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Abstract–This article presents efficient algorithm to calculate 

Hausdorff distance metric and heuristic algorithm that 

maximizes amount of intersecting points in two point sets very 

quickly. Performance and precision research of those algorithms 

is presented. It is shown that algorithm is applicable for real time 

position tracking using “Kinect” device. 
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I. INTRODUCTION 

“Kinect” sensor is a motion tracking device presented by 

“Microsoft”. It is one of the most popular motion tracking 

devices used at home. “Kinect’s” application programmable 

interface presents external applications with current human 

position [1]: skeleton stream that consists of processed human 

joint position information; depth stream, which is a two-

dimensional matrix with data about every pixel’s distance 

from the sensor to the closest object in its direction; body index 

matrix which assigns every pixel to a tracked player’s body. 

Skeleton stream is processed by “Kinect” and presents external 

application with information about human body parts. 

Therefore, it is applicable when information about separate 

body parts is needed. However, it is shown by some researches 

[2] that skeleton stream is only accurate when the user is 

visible by “Kinect” comfortably and the user is standing. 

Skeleton is warped under different conditions. 

Specialized algorithms are needed to process data from 

other data streams and compare them to a template. All data 

streams present the user with large amount of data compared 

to preprocessed skeleton stream. Thus, they require efficient 

algorithms to process them if real time or near real time 

tracking is required. 

The easiest and simplest to process data stream is body 

index stream. If only one human is tracked this stream is easily 

deduced to a binary matrix where 1 represents a pixel that 

belongs to human body, 0 – that is does not. Hausdorff distance 

metric is a good metric for this kind of data [3]. Say that 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑚} are finite sets of 

points. Then Hausdorff distance is defined as follows: 

𝐻(𝐴, 𝐵) = max⁡(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)), kur (1) 

ℎ(𝐴, 𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖  (2) 

Here ‖𝑎 − 𝑏‖ could be any distance metric between points 

𝑎 and 𝑏, e, g., Euclidean norm or 𝐿2 norm. Semantically this 

metric shows the distance to the most distance point from the 

other set corresponding to a chosen distance metric. 

Looking at (2) formula it is trivial to see that direct 

calculation of the metric has computational complexity of 

𝑂(𝑛𝑚) because all points of both sets must be compared. If 

𝑚 ≈ 𝑛, complexity approaches to 𝑂(𝑛2) and is not applicable 

for real time use. 

II. HAUSDORFF DISTANCE CALCULATION METHODS 

A. Yanir Taflev’s method 

Yanir Taflev presents an open source solution to compute 

Hausdorff distance metric [4]. This algorithm does not 

calculate the distance itself, it produces Hausdorff distance 

matrices instead. Each point of such matrix shows the distance 

to the closest point from set 𝐵 for each point of set 𝐴. 

Hausdorff distance is then equal to the maximum value of both 

distance matrices. 

Hausdorff distance matrix is calculated by constructing 

initial matrix first. A value of 0 is assigned to every point of 

set 𝐵 and  ∞ for all other points. For all points of set 𝐵 the 

matrix is traversed in squares of increasing size and a value of 

square edge length is assigned if the value of that point is not 

less that the length of square edge. Chebyshev distance is 

computed because of such matrix construction. 

Algorithm is implemented in C# language and is used in 

C# framework “Shape Matching Framework”. 

B. “Elastic Search” method 

“ElasticSearch” client created by “Vivid Solutions” is an 

open source Java project [5]. It used discrete Hausdorff 

distance implementation. The computed distance is 

approximate. The algorithm is not given by “Vivid Solutions”. 

The implementation is used to compare geometries in “Elastic 

Search” engine internally. 

C. Princeton University’s method 

Princeton University’s resolving library “RgResolve” uses 

Hausdorff algorithm’s Java implementation [6]. Algorithm 

relies on assumption that all points are sorted either clockwise 

or counterclockwise. Points are then analyzed in this order. 

Data is analyzed as a list of points instead of two-dimensional 
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matrix, which is different from Yanir Taflev’s implementation. 

The distance is calculated using Euclidean norm.  

III. PROPOSED HAUSDORFF DISTANCE CALCULATION METHOD 

The human could be in any part of “Kinect’s” frame. The 

result of the algorithm must not depend on where the human is 

standing. A transformation of human’s silhouette is needed 

before computing Hausdorff distance. It must move the 

silhouette to the position where it would intersect with the 

template the most. 

These requirements must be met by efficient Hausdorff 

distance calculation algorithm: 

1. Execution time is close to 30 ms with “Kinect’s” body 

index stream data 

2. Algorithm must find an optimal linear transformation 

that makes the template and user’s silhouette be 

oriented in such a way that the amount of intersecting 

points is maximum and the Hausdorff distance is 

minimum 

A. Proposed algorithm to find the optimal 

transformation  

Say that we have two finite sets of points 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, . . , 𝑏𝑚}. Let us assume that the 

human will be oriented vertically in the frame, i.e., the normal 

vector of the base that the user is standing on is vertical. This 

assumption eliminates the need of rotation transformation. 

Two linear transformations need to be made: scale and shift. 

Say that the center point of set 𝐵 is 𝑏𝑚. The shape will be 

scaled using this point as the center. Say that optimal scale 

coefficient is 𝑠, optimal shift transformation vector - 𝑡. Then 

the transformed point set is  

𝐵𝑡 = {𝑏𝑡1, 𝑏𝑡2, … , 𝑏𝑡𝑛} = 𝑏𝑚 +
(𝑏1−𝑏𝑚+𝑡)

𝑠
, 𝑏𝑚 +

(𝑏2−𝑏𝑚+𝑡)

𝑠
, … , 𝑏𝑚 +

(𝑏𝑛−𝑏𝑚+𝑡)

𝑠
  (3) 

After the transformation set 𝐵𝑡 should maximize 

cardinality function 

𝑖(𝐴, 𝐵𝑡) = |𝐴 ∩ 𝐵𝑡|  (4) 

Precise calculation of such function is computationally 

intensive, so heuristic algorithm is used instead. 

A fast and quite accurate heuristic for scale transformation 

is to compute scale coefficient as the ratio of heights of the two 

shapes. If template and user are in similar positions, e.g., both 

are standing, both silhouettes could be made the same height. 

Then 

𝑠 =
ℎ𝐴

ℎ𝐵
, where  (5) 

ℎ𝐴 = max
𝑎∈𝐴

𝑎𝑦 −min
𝑎∈𝐴

𝑎𝑦,   (6) 

where 𝑎𝑦- coordinate in vertical axis. 

A fast to compute shift transformation algorithm is to shift 

one of the two silhouettes using a vector that is equal to 

difference between centroids of both shapes. Centroid is 

defined as 

𝐴𝐶 = (
∑ 𝑎𝑥𝑎∈𝐴

𝑛
;
∑ 𝑎𝑦𝑎∈𝐴

𝑛
)  (7) 

Then 

𝑏𝑖 = 𝐶𝐵 +
(𝑏𝑖−𝐶𝐵+𝐶𝐵−𝐶𝐴)

𝑠
  (8) 

If silhouettes of template and human belong to the same 

sequence of movement, we can assume that these 

transformation parameters will stay constant during the 

process of matching. Thus, they can be calculated in the 

beginning and used later. This should speed up the tracking 

even more. Then 

𝑡 = 𝐶𝐵1 − 𝐶𝐴1  (9) 

𝑠 =
ℎ2

ℎ1
   (10) 

𝑏𝑖 = 𝐶𝐵 +
(𝑏𝑖−𝐶𝐵+𝑡)

𝑠
  (11) 

B. Proposed Hausdorff distance calculation algorithm 

Proposed algorithm is based on Yanir Taflev’s ideas, but is 

better optimized for speed. The use of this algorithm 

eliminates the need to convert data from two-dimensional 

matrix to other formats, e.g., a list of points. Chebyshev 

distance is used as distance metric. Firstly, a two-dimensional 

matrix is set up. All points with coordinates that belong to the 

silhouette are set to 0, others – with ∞. A point queue is 

constructed. Initially it consists of all points that belong to the 

silhouette. A point is taken from the queue and 8 surrounding 

equidistant points are analyzed. The distance from the original 

points to those surrounding points is always 1, so the distance 

from the other silhouette to those points cannot be larger than 

the original point’s distance increased by one. If this value is 

less than already computed value for this point, this value is 

updated and the point is added to the queue. Distance is 

calculated for all points this way. All points that do not belong 

to the other set are then removed because they do not 

contribute to Hausdorff distance. Elements of this matrix show 

the differences between the silhouettes. Two such matrices 

must be calculated, so the computation of them can be made 

parallel – their computation is independent.  

To reduce the amount of calculation matrix edges without 

silhouette points are cut. The resulting cut matrix is minimum 

rectangle matrix that contains all the points that belong to 

silhouette. 

Common maximum of both matrices is Hausdorff distance. 

Algorithm pseudocode is given below. 

matrices ← template matrix and user matrix 

find common left upper corner of matrices 

find common right lower corner of matrices 

∀ matrix ∈ matrixes 

    do initialize queue and ret 

    while queue ≠ ø 

        do p ← take from queue 

        val ← get p value from ret 

        val ← val + 1 

        ret ← min(r, val) ∀⁡adjacent point 

r to p 

set points of res that do not belong to 

opposing matrix to 0  

hausdorff distance = max(max(res[1]), 

max(res2))      
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IV. METHOD OF RESEARCH 

Two properties of the algorithm are evaluated: 

performance and precision. 

To evaluate performance different types of frames are set 

up. The frames differ in size and distance between silhouettes. 

Used frame sizes are 10% to 300% “Kinect’s” frame size in 

steps of 10%. For each frame size, real human silhouette is 

analyzed. Performance is measured when the human and the 

template are in similar parts and in opposite parts of the frames. 

Performance is compared to other existing algorithms’ 

performance. Each measure is run 10 times and execution time 

average is found. Three modifications of the proposed 

algorithm are measured – Hausdorff distance only, Hausdorff 

distance with transformation and Hausdorff distance with 

cached transformation parameters. Algorithm should work in 

less than 30 ms, i.e., faster than “Kinect’ produces frames. 

To evaluate precision different real human silhouettes are 

used. Best possible transformation is found using brute force 

algorithm, Hausdorff distance is calculated using the optimal 

transformation, then Hausdorff distance is found using the 

transformation calculated using proposed algorithm and the 

error is evaluated. 

V. RESEARCH RESULTS 

Execution times of all algorithms and all frame sizes are 

shown in figure 1. Same silhouettes were used, but scaled. 

Silhouettes were around a third of the frame apart. 

Unit value in diagrams represents algorithm with cached 

transformation performance when frame size is equal to 

“Kinect’s” frame size. This time is 26 ms for distant silhouettes 

and 21 ms for close silhouettes on “Intel i7-3770K” processor 

(3.5 GHz). Maximum acceptable value on those scales are 1.15 

for distant silhouettes and 1.43 for close silhouettes. These 

values are hardware-dependent and presented for approximate 

evaluation. The processor used is a little more powerful than 

“Kinect’s” system requirements (i7 series processor, 3.1 GHz 

clock frequency). 

 
Figure 1. Algorithm performance comparison (distant 

silhouettes) 

The diagram reveals that “Elastic Search” algorithm is the 

slowest, “RgResolve” – better, Y. Taflev’s algorithm would be 

applicable up to frame size of 0.6 “Kinect 2” frame size. This 

is close to “Kinect 1” frame size. Performance of proposed 

algorithm varies and no clear dependency is visible, but 

execution times slowly increase with increasing frame size. It 

could be caused by parallel nature of the algorithm. Threads 

are spawned by the runtime and operating system and 

determination of their performance could be difficult to 

predict. Nevertheless, frame sizes of around 1.3 “Kinect’s” 

frame size and smaller are processed faster than in 1.15 relative 

units and 1.7 and less – in 2 relative units. 

Figure 2 shows the result of similar measurements, but the 

distance between the silhouettes was minimized. Other 

algorithms had little to no impact because of this change, but 

proposed algorithm performed better under those conditions. 

1.5 relative units is reached at around 1.4-1.5 “Kinect’s” frame 

size, 2.5 – at around 1.8-2 times larger frames than “Kinect’s”. 

At round 3 “Kinect’s” frame sizes performance increase is 

around 1.5 times compared to distant silhouette test. 
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Figure 2. Algorithm performance comparison (close silhouettes) 

Algorithm precision was tested using different human 

silhouettes. Average error was 3.8%, minimum error – 0% 

(exact result), maximum error – 15.5%, median error – 2.7%. 

Data set size – 21 silhouettes. 

VI. CONCLUSIONS 

The proposed algorithm performs faster than existing open 

source alternatives to calculate Hausdorff distance, but high 

variation of execution speed is observed because of parallelism 

involved in the calculations. Despite that, the algorithm in the 

worst case works faster than in 30 ms with “Kinect 2” 

recommended hardware, therefore it is applicable for human 

motion tracking using “Kinect” sensors. Proposed algorithm is 

precise if applied for human motion tracking and proposed 

heuristic is worth applying, because it adds little to execution 

times and precision loss is low. 

Proposed algorithm works faster with silhouettes in the 

same part of frame than distant silhouettes. If this algorithm is 

applied for human motion tracking and recommended 

transformations are applied, this will always be the case and 

comparison will always be fast. 

Algorithm is well suited for human position tracking when 

the human does not change his position relative to sensor, only 

his pose changes, or the human moves together with the 

template silhouette. In this case proposed heuristics work well 

and near-precise value of minimum Hausdorff distance with 

Chebyshev metric is found in short time. 
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