

43

Copyright © 2017 held by the authors

Service oriented architecture evaluation based on

maintainability index

Edgaras Norvaiša

Kaunas University of Technology

 Faculty of software engineering

Kaunas, Lithuania

e-mail: edgaras.norvaisa@ktu.edu

Šarūnas Packevičius

Kaunas University of Technology

Faculty of software engineering

Kaunas, Lithuania

e-mail: sarunas.packevicius@ktu.edu

Abstract—Software architecture is meant to define system

structure which is a core for product development. Defying

system structure is first and most important step in software

development. It involves a series of decisions based on a wide

range of factors, and each of these decisions can have

considerable impact on the quality, performance,

maintainability, and overall success of the application. Most

efficient way to be able to control system characteristics is to use

certain architectural models like SOA or any other. In this paper

focus object will be how maintainability is effected for SOA based

applications.

Keywords—SOA; metrics; maintainability

I. INTRODUCTION

Decision to analyze SOA maintainability was made
because most of the enterprise projects chose to use SOA as a
base for architecture but this does not mean that it guaranties
good application characteristics. This research is focused to
analyze and define how maintainability index is changing
dependently on using SOA structure by comparing different
system layouts. Main goal of experiment was to find out how
maintainability index changes for SOA based application and
what is effecting these changes. To initiate experiment analysis
of SOA and software metrics was made. Explaining principles
of SOA architecture and metrics that are used to measure
software maintainability. Experiment part describes several
approaches how SOA can be structured and how that structure
impacts maintainability for whole application. The result will
allow determine how maintainability is effected by using SOA
principles and what architectural approach should be chosen to
rise system maintainability.

II. DESCRIPTION OF SERVICE ORIENTED ARCHITECTURE

A. Definition of SOA

Service oriented architecture as Mamoun A. Hirzalla
explains “SOA is emerging as a promising development
paradigm, which is based on encapsulating application logic
within independent, loosely-coupled stateless services, that
interact via messages using standard communication protocols
and can be orchestrated using business process languages, The
notion of a service is similar to that of a component, in that
services, much like components, are independent building
blocks that collectively represent an application.”[8]. This

statement describes that SOA focuses on having loosely-
coupled services that are like independent building blocks used
for building application. The benefit of SOA is that it provides
loosely coupling where in a result we have flexible, scalable
and reusable application.

Figure 1. Distributed application services.

Figure 1 illustrates how services can look like and how they

can interact with each other. It shows that a set of services can
be a part of a bigger process that can be used to describe a
larger business cases or algorithm. To process a certain
business case, we call a service which is responsible for it.
Service can be built from other smaller services which
implement smaller parts of a main service. To communicate
with services a communication layer is needed which would
provide interface and description of network services. Services
can be accessed directly an invoking client or through service
broker (ESB) which looks up the address of required services
through a registry component, retrieves the Web Service
Definition Language (WSDL) file, and then binds to that
service during the invocation process. ESB responsible for
routing and translating requests and responses between
requestors and service providers (e.g. figure 2). In the context
of Service Oriented Architecture, Web Services are used to
facilitate communication between service providers and service
consumers. Web based applications are communicating using
the concepts as XML, SOAP, REST, WSDL and UDDI. [5]

44

Figure 2. SOA design.

As mentioned before SOA is paradigm, which is based on

application logic encapsulation. In such case, there is a need to
have a structure for encapsulated logic – services [1].

B. N-tier architecture

In Christoph Hartwich article about difficulties in building
n-tier enterprise application he describes how application can
be divided in to separate tiers. “A tier is a layer that
corresponds to a process or a collection of processes. A tier
contains all artifacts of a software system that can be associated
with the tier’s process(es).” [2]. N-tier approach divides
application architecture in to separate layers which are loosely
coupled. Application can have multiple tiers but in most cases,
there are main 3 tiers. Each tier has its own responsibility and
it’s only accessible for neighbors and greater tier. Top tier is a
presentation tier which provides an interface for clients to
business logic. Second tier is a business logic where system
logic is predefined in to services. Business tier can be accessed
only by presentation tier where business tier can access data
tier. Data tier is responsible for granting access to repositories.
Data tier can be accessed only by business tier services (e.g.
figure 3).

Figure 3. N-tier structure.

To summarize SOA is an enterprise architectural style rather

than an application architectural style. SOA doesn't focus on

individual application architecture where n-tier does it. In the

end, we have a set of distributed services across the

application which are published by service broker and can be

accessed by other consumers (e.g. figure 4).

Figure 4. SOA based design.

III. SOFTWARE METRICS

To define software quality and complexity software metrics
are used. Software metrics are widely used among software
developers and clients who makes requirements for their
software quality. There are multiple methods and algorithms
how to calculate software metrics but these days in most case
Halstead techniques are used. In this topic, we will define few
of the metrics that was used to calculate maintainability index
in experiment [6].

A. Lines of code (LOC) metric

One of the metrics is line of code (LOC) which is used to
determine size of software. Using this metric, it is possible to
evaluate size of a software but to do it correctly a prime
calculation object need to be defined. It can be done in multiple
ways [7]:

 Calculate only executable lines

 Calculate executable lines and assignments of values

 Calculate executable lines, assignments and comments

 Calculate lines in input screen

Because of multiple approaches of how code lines can be
calculated LOC is not very inaccurate metric although it’s used
in maintainability metric calculation.

B. McCabe’s cyclomatic complexity metric

Second important metric in evaluating software is
McCabe’s cyclomatic complexity. It is one of the most used
software metrics. This metric was invented by Thomas J.
McCabe 1976 year. This is one of the most accurate software
metrics that can be calculated and is widely used in software
which calculating metrics of other software programs.

45

Cyclomatic complexity (CC) is classical graph theory
cyclomatic number, indicating the number of regions in a
graph. As applied to software, it is the number of linearly
independent paths that comprise the program. As so it can be
used to indicate effort required to do testing. This metric was
design to indicate a program’s testability and maintainability
[7]. The general formula to compute it is:

 (1)

 V(G) – Cyclomatic number of G

 E – Number of edges

 N – Number of nodes

 P – Number of unconnected parts of the graph

In functional programing calculation of cyclomatic
complexity is easy because each operation is executed after
each other. In OO (object oriented) case it is much complicated
because operations are divided in functions, classes and
objects. Best approach to calculate CC for OO is to calculate it
per functions. By McCabe CC should not be bigger than 10 so
if function or a method has bigger CC than 10 code needs to be
simplified or divided. Using this metric for software evaluation
it allows to optimize a whole size and complexity of
application as well as increase maintainability [7].

C. Halstead metrics

Last metric which is used in MI calculation is Halstead
volume. Halstead software science measurements where
introduced in 1977 to estimate the program difficulty and other
features like development effort and project number of faults.
A computer program, according to software science, is a
collection of tokens that can be classified as either operators or
operands [7]. The measures of Halstead are based on

 n1 = number of unique or distinct operators

 n2 = number of unique or distinct operands

 N1 = total usage of all the operators

 N2 = total usage of all the operands

Based on these primitive measures Halstead developed a
system of equations expressing the total vocabulary. Following
metrics [7]:

 (2)

 (3)

 (4)

(5)

 (6)

 N – program length

 n – program vocabulary

 V – volume

 D – difficulty

 E - effort

D. Maintainability index

Maintainability index is a composite metric that
incorporates several traditional source code metrics into a
single number that indicates relative maintainability. As Oman
and Hagemeister explains MI is comprised of weighted
Halstead metrics (effort or volume), McCabe’s Cyclomatic
Complexity, lines of code (LOC), and number of comments [3]
[4]. The original formula to compute MI is:

MI = 171 – 5.2 * ln (HV) - 0.23 * CC - 16.2 * ln (LOC) (7)

 MI – maintainability index

 HV –Halstead volume per module

 CC – cyclomatic complexity per module

 LOC – lines of code

Having full understanding of how software can be
evaluated and measured this knowledge was used to initiate
experiment for evaluating SOA based software maintainability
index. In next topics experiment methodology will be defined.

IV. METHODOLOGY OF THE RESEARCH

To evaluate maintainability index for SOA principles based
application experimental program was created. In experimental
part maintainability will be measured using different
application structure layouts. System structure in most of the
cases will be service oriented so there will be a set of services
that will implement certain logic of one of the main service.
Main service will consume other services in different ways –
straight calls to service or will use other services to call other
service operation. Basic layout of all structures will be based
on n-tier principles so there will be free layers – presentation
tier which will only define main service interface and provide
ability to call it from other clients. Business tier will be
responsible for all the services that will be used to solve a main
service operation, as well as main service will be in this tier.
Repository tier will be responsible for data access and all upper
tier services will be able to consume these repositories.

For calculating metrics in experiment integrated Visual
Studio tools were used because experiment is executed on
.NET environment using C# programing language. Formula
used for measuring maintainability in Visual Studio is the
same. The new definition merely transforms the index to a
number between 0 and 100. Furthermore, Visual Studio
provides an interpretation:

 MI >= 20 high maintainability

 10 <= MI < 20 moderate maintainability

 MI < 10 low maintainability

In experiment four different structures will be measured.
First structure in figure 5 contains of only main service which
calls data insert operations in ten repositories. Where:

 E – end point for client to execute main service

 MS – main service which handles main
application logic operation

 SX – other services that are consumed by main
service

 RX – repositories that provides access to data
insert operations.

46

Figure 5. Experiment scenario 1.

Second structure consists of 4 services where main service

is calling S1 service operation which is calling repositories R2,
R3. S1 operation is calling S2 operation which works in same
principle as S1 only number of consumed repositories is
greater. Rest application structures are displayed in 6-8 figures.
Main difference in structure is that the main service operation
is distributed across the multiple services. Each structure only
has a different operation call flow. As for example man service
in figure 7 is calling distributed S1, S2 and S3 services to
complete main MS operation.

Figure 6. Experiment scenario 2.

Figure 7. Scenario 3.

Figure 8. Scenario 4.

V. EXPERIMENT RESULTS

Experiment results of scenario 1 (Figure 5) are represented
in table 1. Each row represents experiment step where we add a
new service or repository to application structure. At the first
scenario, the main service is not calling any other service it
only calls repositories that allows completing main service
logic-operation. This kind of structure is illustrating a default
cases in applications where we don’t use distributed services
(non SOA approach). Service column in a table 1 defines how
many services are consumed by the man service. Same
approach goes for repositories column. Metrics column
represents all the metrics like maintainability index, cyclomatic
complexity and code coupling which were calculated by Visual
Studio integrated tools. After executing experiment for first
scenario we can see that MI is decreasing. This happens
because each time we add a new repository to main service a
complexity of application is increasing.

TABLE I. SCENARIO 1 RESULTS

Services Repositories
Metrics

MI CC Coupling

0 1 93 3 2

0 2 92 4 3

0 3 89 5 4

0 4 88 6 5

0 5 86 7 6

0 6 86 8 7

0 7 85 9 8

0 8 84 10 9

0 9 84 11 10

0 10 84 12 11

Second scenario (Figure 6) results are represented in table

2. In this scenario, we define that main service on each
experiment step starts to consume a new service which is
providing functionality that resolves a small logical case of the
main service operation. Also, after each experiment step we
connect a new service which has more repositories in use then
the previously added service. Compare to table 1 we can see
that maintainability index is decreasing much slower. Despite
that fact that cyclomatic complexity and code coupling is
increasing much faster. Results of how maintainability index
decreases are displayed in figure 9.

TABLE II. SCENARIO 2 RESULTS

Services Repositories
Metrics

MI CC Coupling

0 1 93 3 2

1 2 92 7 1

1 3 92 8 5

2 4 91 12 7

2 5 91 13 8

47

Services Repositories
Metrics

MI CC Coupling

2 6 90 14 9

3 7 90 18 11

3 8 90 19 12

3 9 90 20 13

3 10 89 21 14

Comparing the first and the second scenario results
difference is noticeable on how fast MI is decreasing.
Difference can be seen in figure 9. The reason why it happens
is related to Halstead Volume metric which measures volume
of algorithm. In this experiment algorithm, basically is the
operations that main service is executing. On second scenario,
main service operation logic is distributed across the other
services so average Halstead Volume is smaller than it is on a
first scenario. This is also can be seen on scenarios figures 5
and 6 of how many relations MS has to other objects. On figure
5 main service operation consists of several operations that are
calling 10 repositories. On the other case in figure 6 we see that
main service is only calling 1 repository and 1 service so in
total main service operation consists of 2 calls. In scenario 2
rest main service operation logic is distributed in S1, S2 and S3
services but all these services consist of few operations that
calls repositories and other service. In the end at scenario 2 we
have average Halstead Volume metric which is smaller than in
a first scenario.

Remaining scenarios showed in figures 7 and 8 results are
the same as we had in scenario 2. Maintainability index
changes in a same number only other metrics like CC is
different. Reason again is related to Halstead Volume metric
where we have a different value across whole modules-services
but in the end maintainability index is calculated using average
Halstead Volume value.

Figure 9. Scenario 1 and 2 chart of MI metrics per

experimental step.

VI. CORRELATION BETWEEN METRICS

After experiment correlations where calculated for different
types of metrics. For all calculations maintainability index was
used as a prime metric and secondary metric was used from MI
formula. Table 3 represents calculations results where first and
second values (CC, Code coupling) has strong negative values.

This means that if one of these metrics are increasing
maintainability index is decreasing. Third metric – Halstead
Volume has strong and positive correlation between MI. This
means that when HV is increasing MI is increasing to. This
positive correlation between MI and HV was noticed during
experiment part when code metrics where measured for
different system layouts in topic V.

TABLE III. CORRELATIONS BETWEEN METRICS

Nr.
Correlations with MI and metric

Metric r

1 Cyclomatic complexity (CC) -0.96

2 Code coupling -0.94

3 Halstead Volume (HV) 0.85

VII. CONCLUSIONS

1. Analysis part shows that SOA allows to have
loosely coupled application components that can
be distributed not even across application scope
but also outside it.

2. Metrics analysis part shows that there are methods
that allows evaluate software quality and
complexity.

3. Experimental evaluation of different application
layouts gave different maintainability index
results. In case when we have no distributes
services across application it becomes harder to
maintain the application. In another case when we
have distributed services (service oriented)
maintainability of application is much easier.
However, this conclusion is only applicable when
we have a bigger scale application. This is one of
the reason why SOA is used in enterprise.

4. Experimental part allows to make conclusion that
only in situation when we distribute application
logic Halstead Volume metric increases and in this
way, it effects maintainability index to be
increased.

5. Practical benefit of this research is that we can see
that SOA approach is better for bigger scale
application instead of small size projects. Also,
research clearly shows that having big logical
operations in one place makes system hardly
maintainable.

6. For easy maintainable system, best architectural
approach is to use n-tier by distributing system in
to layers – vertically. Also, it is good to distribute
system logic across the service – horizontally.

7. For SOA development recommendation is to keep
services as much as possible isolated. This will
reduce code coupling and increase code
maintainability as well as reusability.

48

REFERENCES

[1] S. K. Simardeep Kaur, “A Review on Metrics in SOA,” 2016. [Tinkle].

Available: http://www.ijarcce.com/upload/2016/july-

16/IJARCCE%2081.pdf. [Accessed 20 02 2017].

[2] C. Hartwich, “Why It Is So Difficult to Build N-Tiered Enterprise.” Freie

Universitaet Berlin, Berlin, 2001.

[3] R. Land, “Measurements of Software Maintainability.” Mälardalen

University, Västerås, Sweden.

[4] K. D. Welker, “The Software Maintainability Index Revisited.” Idaho

National Engineering and Environmental Laboratory, 2001.

[5] T. Erl, “Service-Oriented Concepts, Technology, and Design.” United

States: R. R. Donnelley in, 2005.

[6] L. Westfall, “12 Steps to Useful Software Metrics,” The Westfall Team,

2005.

[7] S. H. Kan, “Metrics and Models in software quality engineering.” Canada:

Person education inc., 2003.

[8] M. A. Hirzalla, “Service Oriented Architecture Metrics Suite for

Assessing and Predicting Business Agility Results of SOA Solutions.”

Chicago, Illinois: College of Computing and Digital Media, 2012.

http://www.ijarcce.com/upload/2016/july-16/IJARCCE%2081.pdf
http://www.ijarcce.com/upload/2016/july-16/IJARCCE%2081.pdf

