

61

Copyright © 2017 held by the authors

Modern programming assignment verification, testing

and plagiarism detection approaches

Aleksejs Grocevs

Department of Software Engineering

Riga Technical University

Riga, Latvia

e-mail: root@smallserver.org

Natālija Prokofjeva

Department of Software Engineering

Riga Technical University

Riga, Latvia

e-mail: natalija.prokofjeva@rtu.lv

Abstract—This paper provides insights of possible plagiarism

detection approach based on modern technologies –

programming assignment versioning, auto-testing and abstract

syntax tree comparison to estimate code similarities.

Keywords—automation; assignment; testing; continuous

integration

 INTRODUCTION
In the emerging world of information technologies, a

growing number of students is choosing this specialization for
their education. Therefore, the number of homework and
laboratory research assignments that should be tested is also
growing. The majority of these tasks is based on the necessity
to implement some algorithm as a small program. This article
discusses the possible solutions to the problem of automated
testing of programming laboratory research assignments. The
course “Algorithmization and Programming of Solutions” is
offered to all the first-year students of The Faculty of
Computer Science and Information Technology (~500
students) in Riga Technical University and it provides the
students the basics of the algorithmization of computing
processes and the technology of program design using Java
programming language (the given course and the University
will be considered as an example of the implementation of the
automated testing). During the course eight laboratory research
assignments are planned, where the student has to develop an
algorithm, create a program and submit it to the education
portal of the University. The VBA test program was designed
as one of the solutions, the requirements for each laboratory
assignment were determined and the special tests have been
created. At some point, however, the VBA offered options
were no longer able to meet the requirements, therefore the
activities on identifying the requirements for the automation of
the whole cycle of programming work reception, testing and
evaluation have begun.

I. PLAGIARISM DETECTION APPROACHES

To identify possible plagiarism detection techniques, it is

imperative to define scoring or detecting threshold. Surely it is

not an easy task, since only identical works can be considered

as “true” plagiarism. In all other cases a person must make his

decision whether two pieces of code are identical by their

means or not. However, it is possible to outline some

widespread approaches of assessment comparison.

A. Manual Work Comparison

In this case, all works must be compared one-by-one.

Surely, this approach will lead to progressively increasing error

rate due to human memory and cognitive function limitations.

Large student group homework assessment verification can

take long time, which is another contributing factor to error-

rate increase.

B. Diff-tool Application

It is possible to compare two code fragments using semi-

automated diff tool which provides information about

Levenshtein distance between fragments. Although several

visualization tools exist, it is quite easy to fool algorithm to

believe that a code has multiple different elements in it, but all

of them are actually another name for variables/functions/etc.

without any additional contribution.

C. Abstract Syntax Tree (AST) comparison

Abstract syntax tree is a tree representation of the abstract

syntactic structure of source code written in a programming

language. Each node of the tree denotes a construct occurring

in the source code. Example of AST is shown on Fig. 1.

62

Fig. 1. Code parsing into abstract syntax tree

Since the code comparison technology takes very important

part in the work of plagiarism detection and software

evaluation, some authors assume that software plagiarism

mainly appears as copy-and-paste or with a little modification

after this, which will not change the function of the code, such

as replacing the name of methods or variables, reordering the

sequence of the statements etc. [2], [3].

To generalize AST creation approach, multiple ready-to-use

libraries exist, most notable are ANTLR (a powerful parser

generator for reading, processing, executing, or translating

structured text or binary files), JavaCC (much more a Parser

generator than a compiler. AST support is provided through

another lib called JJTree) and SableCC (parser generator which

generates fully featured object-oriented frameworks for

building compilers, interpreters and other text parsers. In

particular, generated frameworks include intuitive strictly-

typed abstract syntax trees and tree walkers).

It is possible to implement any of abovementioned AST

generators, however ANTL provides wider source code

language support and it will be used for our reference system

implementation.

II. VERIFICATION SYSTEM METRIC IDENTIFICATION

In order to get a grade, the student has to implement the

required algorithm as a program, submit the program in a

binary (compiled) form as well as providing its source code.

The professor has to test both the program using a subset of

pre-calculated input/output data pairs, and its source code

equivalence to the binary representation, including the

compilation ability and the absence of errors while executing

it. It is imperative to evaluate the factors affecting the whole

process and to choose the metrics for intercomparison [1].

A. Metrics and Identification Process

Algorithm implementation validation speed is criteria that

reflects how fast can the professor obtain the program and its

source code, execute and test it using the predefined test

patterns. In the University, the student has to upload the result

of his work to the "Homework" section of the Moodle

education portal, where the professor should run and evaluate

it after downloading.

Plagiarism check – even if the tasks are relatively similar it

is crucial to make sure the source code was written by the

student himself and not plagiarized from a colleague. This

check should be made once by a professor in order to avoid

the code consecutive altering so it can successfully pass the

check.

Evaluation quality – even in case of simple tasks, such as

"implementing a list sorting algorithm" there might be many

border cases which can lead to incorrect execution results, but

sometimes may not be checked due to time limitation. When

using the automated testing solutions, it is possible to pre-

create the large number of different tests that check all the

aspects of the performance of the given assessment.

Report preparation – it is important to put the data of

successful/unsuccessful test runs together and to inform the

student of the result. When using on-line solutions, there is a

possibility to send a test-passed-successfully notification as

soon as an assessment has been uploaded and tested. It is also

important to record the summary of all students’ assessments

in form of a table that can later be used to be uploaded to the

University education portal.

Safety check – the binary representation of the program and

its source code are usually tested separately in order to save

time, and this is most commonly done in that particular order.

Although, it is not always possible to quickly detect the

malicious code, which is meant to erase or alter the test results

or even the testing system itself, when the solution consists of

several files or modules. Therefore, while testing the compiled

programs they should be treated as potential malware or

viruses that may damage the test environment. Ideally, they

should be executed in the sandbox environment which ensures

the isolation of the potential threat.
Bug fix tracking – if the code has been partially altered

(either on the professor's request or during the debugging
process) the modified parts of the file are indistinguishable
from the previous code in the file. Therefore, the professor has
to manually compare two versions of the file in order to detect
these changes, or even look through the entire source code file.
This problem can be solved by using version control system
(VCS). The Moodle system itself does not provide neither an
option nor plugin for that, so this possibility can only be
considered in the context of implementing it in on-site solution.

B. Available automated verification systems

At the moment, all of the assessment checking, test

executing and running as well as plagiarism check/percentage

evaluation is done manually. It is obvious that an ordinary

human cannot keep the source code of five hundred similar

programs in mind, nor is he able to measure their similarity.

That is why similar researches exist that also suggest

automated testing implementation [7].

In order to aid the manual testing the academic department

of the University has developed a VBA script that

automatically executes and checks the assessments for a

compiled program; the test results are recorded in an Excel

file. This improvement has allowed to speed up the evaluation

process making it possible for the professor to focus more on

the source code, which is a more important than an actual test

run.

Some authors [4], [5] are offering to use the automated

verification of test runs and a plagiarism check as a separate

Moodle module, which implements many previously defined

criteria at the time the assessment is uploaded to Moodle.

However, none of these researches provide the complete

solution to this problem.

In addition to the above-mentioned methods it is also

possible to use the features of the Continuous Integration

technology that was made specifically to constantly check the

software. This would allow the students to upload their works

63

into an automated testing environment that would immediately

check these assessments based on the tests prepared by a

professor and would provide the near-realtime response,

whether the program has passed the tests or not. In addition to

the functional check this service could also evaluate the source

code for potentially harmful behavior or actions in an isolated

sandbox-environment.

III. ANTI-PLAGIARISM INTEGRATION POSSIBILITIES

By identifying the possible solutions and considering the

current approach to the testing it is possible to compare these

approaches using the previously proposed metrics in

accordance to further anti-plagiarism system integration.

A. Manual Testing

The speed and the quality of manual check of each

assessment will be definitely lower compared with the

automated check. The numerical representation of absolute

comparison results is impossible in that case due to average

human concentration and performance abilities of each

individual.

Report preparation is done manually, therefore both the

error rate and the time consumed will be considerably higher

when compared to an automated check.

Plagiarism check in general will be less accurate with a

large amount of assessments, however human perception

makes detecting such cases reflexively or by using additional

environment information possible (the plagiarism rate is

higher if the students are friends). Furthermore, biased

perception and evaluation of the work are also possible due to

the human factor.

Safety check depends on the set of rules enforced by the

University. These rules define how to verify the programming

assessments and how to run the executable files. It is most

likely that a professor will primarily check the compiled

program in order to return it for correction in case of a

program failing the tests. This saves him the time for

compiling the program from its source code.

B. Custom Script Usage

The speed and the quality of such checks are increased in

comparison with manual checks. Since the VBA

implementation allows to check just one assessment at a time,

it cannot be considered as a finished testing automation, as the

required programming work has yet to be copied to the proper

folder for a script check.

Report preparation is consistent with the expectations and

the requirements – the results of automated test are recorded in

Excel file for each student.

The plagiarism and safety checks remain at the same level

as in case of manual check, since the VBA script can only

work with the compiled program.

C. E-Learning Portal Approach

According to the authors, the speed and the quality of such

checks are high and take place in real time.

The preparation of report is made using Moodle so this

solution is also consistent with the requirements.

The plagiarism check is present in some announced

solutions but it is not fully functional (system improvement

work is still in progress).

Safety check remains poor since the sandbox-environment

is not used, which increases the risk of compromising the

whole Moodle system (since all tests are executed under the

Moodle user privileges).

D. Custom Implementation

While creating an on-site solution using the third-party

developer tools, it is possible to meet all the abovementioned

needs. We propose to use Gogs as a Git-repository – the

storage for the source code of all programming assessments;

Jenkins as a Continuous Integration server; Docker as a

sandbox-environment and Apache Solr or other full-text

search system as a plagiarism checker. Many authors [6], [7],

[8] have approached the problem of detecting the plagiarism in

the source code, and some authors [9] are proposing the

solutions that are consistent with the University requirements

and can be integrated into the suggested infrastructure. Our

suggested infrastructure involves the workflow shown on Fig.

2:

Fig. 2. Overall verification workflow schema

64

Workflow step description:

 The students code the task in the program code and

uploads/updates it using Git;

 Jenkins checks all the students' repositories once per

minute, sends a plagiarism check request to Sorl

whenever a new commit appears, creates a separate

sandbox-environment, compiles a program within it and

runs the tests. If the tests are passed – Moodle API is

used to mark the student’s assessment as successfully

completed and to upload the source code his behalf. If

the tests are not passed or the harmful code was found –

the student is notified by an e-mail and has to go back

to step one. The Docker sandbox container is being

automatically removed either when the tests are

completed or by timeout.

 After the assessment submission deadline, the professor

sets all Git-repositories to read-only mode, runs a

Jenkins-plugin, which sends a plagiarism check request

for each of the assessments to Solr and records the

additional data on plagiarism score for every task’s

source code to Moodle.

 The only action left for the professor is to check the

source codes or to compare the latest source code

version with the previous using the built-in Gogs tools.

Such an approach provides the level of checking speed and

quality as well as a report preparation level similar to that of

the Moodle plugin.

It is possible to use outer systems for plagiarism checks

since Jenkins API allows to connect the various external

services.

Safety check is at a high level due to the isolated container

(sandbox) use, so the risk of system infestation by the

malicious code and other destructive actions is minimized.

Tracking of error correction is a standard feature of the

Gogs-repository which facilitates the comparison of file

versions and change-tracking.

IV. CONCLUSION AND FURTHER WORK

Based on the comparison results of the programming work

automated testing capabilities using the VBA script, Moodle

plugins and on-site solution, we can assert that the initial

implementations in that area already exist; many authors are

highlighting this fact. However, there is no general method

which could improve the education quality by simplifying the

verification process and shifting the assessor's professional

skill focus from routine tasks towards the student's skills

check in implementing the required task and understanding of

the material. Our suggested approach to the programming

assessment storage organization, testing and verification

allows to solve the abovementioned problems and improve the

professor's working efficiency.

Hereafter we are planning to implement our suggested

AST-based plagiarism checking approach alongside with other

mentioned techniques in a single system.

REFERENCES

[1] Grocevs А., Prokofjeva N, “The Capabilities of Automated Functional

Testing of Programming Assignments,” In: Procedia – Social and
Behavioral Sciences, vol. 228, pp. 457-461, 2016.

[2] Cui, B., Li, J., Guo, T., Wang, J., Ma, D., “Code Comparison System
based on Abstract Syntax Tree,” 2010 3rd IEEE International
Conference on Broadband Network and Multimedia Technology (IC-
BNMT), Beijing, pp. 668-673, 2010.

[3] Hansen, D. M., “Paperless subjective programming assignment
assessment: a first step,” Journal of Computing Sciences in Colleges,
vol. 29(1), pp. 116-122, 2013.

[4] Cheng, Z., Monahan, R., Mooney, A., “nExaminer: A semi-automated
computer programming assignment assessment framework for Moodle,”
International Conference on Engaging Pedagogy (ICEP11) NCI, Dublin,
Ireland, 2011.

[5] Thiébaut, D., “Automatic evaluation of computer programs using
Moodle’s virtual programming lab (VPL) plug-in,” Journal of
Computing Sciences in Colleges, vol. 30(6), pp. 145-151, 2015.

[6] Cosma, G., Joy, M., “An approach to source-code plagiarism detection
and investigation using latent semantic analysis,” Computers, IEEE
Transactions on, vol. 61(3), pp. 379-394, 2012.

[7] Pozenel, M., Furst, L., Mahnicc, V., “Introduction of the automated
assessment of homework assignments in a university-level programming
course. In Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015 38th International Convention on,
IEEE, pp. 761-766, 2015.

[8] Zhang, D., Joy, M., Cosma, G., Boyatt, R., Sinclair, J., Yau, J.,
“Source-code plagiarism in universities: a comparative study of student
perspectives in China and the UK. Assessment and Evaluation in Higher
Education, vol. 39(6), pp. 743-758, 2014.

[9] Kikuchi, H., Goto, T., Wakatsuki, M., Nishino, T., “A Source Code
Plagiarism Detecting Method Using Sequence Alignment with Abstract
Syntax Tree Elements,” International Journal of Software Innovation
(IJSI), vol. 3(3), 41-56, 2015.

