produces frames.

To evaluate precision different real human silhouettes are

used. Best possible transformation is found using brute force

algorithm, Hausdorff distance is calculated using the optimal

transformation, then Hausdorff distance is found using the

transformation calculated using proposed algorithm and the

error is evaluated.

V. RESEARCH RESULTS

Execution times of all algorithms and all frame sizes are

shown in figure 1. Same silhouettes were used, but scaled.

Silhouettes were around a third of the frame apart.

Unit value in diagrams represents algorithm with cached

transformation performance when frame size is equal to

“Kinect’s” frame size. This time is 26 ms for distant silhouettes

and 21 ms for close silhouettes on “Intel i7-3770K” processor

(3.5 GHz). Maximum acceptable value on those scales are 1.15

for distant silhouettes and 1.43 for close silhouettes. These

values are hardware-dependent and presented for approximate

evaluation. The processor used is a little more powerful than

“Kinect’s” system requirements (i7 series processor, 3.1 GHz

clock frequency).

Figure 1. Algorithm performance comparison (distant

silhouettes)

The diagram reveals that “Elastic Search” algorithm is the

slowest, “RgResolve” – better, Y. Taflev’s algorithm would be

applicable up to frame size of 0.6 “Kinect 2” frame size. This

is close to “Kinect 1” frame size. Performance of proposed

algorithm varies and no clear dependency is visible, but

execution times slowly increase with increasing frame size. It

could be caused by parallel nature of the algorithm. Threads

are spawned by the runtime and operating system and

determination of their performance could be difficult to

predict. Nevertheless, frame sizes of around 1.3 “Kinect’s”

frame size and smaller are processed faster than in 1.15 relative

units and 1.7 and less – in 2 relative units.

Figure 2 shows the result of similar measurements, but the

distance between the silhouettes was minimized. Other

algorithms had little to no impact because of this change, but

proposed algorithm performed better under those conditions.

1.5 relative units is reached at around 1.4-1.5 “Kinect’s” frame

size, 2.5 – at around 1.8-2 times larger frames than “Kinect’s”.

At round 3 “Kinect’s” frame sizes performance increase is

around 1.5 times compared to distant silhouette test.

0

2

4

6

8

10

12

14

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
e

Frame edge size in Kinect's frames

Algorithm performance
comparison, distant silhouettes

Yanir Taflev
Proposed algorithm
Proposed algorithm with calculated transformation
Proposed algorithm with cached transformation
RgResolve
ElasticSearch

36

Figure 2. Algorithm performance comparison (close silhouettes)

Algorithm precision was tested using different human

silhouettes. Average error was 3.8%, minimum error – 0%

(exact result), maximum error – 15.5%, median error – 2.7%.

Data set size – 21 silhouettes.

VI. CONCLUSIONS

The proposed algorithm performs faster than existing open

source alternatives to calculate Hausdorff distance, but high

variation of execution speed is observed because of parallelism

involved in the calculations. Despite that, the algorithm in the

worst case works faster than in 30 ms with “Kinect 2”

recommended hardware, therefore it is applicable for human

motion tracking using “Kinect” sensors. Proposed algorithm is

precise if applied for human motion tracking and proposed

heuristic is worth applying, because it adds little to execution

times and precision loss is low.

Proposed algorithm works faster with silhouettes in the

same part of frame than distant silhouettes. If this algorithm is

applied for human motion tracking and recommended

transformations are applied, this will always be the case and

comparison will always be fast.

Algorithm is well suited for human position tracking when

the human does not change his position relative to sensor, only

his pose changes, or the human moves together with the

template silhouette. In this case proposed heuristics work well

and near-precise value of minimum Hausdorff distance with

Chebyshev metric is found in short time.

REFERENCES

[1]“Kinect API Overview,” [Online]. Available:

https://msdn.microsoft.com/en-us/library/dn782033.aspx. [Accessed

10 03 2017].

[2] K. Ryselis, T. Petkus, “Nestandartinių žmogaus kūno pozicijų

atpažinimo tikslumo naudojant „Kinect 2.0“ jutiklius tyrimas,”

Kaunas, 2015.

[3] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, “Comparing

Images using the Hausdorff Distance,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, no. 15, pp. 850-863, 1993.

[4] Y. Taflev, “Using the Hausdorff distance algorithm to point out

differences between two drawings,” 27 09 2009. [Online]. Available:

https://www.codeproject.com/articles/42669/using-the-hausdorff-

distance-algorithm-to-point-ou. [Accessed 10 03 2017].

[5] V. Solutions, “elasticsearch-client/DiscreteHausdorffDistance,”

[Online]. Available: https://github.com/jprante/elasticsearch-

client/blob/master/elasticsearch-client-jts-

jdk5/src/main/java/com/vividsolutions/jts/algorithm/distance/Discre

teHausdorffDistance.java. [Accessed 10 03 2017].

[6] “Hausdorff Distance,” Princeton University, [Online]. Available:

http://www.princeton.edu/~rkatzwer/rgsolve/doc/edu/princeton/poly

gon/HausdorffDistance.html. [Accessed 12 03 2017].

0

2

4

6

8

10

12

14

0,1 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3 2,5 2,7 2,9

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
e

Frame edge size in Kinect's frames

Algorithm performance
comparison, close silhouettes

Yanir Taflev

Proposed algorithm

Proposed algorithm with calculated transformation

Proposed algorithm with cached transformation

RgResolve

ElasticSearch

