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Abstract—this research provide approach for embryo 

cell detection from images based on convolutional neural 

networks. Deep neural network used for experiment consist 

of 15 layers and is trained using GPU for calculations. In 

research training data set size impact to model training 

duration is identified. R-CNN model embryo cell detection 

results are compared to human expert labeling data to 

evaluate its precision. 
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I.  INTRODUCTION  

Identify and count objects in an image or sequence of images 

is challenging computer vision problem, which can be found in 

many applications and systems, ranging from traffic monitoring 

to biological research. This paper is focused on biological 

research embryo cells detection. However, developed 

methodology can be used in numerous medicine procedures 

that requires counting and detection, such as red or white blood 

cells count for patient’s health, clinical pathology or cell 

concentration investigation. 

Manual embryo cell detection is very monotonous and time-

consuming work that is prone to errors. According to this 

automating, the detection process has many benefits, such as 

reducing time consumption, minimizing errors possibility and 

cost. In addition, it is improving consistency of results between 

individuals and clinics. Our goal is to simplify the task and 

improve its robustness. 

One of the difficulties is to count non-stained cells in dark 

images, because of constraints, such as the light intensity, 

transparency or exposure time. All these factors cause image 

quality and result in faint cell boundaries. One more challenge 

is that embryos cells has wide variability in appearance and 

shape. Furthermore, every embryo grows in different individual 

manner, there cells overlap each over. Also between cells could 

be found extracellular material hand crafted algorithms. 

In this paper, we develop a Convolutional Regression 

Networks (CNN) approach for regression of density map. Our 

main goal is to automatically detect and count the number of 

human cells in developing embryos. In addition, experimental 

results shows that CNN can be used to provide state-of-the-art 

cell counting, also detect overlapping cells. 

II. GENERAL DESCRIPTION OF R-CNN METHOD 

Object detection system R-CNN can be divided into three 

main modules. The first module is responsible for generation 

category-independent region proposals [1]. Proposals are used 

to define the set of possible candidates available to the detector. 

The second one - convolutional network is used to extract a 

fixed-length feature vector from each region. The last one 

module is a set of class-specific linear SVMs.  

According to the Pan and Yang taxonomy [2] Regional – 

Convolutional Neural Networks training is substantiated on 

learning inductive transfer. For correct R-CNN train, first step 

is to classify ImageNet as dataset and source task. Second step 

is network training using supervision, after that network is 

transferred to the target task and dataset using supervised fine-

tuning. At first look, this methodology is related to traditional 

multi-task learning [3], [4]. However, this training is except for 

the task sequentially and furthermore, are only based on 

performing well on the specific target task. 

Donahue et al. [5] also mentioned CNNs learning using 

supervised transfer in work. They state that once trained on 

ImageNet, further it can be treated as a black box feature 

extractor.  This method is suitable for recognition with scene 

classification and domain adaptation. One more author 

Hoffman et al. [6] states transfer learning for R-CNN training 

is right choice and can be used for image – level label classes, 

but not for bounding – box training data. 

Regions with Convolutional Neural Networks consists of 

two sibling output layers. The first one is used for discrete 

probability distribution, p = (p0,...,pK), over K + 1 categories. 

Always parameter p is computed by a softmax over outputs of 

layer. The second one layer outputs bounding – box regression 

offsets, tk = ( ) given in [7], tk is used to specify a 

scale – invariant translation and log – space height and width 

shift relative to an object proposal [8]. 

R-CNN regions of interest training is labeled with u (ground 

– truth class) and v (ground – truth bounding – box regression 
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target). Then multitask loss L for each RoI classification (1). 

  (1) 

Here Lcls is equal to log loss for true class Lcls(p,u) = - log 

pu the hyper – parameter is used to control the balance 

between the two task losses. For normalization the ground – 

truth regression targets vi is equal to zero mean and unit 

variance. 

In the second task is defined loss over a tuple of true 

bounding – box regression targets Lloc for class u and v and is 

equal to v = (vx,vy,vw,vh), predicted tuple  for 

class u. For background regions of interest there is not used 

notion of ground – truth bounding box also Lloc is not involved. 

In this case for bounding – box regression is used (2) 

expression. 

  (2) 

There smoothL equal (3). 

   (3) 

If the regression targets are unbounded, there is probability, 

that training with L2 loss can require tuning of learning rates to 

prevent gradients explosion.  

III. THE ALGORITHM USED IN THE STUDY 

Deep learning is package of different methods used in 

machine learning which attempts to present detail features in 

multiple-layer structure data. R-CNN is one of the most 

effective learning techniques and is able to minimize learnable 

parameters significantly by using the same basis function across 

different image locations. 

In this research, we suggest an automatic learning based cell 

detection framework, which is suitable for 3D and 2D 

microscopy images. This framework can be used, for the 

efficiency and accuracy improvement of training a CNN from 

larger size images, an SVM classifier is applied to detect cell 

regions for collecting the CNN training set [9]. 
The exposure time range is dynamical and may not be equal 

for each session of recording through the light microscope, 
according to this the color of each stack may be different. Also 
in this research we apply Image Intensity Standardization (IIS), 
which was considered in [10] the main advantage is intensity 
normalization of 2D grayscale images. According to Bogunovic 
[11] after some modifications IIS algorithm is suitable for 
normalizing the intensity of the three-dimensional grey scale 
Rotational Angiography. Furthermore, we use the original 
Intensity Standardization as a color normalization method for 
3D microscopy images. After that, calculation is performed of 
three histograms of the three channels of the whole RGB stack 
first. Also, the stack histogram of every used channel is aligned 
to the corresponding reference based on the non-linear 
registration method described in [10]. Algorithm of this 
operation is shown in Fig. 1. 

 

Fig. 1 The workflow of the embryo cell detection framework.  

 
As well, there are more algorithms used for embryo cell 

detection in machine vision and medical image analysis areas 
[12, 13]. Nonetheless, most of these automated three-
dimensional cell detection methods are not a suitable for 
manual cell detection [13]. There are two main types of cell 
detection algorithms. The first one is based on segmentation or 
thresholding [14] and different software implementations 
appeared including various plugins as “ImageJ” [12] and the 
“FARSIGHT” toolkit [15]. The second type is feature or 
modeling based methods [16, 17]. Due to machine learning 
techniques development, capabilities of cell detection based on 
learning are increased. Also, for two-dimensional 
immunohistochemistry images there are learning based on cell 
detection methods [18, 19]. However, there is not universal 
automatic cell detection method for microscopy images.  

In this research, cell regions R are determined to discard the 
irrelevant background regions. Selecting background patches is 
important for training a CNN. Wherefore, cell regions detection 
is more efficient and rough using an SVM classifier, after that 
cell and background training patches are gathered from R 
instead of the whole stack.  

The Support Vector Machine (SVM) detector is used for 

cell region detection and for collecting CNN training patches, 
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which are used to remove large part of background pixels. This 

part of process is like feature selection pre-process. In our case, 

accuracy of CNN could be increased using cell detection 

samples in the cell region. Similarly, in the test case, to increase 

accuracy, in first step we apply the SVM detector to identify 

those regions. In the training mode of conventional CNN, the 

cell samples are the same, however the non-cell samples are 

different. 

Then the cell region R is detected using SVM-RGB 

Histogram detector, second step is to extract cell and patches in 

region R from all test stacks for training CNN which is also the 

same size of patches and neighborhood. Pixels in the cell region 

R have almost same colors. According to this color feature in 

the cell region is not reliable for distinguishing cell and 

background patches. On purpose to decrease time range for 

training all RGB patches are transferred into the YUV color 

space and only the Y channel patches are needed. Every Y-

channel cell patch, is rotated 0, 90, 180, 270 degrees to ensure 

the detector rotation invariant and increase the amount of cell 

samples. Also there is probability that cell and background 

patches can have overlapping pixels. This is useful for 

increasing the probability of correct cell detection. 

Approximately half million cell patches are extracted from all 

training stacks, and the same amount of background patches 

from the cell region R. 

After the last step, max-pooling CNN is ready for testing on 

the test stacks. The cell region is detected by the SVM RGB 

Histogram detector for each frame of every stack in the dataset 

used for testing. After that, the pre-trained CNN is used for 

identifying embryo cells by scanning each pixel in region and 

every pixel is given a probability value P. 

 

 

IV. R-CNN TRAINING 

Experiment was done using MATLAB 2016b software in a 

personal computer with i5-4570 CPU clocked at 3.2 GHz, 8 GB 

memory 64-bit operating system and video card GeForce GTX 

650 Ti. Training process was done with GPU processor instead 

of CPU to accelerate training procedure.  

We train the R-CNN network demonstrated in Fig. 2. It 

consist of 1 input layer, 13 hidden layers (convolutional, Relu, 

Max Pooling, Fully Connected, Softmax) and classification 

output layer. Training run for 100 epoch, with base learning rate 

of 0.001 and Stochastic Gradient Descent training method. 

 

 
Fig. 2 The outline of the convolutional neural network architecture. 

 

 

For experiment there was randomly selected thousand 

embryo photos Fig. 3 which was labeled by human expert. To 

evaluate training data set size impact to detection precision 

there was trained 14 R-CNN networks with different size 

training data set. Data set size for training was increased from 

5% to 70% with 5% steps. 30% of data set was used to evaluate 

network cell detection precision. To decrease training time 

there was used pre trained CIFAR-10 network. Pre trained 

network biases and neuron weights there adjust to detect 

embryos cells in photos. 

 

 
Fig. 3 Embryo images  

 

Training data set size impact to training time is linear and it 

can be seen in Fig. 4. Training duration using biggest training 

dataset with 700 images was 38 minutes 40 seconds.  

 

 
Fig. 4 Neural network training time 

V. SIMULATION RESULTS 

Trained R-CNN network was tested with new, do not used 

at training process, 300 embryo images Fig. 5. Predicted 

embryo position and size was compared with human expert 

labeled embryo size and position results.  



 

92 

 

 
Fig. 5 Detected embryo cells 

 

After comparing specialist data labeling results with deep 

neural network result, received size mean squared error and 

standard deviation presented at Table. 1. Some trained neural 

networks do not detected one or two embryos cell at images. 

Models with 30% or bigger size training dataset detected all 

embryos in images. 

 
TABLE I. PREDICTED SIZE RESULTS 

Training 

data set 

size 

Mean square 

error, % 

Standard 

deviation, 

% 

Undetected 

embryos 

5% 20,73 13,86 1 

10% 17,32 11,08 2 

15% 13,82 8,74 0 

20% 11,55 7,54 1 

25% 15,79 10,83 1 

30% 13,48 8,53 0 

35% 13,43 8,87 0 

40% 14,67 8,41 0 

45% 12,40 7,88 0 

50% 12,57 7,77 0 

55% 17,60 9,31 0 

60% 18,32 8,99 0 

65% 12,15 7,65 0 

70% 11,92 7,18 0 

 

 

From Fig. 6 it is seen that best results got with 20% and 70% 

size of training data set where models results compared with 

human expert gives 11.92% mean square error. It shows that 

not only training data set size impacts model accuracy, but 

images distribution in training data set influence model 

prediction accuracy.  

 
Fig. 6 Detected cell size error 

 

Comparing model position predicting results with human 

expertise prediction from Table 2 it seen that error rate is 

smaller than size error rate. Smallest mean square error rate got 

using model trained with 30%, 40% and 65% training data set 

size. Close error rate got using 25% training data set, but this 

model do not detect one embryo cell.  
 

TABLE II. PREDICTED POSITION RESULTS 

Training 

data set 

size 

Mean square 

error, % 

Standard 

deviation, 

% 

Undetected 

embryos 

5% 6,05 2,55 1 

10% 5,59 2,42 2 

15% 5,45 2,76 0 

20% 5,29 2,58 1 

25% 4,64 2,07 1 

30% 4,64 2,17 0 

35% 6,82 2,92 0 

40% 4,63 2,28 0 

45% 5,29 2,5 0 

50% 5,06 2,25 0 

55% 5,42 2,31 0 



 

93 

 

60% 5,35 2,35 0 

65% 4,62 2,18 0 

70% 5,68 2,49 0 

 

At Fig. 7 it seen whole error distribution. Inaccuracies 

appears using model with 35% training data set. That means 

few images could distort model parameters and decrease its 

accuracy. 

 

 
Fig. 7 Detected cell position error 

VI. CONCLUSIONS 

From experiment results it is possible to confirm that deep 

neural network training time is linearly dependent to training 

data set size. After detected region size comparison with human 

expertise prediction best result with mean square error rate 

11.92% without any undetected embryos cell got using biggest 

70% training data set size. More precise result got comparing 

embryos cell position. Smallest error 4.62% got using 65% 

training data set size. This shows that offered model better 

works for position prediction. 
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