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Abstract—The goal of this research is the robust detection of 

Parkinson’s disease by acoustic analysis of sustained voice 

recordings. Application of signal decomposition into intrinsic 

mode functions (IMFs) is investigated as a novel type of audio 

features and a custom solution for decision-level fusion, employing 

statistical functionals to compress decisions from all IMFs. 

Proposed audio features are perceptual linear predictive cepstral 

coefficients (PLPCCs) estimated on the extracted components 

from one or several equally-spaced windows of audio signal. 

Decompositions used are empirical mode decomposition (EMD) 

and variational mode decomposition (VMD). Random forest (RF) 

is used as a base detector as well as meta learner for decision-level 

fusion. Cost of log-likelihood ratio and equal error rate (EER) 

were used to measure goodness-of-detection. Baseline solution 

using PLPCCs from all frames was compared to several types of 

decision-level fusion (EMD, VMD, and EMD+VMD) using 1–3 

windows of various sizes (10–100 ms). Decomposition-based 

PLPCCs and EMD+VMD fusion from three 30 ms sized windows 

resulted in detection performance with an average EER of 6.5% 

and clearly outperformed the baseline solution of decomposition-

less PLPCCs, having EER of 32.9%. Variable importance from 

meta RF found both decompositions as useful and variance-

related statistics of base RF decisions as the most important. 

Keywords— Parkinson’s disease; voice analysis; empirical mode 

decomposition; variational mode decomposition; PLPCC; random 
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I.  INTRODUCTION 

Parkinson’s disease (PD) is the second most common 
neurodegenerative disease after Alzheimer’s [1] and it is 
expected that the prevalence of PD is going to increase due to 
population ageing. If it is detected early, the progression of PD 
may be more researched using neuroprotective strategies, which 
could result in increased life span and improved living 
conditions. 

Amongst many various symptoms, PD induces speech 
disorders, which can be observed as early as 5 years before the 
diagnosis [2]. Investigations show that Parkinsonian vocal 
dysfunction can be characterized by: reduced vocal tract volume 
and reduced tongue flexibility, significantly narrower pitch 
range, longer pauses and smaller variations in pitch range, voice 
intensity level, and articulation rate. Therefore, acoustic analysis 
is considered by many researchers as an important non-invasive 

approach for PD detection. Detailed review of the related work 
can be found in [3]. 

Most of the studies use audio features obtained from the 
entire record (global attributes) directly or calculated from short-
term frames (local attributes). Frame-based features usually are 
compressed with the statistical functionals or the Gaussian 
mixture model [3]. Some studies use large feature sets aiming to 
obtain comprehensive characterization of the voice signal, while 
others rely on “clinically useful” set of measures or perform 
feature selection to collect a compact set of audio descriptors. In 
this work, we investigate if applying signal decomposition of a 
few short-term frames of a sustained voice recording and 
calculating perceptual linear predictive cepstral coefficients 
(PLPCCs) for extracted components can outperform a simple 
decomposition-less approach of using PLPCCs from all frames. 

Small size of previously used databases and data samples 
(less than 60 PD subjects) is a major deficiency resulting in 
unreliable estimates of reported performance. Incorrect 
assessment of accuracy is another common deficiency – studies 
often lack conformity to leave-one-subject-out [3] or leave-one-
individual-out [4] validation scheme. The need for such scheme 
arises when subject has several recordings, where all recordings 
of a subject should be included either in a training or in a testing 
fold, but not in both. 

This work explores application of two techniques for voice 
signal decomposition into intrinsic mode functions, namely, 
empirical mode decomposition (EMD) and variational mode 
decomposition (VMD), introduces a novel decision-level fusion 
approach using EMD and VMD base detectors and addresses the 
aforementioned deficiencies by using relatively large database 
and leave-one-subject-out validation for a task of PD detection. 

The organization of this paper is as follows: voice recordings 
database is described in section 2, feature extraction in section 
3, detection methodology is presented by section 4, results of 
experiments are in section 5, while conclusions are drawn in 
section 6. 

II. FEATURE EXTRACTION 

Audio features of choice were PLPCC, which were extracted 
either from all frames of recording and compressed using 
statistical functionals (baseline solution) or from a few frames 
after applying decomposition and extracting IMFs (researched 
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solution). Two approaches for decomposition were considered – 
empirical mode decomposition (EMD) and variational mode 
decomposition (VMD). Therefore, the researched solution 
proposes EMD-PLPCC and VMD-PLPCC as audio descriptors. 

A. Signal decomposition 

Empirical mode decomposition is a recent method for non-
stationary signal analysis which has found extensive application 
in many areas of science and engineering [5, 6]. EMD 
decomposes signals into functions of time, from which spectral 
information may also be obtained. Therefore, EMD lends itself 
well to extraction of temporal as well as spectral descriptors 
from the original signal [7]. Application of EMD to analysis of 
speech signals is scarce. It is an adaptive technique that allows 
decomposition of non-linear and non-stationary data into 
intrinsic mode functions. An intrinsic mode function (IMF) 
satisfies the following two conditions [8]: 

1. The number of maxima, which are strictly positive, and 
the number of minima, which are strictly negative, for 
each IMF, are either equal, or differ at most by one. 

2. The mean value of the envelope, as defined by the 
maxima and the minima, for each IMF, is zero.  

The technique for decomposition of the data into IMFs is 
known as sifting, a brief description of which follows: 

1. For a given discrete time signal 𝑥[𝑛], all the local 
minima and maxima of 𝑥[𝑛] are identified.  

2. The upper envelope 𝐸𝑈 is calculated by using a cubic 
spline to connect all the local maxima. Similarly, the 
lower envelope 𝐸𝐿 is calculated from the local minima. 
The upper and lower envelopes should cover all the 
data in 𝑥[𝑛] between them.  

3. The mean 𝐸𝑚𝑒𝑎𝑛 = 𝐸𝑈 + 𝐸𝐿/2 of the upper and lower 
envelopes is calculated, and 𝑥[𝑛] is updated by 
subtracting the mean from it 𝑥[𝑛]  ← 𝑥[𝑛] − 𝐸𝑚𝑒𝑎𝑛. 

4. The previous three steps are executed till 𝑥[𝑛] is 
reduced to an IMF 𝑐1[𝑛], which conforms to the 
properties of IMFs described previously. The first IMF 
contains the highest oscillation frequencies found in 
the original data 𝑥[𝑛]. 

5. The first IMF 𝑐1[𝑛] is subtracted from 𝑥[𝑛] to get the 
residue 𝑟1[𝑛]. 

6. The residue 𝑟1[𝑛] is now taken as the starting point 
instead of 𝑥[𝑛], and the previously mentioned steps are 
repeated to find all the IMFs 𝑐1[𝑛] so that the final 
residue 𝑟𝐾 either becomes a constant, a monotonic 
function, or a function with a single maximum and 
minimum from which no further IMF can be extracted.  

Therefore, at the end of the decomposition, we can represent 
𝑥[𝑛] as the sum of K IMFs and a residue 𝑟𝐾: 

𝑥[𝑛] = ∑ 𝑐𝑖[𝑛] + 𝑟𝐾[𝑛]

𝐾

𝑖=1

 (1) 

The EMD algorithm variant used is ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) [7], which 

automatically selects the number of intrinsic mode functions 
(IMFs). According to the selected number of IMFs for EMD, the 
same number of IMFs was used in the VMD algorithm. 

Variational mode decomposition [9] decomposes the signal 
into various modes or intrinsic mode functions using calculus of 
variation. Each mode of the signal is assumed to have compact 
frequency support around a central frequency. VMD tries to find 
out these central frequencies and intrinsic mode functions 
centered on those frequencies concurrently using an 
optimization methodology called alternate direction method of 
multipliers (ADMM13). The original formulation of the 
optimization problem is continuous in time domain. The 
constrained formulation is given in [9]. 

B. PLPCC 

The idea of a perceptual front end for determining linear 
prediction cepstral coefficients (PLPCCs) has been applied in 
different ways to improve speech detection and coding, as well 
as noise reduction, reverberation suppression, and echo 
cancellation. Linear prediction of a signal is done via 
autoregressive moving average (ARMA) modeling of the time 
series.  In an ARMA model, the current sample is expressed as: 

𝑦[𝑛] = ∑ 𝑎𝑝𝑥[𝑛 − 𝑝] + ∑ 𝑏𝑞𝑦[𝑛 − 𝑞]

𝑄

𝑞=1

𝑃

𝑝=0

 (2) 

where 𝑥[𝑛] is the current input signal, and 𝑦[𝑛] is the current 
output. The perceptual linear prediction coefficients are created 
from the linear prediction coefficients by performing perceptual 
processing before performing the autoregressive modeling [10]. 
The main sequence of steps for PLPCC calculation is provided 
by a diagram in Fig. 1. 

 

Fig. 1. Calculating perceptual linear prediction cepstral coefficients. 

After this processing, cepstral conversion is performed. This 
is because linear prediction coefficients are very sensitive to 
frame synchronization and numerical error. In other words, the 
linear prediction cepstral coefficients are much more stable than 
the linear prediction coefficients themselves [10]. 

For a baseline solution, PLPCCs extracted from all frames 
were compressed using the following statistical functionals: 
min, max, mean, median, trimean, standard deviation, inter-
quartile range (IQR), lower quartile (Qlo), upper quartile (Qup), 
lower range (IQlo), upper range (IQup), skewness, and kurtosis. 

For a researched solution, only one or a few frames were 
used, and PLPCCs were calculated both for unprocessed frame 
and for each of IMFs after signal decomposition. Depending on 
the number of IMFs the same number of feature vectors, 
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containing concatenation of original PLPCCs with IMF-based 
PLPCCs, are constructed. 

III. VOICE DATABASE 

Voice database had 383 speakers (141 men and 242 women), 
where each speaker was represented by 3 recordings (419 
recordings for men and 715 recordings for women) of sustained 
voicing of vowel /a/, each at least 2 seconds in length. Speaker 
age range was from 16 to 82 for HC and from 39 to 85 for PD. 
Detailed summary of voice recording database is in Table I. 
Recordings were collected in a sound-proof chamber using 
acoustic cardioid microphone (AKG Perception 220) placed at a 
distance of 10 cm from the mouth. Audio format was “.wav” 
(16-bit mono PCM with 44.1 kHz sampling frequency). HC 
voice subgroup encompassed healthy volunteer individuals who 
considered their voice as normal, had no complaints concerning 
their voice and no history of chronic laryngeal diseases or other 
long-lasting voice disorders. Voices of these individuals were 
also confirmed as healthy by clinical specialists. Furthermore, 
no pathological alterations in the larynx of the subjects from HC 
voice subgroup were found during video laryngostroboscopy. 

TABLE I.  SUMMARY OF VOICE RECORDINGS DATABASE 

Recordings Parkinson (PD) Healthy (HC) Total 

Men 36 (107) 105 (312) 141 (419) 

Women 39 (116) 203 (599) 242 (715) 

Total: 75 (223) 308 (911) 383 (1134) 

IV. DETECTION METHODOLOGY 

A. Random Forest 

Random forest (RF) [11] is a well-known pattern recognition 
algorithm, suitable for a detection task. RF is a committee of 
decision trees, where the final decision is obtained by majority 
voting. The core idea of RF is to combine many (𝐵 in total) 
decision trees, built using different bootstrap samples of the 
original data set, and a random subset (of predetermined size 𝑞) 
of features 𝑥1, … , 𝑥𝑝. RF is known to be robust against over-
fitting and as the number of trees increases, the generalization 
error converges to a limit [11]. For our experiments 𝐵 was set to 

5000, several specific values of q (√𝑝, 2 ∙ √𝑝, 
1

2
∙ √𝑝) were 

tested and the best performing 𝑞 setting retained. 

The generalization performance of RF was evaluated using 
internal out-of-bag (OOB) validation, where each observation is 
classified only by the trees which did not have this observation 
in bootstrap sample during construction. It is well known that 
OOB validation provides an unbiased estimate of a test set error, 
similar to leave-one-out scheme. Because of the “repeated 
measures” aspect in voice data, where each subject is 
represented by several recordings of sustained vowel, sampling 
part of the RF algorithm [12] had to be modified to ensure that 
all recordings of each subject are either included in a bootstrap 
sample or left aside as OOB. Such modification corresponds to 
leave-one-subject-out scheme, which helps to avoid speaker 
detection intermingling with pathology detection. Additionally, 
RF setting of stratified sampling was configured to preserve 
class ratio and gender balance of the full dataset in each drawn 
bootstrap sample. 

B. Decision-level Fusion 

Individual RFs were built independently for each 
decomposition variant (EMD or VMD) and each frame location 
(center frame only or 3 frames in equally-spaced locations) and 
decisions of these individual experts were combined in a meta-
learner fashion. RF was used both as a base learner and as a meta 
learner. This implies that outputs from RF models from the first 
stage after compression of decisions for all IMFs of a single 
recording using statistical functionals are treated as inputs 
(meta-features) for another RF in the second stage. 

For the detection task, a decision from base RF is the 
difference between class posteriori. Given a trained RF, this 
difference or variant of soft decision is estimated as: 

𝑑(𝑡1, … , 𝑡𝐿) =
∑ 𝑓(𝑡𝑖 , 𝑥, 𝑞 = 2)𝐿

𝑖=1

𝐿
−

∑ 𝑓(𝑡𝑖 , 𝑥, 𝑞 = 1)𝐿
𝑖=1

𝐿
, (3) 

where 𝑥 is the object being classified, 𝐿 is the number of trees 
𝑡2, . . . , 𝑡𝐿 in the RF for which observation 𝑥 is OOB, 𝑞 is a class 
label (label number 1 corresponds to HC and 2 to PD), and 
𝑓(𝑡𝑖 , 𝑥, 𝑞) stands for the 𝑞th class frequency in the leaf node, 
into which 𝑥 falls in the 𝑖th tree 𝑡𝑖 of the forest: 

𝑓(𝑡𝑖 , 𝑥, 𝑞) =
𝑛(𝑡𝑖 , 𝑥, 𝑞)

∑ 𝑛(𝑡𝑖 , 𝑥, 𝑞)𝑄
𝑗=1

, (4) 

where 𝑄 is the number of classes and 𝑛(𝑡𝑖 𝑥, 𝑞) is the number of 
training data from class 𝑞 and falling into the same leaf node of 
𝑡𝑖 as 𝑥. 

For a baseline solution, there was no need of decision-level 
fusion and a single base RF was enough. For a researched 
solution, decision-level fusion used decisions from the 
decomposition-based base RFs. Base RF was constructed using 
all components (IMFs) resulting from EMD or VMD in a 
specific frame. The number of decisions from a base RF 
corresponded to the number of extracted components. This 
varied number of base decisions was compressed into meta-
features using the following statistical functionals: min, max, 
mean, median, trimean, standard deviation, inter-quartile range 
(IQR), lower quartile (Qlo), upper quartile (Qup), lower range 
(IQlo), upper range (IQup), skewness, and kurtosis. 

Meta-features in fusion RF were also investigated by 
performing permutation-based variable importance analysis 
using mean decrease in accuracy as the variable importance 
measure. Values of each meta-feature are permuted several 
times and the mean difference in fusion RF performance on 
OOB data is estimated. 

C. Assesing Detection 

To evaluate the goodness of detection, detector’s scores for 
OOB data were used. Votes of RF were converted to a proper 
score vector by normalizing votes for a specific class through 
division by the total number of times the case was OOB, as in 
formula (3). A quick way to compare detectors is the equal error 
rate (EER). The cost of log-likelihood-ratio (Cllr) is a 
comprehensive detection metric, used here as the main criterion 
for model selection. The log-likelihood-ratio is the logarithm of 
the ratio between the likelihood that the target (PD) produced the 
signal and the likelihood that a non-target (HC) produced the 
signal. EER and Cllr measures were estimated using the ROC 
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convex hull method, available in the BOSARIS toolkit [13]. A 
well-calibrated and useful detector should have Cllr < 1 and EER 
< 50 %. 

V. EXPERIMENTS 

A. Experimental Setup 

For our frame-based features several window sizes were 
tested: 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 milliseconds. 
For a researched solution, different quantity of windows were 
extracted and detection performance compared: 1 window from 
the center of recording versus 2 or 3 windows placed at equally-
spaced locations to evenly cover all recording. For each setting 
of window size and quantity, three decision-level fusion variants 
were tested: EMD, VMD and EMD+VMD. The number 
PLPCCs used was 12 in both baseline and researched solutions.  

From the results of initial experiments, the single best 
window size was selected. Sensitivity analysis was then 
performed by repeating decomposition for each recording 5 
times. Each of the 5 different collections of IMFs, converted into 
EMD-PLPCCs or VMD-PLPCCs, were used in base RF and 
construction of base RF repeated 5 times. Finally, each of 25 
results from decomposition and base RF runs was fused using 
meta RF and the fusion was repeated 5 times. All runs resulted 
in 125 detection performance measures (EER and Cllr) and 
statistical testing for equality of central tendencies (mean and 
median) was performed to compare the setting of using 1 central 
window only versus using 3 windows at equally-spaced 
locations. Parametric independent samples t-test was used to 
compare means. Non-parametric Wilcoxon rank-sum test 
(Mann-Whitney U-test) was used to compare medians. 

B. Results 

From the results of initial experiment with various window 
sizes in Table II we decide that 30 ms window size, 1 or 3 
windows and fusion of EMD+VMD could be a recommended 
setting for a researched solution. Both window sizes had same 
EER of 2.22%, but Cllr was slightly better for 3 windows (0.079) 
than 1 window (0.085). VMD consistently outperformed EMD, 
but the best overall performance was found when fusing 
EMD+VMD. The best window size was difficult to identify, 
because the results change from one window size to another 
sometimes rather erratically. This could be due to stochastic 
nature of EMD and VMD, where optimization results in sub-
optimal solutions and not identical IMFs when run repeatedly. 

 

 

 

TABLE II.  DETECTION PERFORMANCE USING VARIOUS WINDOW SIZES, 
WINDOW QUANTITIES AND TYPE OF DECOMPOSITION FOR FUSION BY META RF. 

Size 

(s) 
Quantity 

Type of decomposition used in decision-level fusion 

EMD VMD EMD+VMD 

Cllr EER Cllr EER Cllr EER 

0.01 

1 0.718 26.23 0.237 6.65 0.215 6.10 

2 0.617 20.83 0.754 26.20 0.565 19.12 

3 0.115 3.03 0.245 6.71 0.079 2.24 

0.02 

1 0.448 13.96 0.682 23.03 0.375 12.42 

2 0.385 13.08 0.610 20.32 0.336 10.45 

3 0.321 9.70 0.499 16.66 0.255 7.72 

0.03 

1 0.456 13.92 0.100 2.65 0.085 2.22 

2 0.306 10.07 0.503 14.95 0.264 8.27 

3 0.342 11.32 0.115 3.33 0.079 2.22 

0.04 

1 0.419 11.77 0.586 19.08 0.359 11.51 

2 0.379 11.69 0.541 17.01 0.313 10.05 

3 0.010 2.90 0.451 13.70 0.100 2.87 

0.05 

1 0.355 10.71 0.583 19.02 0.303 8.53 

2 0.347 10.92 0.539 16.67 0.300 9.73 

3 0.216 5.80 0.449 13.36 0.180 5.37 

0.06 

1 0.316 10.08 0.555 17.16 0.266 7.88 

2 0.328 10.07 0.441 14.23 0.265 8.41 

3 0.244 7.39 0.419 13.24 0.220 6.54 

0.07 

1 0.405 11.84 0.561 17.15 0.349 10.61 

2 0.450 14.68 0.474 15.48 0.380 12.73 

3 0.236 6.07 0.356 12.15 0.190 5.40 

0.08 

1 0.379 12.09 0.529 16.85 0.309 9.93 

2 0.323 11.27 0.505 15.91 0.288 9.78 

3 0.297 9.87 0.448 14.11 0.275 9.13 

0.09 

1 0.443 13.34 0.591 19.59 0.368 11.24 

2 0.349 10.56 0.504 16.10 0.307 9.84 

3 0.317 10.11 0.458 13.90 0.278 9.28 

0.10 

1 0.363 10.78 0.495 16.21 0.252 7.66 

2 0.390 12.17 0.509 15.64 0.359 12.07 

3 0.254 7.21 0.109 3.86 0.074 2.73 
 

The summary of results from Table II for 1 and 3 windows 
is illustrated in Fig 2–3. Both settings of window quantity were 
able to provide the lowest EER of 2.2% with 30 ms window size, 
but performance when using 3 windows appear to be more stable 
and doesn’t fluctuate that much with respect to window sizes. 

 

Fig. 2. EMD+VMD detection performance by EER and Cllr using 1 window. 

      

Fig. 3. EMD+VMD detection performance by EER and Cllr using 3 windows. 
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Results of the baseline solution (see Fig. 4), when extracting 
PLPCCs from all frames (without any decomposition) and 
compressing with statistical functionals, were rather stable 
irrespective of the window size. The best detection performance 
was 32.9% by EER and 0.895 by Cllr. 

 

Fig. 4. Detection performance by EER and Cllr for the baseline solution. 

Variable importance from the meta RF when using 3 
windows and EMD+VMD type of decision-level fusion is 
shown in Fig 5. Both EMD and VMD types of decomposition 
are useful, but from statistical functionals variance-related 
measures (standard deviation and inter-quartile range with its 
lower part) of base decisions appear to be the most important for 
the detection. 

 

Fig. 5. Variable importance from fusion RF (EMD+VMD) using 3 windows. 

Sensitivity analysis was performed by repeating detection 
task using 30 ms window size and EMD+VMD fusion. 
Distribution of the resulting Cllr and EER measures is illustrated 
by boxplots in Fig 6 – 7. 

 

Fig. 6. Distribution of Cllr after 125 repetitions of the detection task, visualized 

by boxplot: 1 (left) vs 3 windows (right). 

 

Fig. 7. Distribution of EER after 125 repetitions of the detection task, 

visualized by boxplot: 1 (left) vs 3 windows (right). 

TABLE III.  TEST OF CLLR FOR NORMALITY OF 1 AND 3 WINDOWS 

Test name Test statistic p-value 

 1 window 3 windows 1 window 3 windows 

Doornik-

Hansen 
12.3997 34.4653 0.00202975 

3.28061e-

008 

Shapiro-Wilk 

W 
0.926049 0.863831 

3.66809e-

006 

2.39331e-

009 

Lilliefors 0.119188 0.197622 ~= 0 ~= 0 

Jarque-Bera 7.1929 13.3053 0.0274209 0.00129062 

TABLE IV.  TEST OF EER FOR NORMALITY OF 1 AND 3 WINDOWS 

Test name Test statistic p-value 

 1 window 3 windows 1 window 3 windows 

Doornik-

Hansen 
11.2948 52.6303 0.00352675 

3.72794e-

012 

Shapiro-Wilk 

W 
0.952697 0.840665 0.00025031 

2.69682e-

010 

Lilliefors 0.0835316 0.204496 ~= 0.03 ~= 0 

Jarque-Bera 6.0258 15.6308 0.049149 0.00040348 

 

 Due to the lack of normality in Cllr and EER measures (see 
Tables III – IV), non-parametric statistical testing was 
performed. Medians of Cllr and EER were compared between 1 
window and 3 windows setting using Wilcoxon rank-sum test 
and results are provided in Table V. Statistically significant 
difference with 99% confidence (p-value < 0.01) was indicated 
in favor of using 3 windows. 
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TABLE V.  HYPOTHESIS OF EQUAL CENTRAL TENDENCIES TESTING FOR      

CLLR AND EER USING WILCOXON RANK-SUM TEST 

 Rank-sum test results for Cllr 

Null hypothesis The two medians are equal 

Cllr statistics 

n1 = 125, n2 = 125 

w (sum of ranks, sample 1) = 23500 

z = (23500 - 15687.5) / 571.684 = 13.6658 

P(Z > 13.6658) = 0, Two-tailed p-value = 0 

EER statistics 

n1 = 125, n2 = 125 

w (sum of ranks, sample 1) = 23500 

z = (23500 - 15687.5) / 571.684 = 13.6658 

P(Z > 13.6658) = 0, Two-tailed p-value = 0 

VI. CONCLUSIONS 

Decomposition-based PLPCC features, namely, EMD-
PLPCC and VMD-PLPCC, were found useful for building 
expert system for Parkinson’s detection from sustained voice. 
The baseline solution without decomposition and decision-level 
fusion, where PLPCCs were obtained from all frames and 
compressed using statistical functionals, resulted in the lowest 
EER of 32.90% for 30 ms windows size. The researched solution 
using decision-level fusion of PLPCCs from EMD and VMD, 
obtained from 3 windows at equally-spaced locations, resulted 
in EER as low as 2.22% for 30 ms window size. 

Sensitivity analysis was performed by fixing window size at 
30 ms and repeating detection task 125 times to choose between 
fusion of components from 1 or 3 windows. Fusion of 
EMD+VMD from 1 window provided an average EER of 
12.13%, whereas fusion of EMD+VMD from 3 windows 
provided an average EER of 6.48%. Detection performance 
when using decision-level fusion of decomposition results from 
3 evenly located windows was better than using 1 central 
window and the difference in detection performance was 
statistically significant, as indicated by statistical tests. 

Main challenge remains lack of numerical stability in 
decomposition output, where extracted IMFs were not identical 
between runs. This limitation leaves the choice of the window 
size questionable, but future work could exploit a multitude of 
sub-optimal IMFs and use them for boosting data amounts when 
building detectors. Not only the first stage detectors could be 
built on more data, but also statistical functionals when 
compressing decisions of base detectors for the second stage 
would certainly benefit from increased number of decisions – 
statistics for decision-level fusion would be obtained not from 
6–12 components, as in a current solution, but from several 
times more. We speculate that meta-leaner in the second stage 
could achieve robustness by using all IMFs of several repeated 
decomposition runs. 
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