Exploiting Manycore Architectures for Parallel Data Stream
Processing

Constantin Pohl
TU limenau, Germany

constantin.pohl@tu-ilmenau.de

ABSTRACT

With the ever increasing complexity of applications, opti-
mizations on hardware and software have to keep up with
associated challenges. On data stream purposes, low laten-
cies and high throughput are key requirements for being able
to process continuous incoming data in real time. Achiev-
ing a high parallelization degree is an important factor for
accelerating query execution time. By hardware side, the
emerging manycore processor architectures give new oppor-
tunities for exploiting parallelism, like the Xeon Phi series
from Intel.

In this work, we transfer our own stream processing en-
gine PipeFabric on a Xeon Phi Knights Landing. We mea-
sure latencies for cache and memory as well as throughput
of data tuples and compare them to results on a system
with a modern multicore processor. Our observations lead
to general optimization recommendations on hardware and
software level for improved performance on processing con-
tinuous data when using a manycore processor. In addition
to this, we show that a manycore CPU can surpass a mo-
dern multicore CPU easily on query runtime when adapting
accordingly.

Keywords

Data Stream Processing, Many Integrated Core (MIC), Xeon
Phi

1. INTRODUCTION

High amounts of data with intense arrival rates need to be
processed by queries continuously in data stream processing
applications. To achieve acceptable throughput rates with
low response times, usually a combination of powerful hard-
ware and careful stream processing engine (SPE) design is
used.

On hardware side, there are two main ways of impro-
ving computational speed, distributed computing and paral-
lel computing. The underlying hardware of distributed com-
puting is usually a number of high-end multicore processors,

29t" GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 30.05.2017 - 02.06.2017, Blankenburg/Harz, Germany.
Copyright is held by the author/owner(s).

66

connected to each other, sharing computational work done.
By distributing tasks to many processors instead of just one,
each of them can contribute his part to a faster processing
speed. For parallel computing, the trend goes to processing
units with simpler cores, but many of them inside a proces-
sor, called a manycore architecture. The main advantage
compared to distributed hardware lies in shorter response
time (latency) because of closer distances between process-
ing units, negating any communication needed through net-
work protocol. However, this comes with a cost in terms
of lower clock speed, caused by an intense amount of waste
heat on small chip area that is impossible to get rid of when
clocking high. This results in bad runtimes when only a
fraction of available cores is used.

The consequential question is how to utilize as many cores
as possible efficiently on data stream processing purposes,
to gain a speedup on queries compared against modern mul-
ticore processors. We focus on query processing on data
streams in parallel, since real-time stream processing has
become more and more a promising field of interest in the
last years. For this paper, we evaluate stream processing on
a manycore processor out of the Xeon Phi series from Intel,
codename Knights Landing (KNL). We apply our own SPE
PipeFabric both on KNL and a multicore CPU system to
compare results and steps of optimization. With PipeFabric,
we have full control on different stream operators, allowing
to apply different levels of improvements.

The main goal is to investigate the potential and utiliza-
tion of a manycore processor for the task of parallel data
stream processing. To achieve this, we discuss the charac-
teristics of Xeon Phi manycore CPU as well as our SPE,
resulting in different possibilities of optimizations on hard-
ware and software. We finally add some of these points on
our preliminary experiments and show their impact on per-
formance.

The rest of this paper is organized in the following way.
The next Section 2 is about general information on data
stream processing along with optimizations recommended
to run an SPE in an efficient way on a system with many
CPU cores. Section 3 handles important facts of the Xeon
Phi manycore processors with regards to optimization op-
portunities of this architecture. Section 4 presents related
work already done in this context with Xeon Phi. Section 5
shows measurements of latency and bandwidth from mem-
ory and caches of KNL and i7 multicore processor, as well
as preliminary experiments and results on optimizing query
processing for manycore CPUs. Finally, Section 6 tops off
this work.

2. STREAM PROCESSING ENGINES

Data stream processing consists of one (or more) data
streams, providing a potentially endless amount of tuples
representing data. Tuples can have different arrival rates
and it is mostly impossible to store all of them, therefore a
strategy like sliding windows must be applied to deal with
outdated information. A query on streamed data applies
different operators like joins, aggregations or simpler opera-
tions like selections or projections on them, resulting in chal-
lenges of speeding up runtime to handle high tuple arrival
rates. This speedup can be achieved through partitioning of
data or operators, parallelizing the query.

2.1 Inter- vs. Intra-Operator Parallelism

There are two strategies applicable on transaction, query,
or operator level for parallelization. For transactions and
queries, parallelism is mainly realised through DBMS sys-
tems that are not of further interest at this point. On
operator level, Inter-Operator Parallelism can be achieved
through parallel execution of different operators. However,
this is often not completely possible for the simple reason
of operator dependencies, e.g. a selection before an aggre-
gation. On the other hand, Intra-Operator Parallelism is
realised by creating multiple instances out of one operator,
so the instances can share work between them (SIMD prin-
ciple). To combine results of each instance, an additional
merge step is needed. This shows Figure 1 exemplarily.

Inter-Parallelism

Intra-Parallelism

Figure 1: Inter-Operator and Intra-Operator Paral-
lelism

2.2 Cluster vs. Single Node

When partitioning, it is possible to use multiple processors
to distribute work. Therefore it is necessary to specify how
to split the data and query. Cluster computing frameworks
(e.g. Spark, Flink or Storm from Apache) can support this
distribution, allowing a fine-grained tuning of the streaming
application. However, they suffer from the same problem of
all distributed approaches - high latencies, emerging from
communication costs caused by sending messages through
the network connecting the machines.

To avoid this and to reduce latency, a manycore proces-
sor can be used, supporting parallelism through hundreds
of local threads. But to overcome the penalty of low clock
speed some points have to be regarded. On data stream
applications the question arises if it is even possible to gain
such a speedup that a manycore CPU can be faster than
a single multicore or a cluster of multicores, because of re-
quirements on low latency. Finally, our work aims not only
in recommendations concerning optimizations on Xeon Phi,
but rather on answering this question.

67

2.3 PipeFabric SPE

PipeFabric is our own framework written in C+4++ for
data stream processing. A query can be formulated using
a DSL and consists of different stream processing operators
forming a dataflow graph. It supports next to simple se-
lection/projection operators aggregates, groupings, joins as
well as complex event processing. The framework is opti-
mized for low-latency mainly through efficient C++ tem-
plate programming.

auto s = t. streamFromGenerator<TPtr>()
partitionBy([1 () (...}, 3) (B)
.where{[](){.,.}] |
.map<RPtr>([] () -> RPtr {... }] |
.merge() |
-batch(100) (B)

.aggregate<State>():

Inter-Operator- \ J

T
Parallelism Intra-Operator-Parallelism

Figure 2: Query example

A simple example for a query shows Figure 2, splitted in
C++ example code and the resulting dataflow graph. A gen-
erator produces tuples, which are then processed by three se-
lections through partitioning, sorting out tuples that have an
uneven number in their first attribute, in addition to three
projections (map) afterwards, reducing their number of at-
tributes. Results are merged together, followed by batching
single tuples, allowing the aggregation step to process 100
tuples at once. Intra-Operator Parallelism (see Section 2.1)
on data is ensured by three instances of the selection and
projection operator, splitting up tuples according to their
first attribute by partitioning operator. Inter-Operator Par-
allelism is achieved through multiple threads doing work in
parallel with respect to data dependencies. With batching,
the aggregation step can operate with SIMD support, ag-
gregating on multiple tuples simultaneously.

As a source, the data stream can be constructed not only
through a tuple generator or the query itself, but from file,
through REST HTTP or via network ports. It is possible
to vary the tuple arrival rates to simulate peaks, like trans-
mission delays or different data distributions, e.g. data de-
pendence from daytime in a social network. In addition to
this, tuples can become outdated after a while, simulating a
possibly endless stream of data.

2.4 Software Optimizations

When transferred to manycore architecture, some impor-
tant observations can be made, resulting in challenges to
solve and opportunities to use. These points are discussed
below.

2.4.1 Parallelization Overhead

The lower clock speed of cores in a manycore architecture
(caused by reducing waste heat problems) leads to clearly
higher run times initially than on multicore when running
singlethreaded. Even when using a handful of threads the
performance is notably lower compared to the parallelism
of hundreds of possible threads on a manycore processor.
To overcome this problem, it is necessary to use as many
cores as possible simultaneous to exploit this advantage of
manycore parallelism. When scaling out accordingly, typ-
ical problems like synchronization and load balance occur,
addressed afterwards in this section.

2.4.2 Operator’s Computational Cost

It is possible to run many queries at once, even with sev-
eral data stream sources. But to gain speedup on a sin-
gle query, the contained operators have to run in parallel
through partitioning. For simple queries, e.g. by processing
sensor data, filtering and aggregating residual tuples, it is
difficult to gain any speedup. In operators with higher com-
putational costs or longer sequences of operators, however,
doing work in parallel finishes the query faster (obviously).
Therefore it is necessary to take the minimal amount of work
done by queries into account, to determine the ideal degree
of parallelization.

2.4.3 Partitioning Degree and Aggregation Costs

The next point to regard is the number of threads needed
for a given query to minimize runtime, compared to in-
creased overhead gained through splitting data and merging
results from different threads. The usage of statistics is a
common solution for this problem, but it is already shown
that the results can be far away from optimal when running
on a dynamic workload as shown by Gedik et al. [1]. Re-
garding the complexity of a query is a first step, but for a
dynamical adjustment more observations on the influence of
runtime have to be made.

2.4.4 Thread Pool

The need of many threads when partitioning can become
a major slowdown. By creating threads when needed, the
overhead of creation can kill any speedup gains easily. The
widely known solution for this is the usage of a thread pool.
On initialization of the pool threads are created in the amount
of support from underlying hardware (e.g. on a 60 core pro-
cessor, supporting up to four threads per core, 240 threads).
The query fetches its necessary amount of threads from the
pool, possibly being able to add or remove threads from cur-
rent state when having peaks in the data arrival rate. When
efficiently scheduled, the delay and overhead for creating
threads is reduced significantly, but it is no trivial task.

2.4.5 Thread Synchronization

Another bottleneck in parallelization of query operations
lies in thread contention. When tuples are forwarded by
publish-subscribe between threads, the exchange structure
(like a queue) needs to guarantee that threads do not get in
each other’s way, e.g. when the publisher writes his result
and the subscriber reads it. By scaling up to hundred and
more threads on a manycore processor, the task of ensuring
concurrency in an efficient way is not trivial anymore as
shown by Yu et al. [2]. Until a new approach closes this
gap, already existing patterns need to be optimized.

68

2.4.6 Core Scheduling

In addition to this, the scheduling from threads to cores
is another optimization problem. Leis et al. [3] addressed
this scheduling along with load balancing (see next Section
2.4.7) When threads are switched between cores, caching
effects can be lost, resulting in higher runtime. An adverse
scheduling for threads, e.g. when they have to communicate
with each other, can become a bottleneck too, especially
when the cores they run on have a long distance between
them inside of the processor. The OpenMP Interface allows
three possible assignment strategies for threads to cores, but
it is also possible to implement own strategies, e.g. with the
POSIX Thread Interface called PThreads.

2.4.7 Load Balancing

Next, a good load balancing of work to threads has to be
achieved, shown by Fang et al. [4]. It is possible through bad
partitioning of data (e.g. a suboptimal assignment strategy)
that one out of many partitions gets most of input data.
This results in many partitions idling and bad speedup. But
not only the skew of data can be regarded here, the grade of
partitioning is another factor. When a query does only use
one or two cores instead of most of them (when not under
competitive conditions) and the query is complex enough for
parallelizing gains, a loss of speedup is the result. Especially
when using a manycore architecture instead of a multicore,
because of slower clock speed.

2.4.8 Latency Reduction

Finally, when tuples arrive on data stream, it is possible
to use microbatching for reduced overhead between opera-
tors, as shown by Pinnecke et al. [5] on GPU’s. Tuples are
put into a batch and when the batch is full, it is forwarded
to the next operator. This allows a fine-grained tuning of
partitioning, when every operator in parallel works on a part
of the batch, as well as using vectorization through process-
ing tuples in a batch in parallel instead of every tuple on its
own.

2.5 Summary

Summarizing this up, even when given some opportuni-
ties by hardware (discussed in the next section), there are
many points that have to be considered on software. They
influence performance on multicore too, but even more on
a manycore architecture, regarding the advantages and dis-
advantages of many cores in a single processor, e.g. reduced
clock speed and more threads supporting,.

3. MANYCORE PROCESSORS

As already shortly mentioned in Section 1, a manycore
processor has some very important differences to a multicore
chip. On manycore, the processing units (cores) are packed
tightly together, to enable short communication paths be-
tween them and keeping the processor small. The cost, how-
ever, lies in lower clock speed because of cooling conditions.
When clocking is high, a lot of heat loss is generated, which
is simply impossible to get rid of when having 60+ high-end
cores on a single chip. Another result out of this point is the
switch from complex cores to simple cores (e.g. in terms of
scheduling instructions), reducing energy consumption and
possibly performance.

To gain a speedup on a manycore processor, it is both
necessary to know the software and hardware possibilities.

The following recommendations are applicable to other use
cases different from stream processing, too. The software re-
gardments are already appointed in the previous Section 2.4,
the following points deal with the Intel Xeon Phi manycore
processors and opportunities given by them.

3.1 Xeon Phi

The Xeon Phi series from Intel consists of processors using
manycore architecture. The first processors are just used for
research purposes and as niche products, but with Knights
Corner (KNC, released 2012) Intel’s first commercial many-
core processor was obtainable [6]. The next (and latest) one
called Knights Landing was released end of 2016.

Since KNC was only available as coprocessor using a host
system connected with a PCI bus, the major optimization
focus was on efficient data transfer between them (called off-
load), in addition to manycore improvements. It is possible
to transfer parts of a program to the manycore coproces-
sor through compiler pragmas (when using simple datatypes
like integer or arrays) or using the Cilk programming model
(when transferring complex objects). Running the full pro-
gram on the coprocessor (called native mode) is limited by
the small memory on chip, ranging around 6 to 16 GB only.
Main bottleneck for database application usage of KNC is
the PCI bus connection between host and coprocessor [7],
allowing a data transfer rate (bandwidth) around 15GB/s.
The KNL chip addresses this problem, being available as
full-fledged processor, using memory directly without need
of a host. In addition to this, it provides some important
improvements compared to its predecessor KNC, like high
bandwidth on-package memory or extended SIMD support
through AVX-512 instructions. This leads to new opportuni-
ties that have to be regarded when optimizing applications
to KNL. The following sections show the new possibilities
given by KNL hardware.

3.1.1 MCDRAM

The KNL CPU brings along its own high-bandwidth mem-
ory, called Multi-Channel Dynamic Random Access Mem-
ory (MCDRAM). The size of this memory amounts to be-
tween 8 and 16 GB, allowing a bandwidth from around
320 GB per second (around four times higher than acessing
DDR4-RAM). This memory can be used as a low-level cache
(cached mode), as addressable memory for applications (flat
mode) or as a combination of both (hybrid mode). When
used in cache mode, the program can use it without any
adaptation efforts, speeding up its run time. In flat mode,
however, the memory is not accessed on its own. Therefore
the numactl or memkind library can be used efficiently. It is
advised to use the numactl library when all memory needs
from the running application fits into MCDRAM, memkind
otherwise [8]. In flat mode, the possible speedup is higher
than in cached mode, but code has to be optimized for this
carefully by the designer.

On data stream purposes in flat mode, the MCDRAM
can be used for e.g. storing hash tables when joining tuples,
utilizing the high bandwidth for speeding up accesses.

3.1.2 AVX-512 extensions

Another new feature supported by KNL are AVX-512 vec-
tor instructions, an addition to the AVX2 instruction set,
used by intel processors in general. The register width is
doubled compared to the 256-bit instruction set, allowing

69

a better exploitation of SIMD operations (that means, ex-
ecute an instruction in parallel on multiple data). Besides
wider registers, exponential and reciprocal instructions, con-
flict detection and prefetch instructions are added, leading to
new and more vectorization opportunities. The only thing
needed is a compiler supporting these extensions, like the
Intel C++ compiler or a newer version of the GNU compiler
(9]

To exploit these SIMD effects, it is necessary to not pro-
cess one tuple at a time. When each tuple is exchanged
between operators, the processing cannot fully utilize the
SIMD characteristics. A solution for this problem is batch-
ing. Tuples are gathered until batch size is reached and then,
they are forwarded to the next operator at once, reducing
communication efforts and allowing operators to use them
simultaneously.

3.1.3 Clustering Modes

The next point to focus on are the new clustering modes.
For efficient use of a manycore processor, the parallel part
of a program has to spread out to as many cores as possible,
to gain maximum speedup. However, memory accesses be-
come more and more problematic this way. Every core has
its own cache and synchronizing updates, reads and writes
across 60 and more cores can eat up speedup gains easily.
Latency delays caused by this are one of the bigger problems
on the predecessor KNC. As solution, next to improved lo-
cality of cores, caches and connections on KNL, different
clustering modes are integrated. Possible modes are all-to-
all, quadrant/hemisphere and SNC-2/SNC-4 (Sub-NUMA-
Cluster) [10]. The all-to-all mode uses uniformly distributed
memory addresses, causing bad worst cases with long re-
quest times, therefore should not be used if possible. In
quadrant mode the cores are divided into four regions (two
regions on hemisphere mode), reducing communication be-
tween cores to their corresponding region, excluding long
range exchanges. SNC-2/SNC-4 mode extends the hemi-
sphere/quadrant mode through NUMA effects, regarding
every region as one NUMA node. This mode delivers best
result through short paths and should therefore be default.

3.1.4 Memory Page Size

Processors use the Translation Lookaside Buffer (TLB) to
speedup the conversion from virtual memory addresses to
physical memory addresses when accessing memory. It is
possible to set different page sizes. A small page size wastes
less memory compared to a huge page size, but increases the
number of TLB entries, leading to longer time needed to find
a specific entry. To speed up applications, the huge page set-
ting is preferred, because TLB misses and TLB lookup time
can easily become a bottleneck of processing on a manycore
architecture (any core has to pass through the TLB when
converting a virtual to physical memory address, more than
on a multicore architecture).

4. RELATED WORK

There is much work done around using manycore pro-
cessors, even for Xeon Phi KNL. They consider its hard-
ware properties, various workloads, optimization of code and
much more, mostly in context of high performance comput-
ing (HPC). For this paper, the focus is about parallel data
stream processing. There are some publications about typi-
cal database operations on manycore architecture, like joins

or the MapReduce model, but not that much on data stream
processing (especially on KNL) to the best of our knowledge.
This section briefly summarizes some work done along with
met problems.

The first paper from Cheng et al. [11] presents PhiDB, a
query processor for OLAP with simultaneous multithread-
ing capabilities. PhiDB is heavily optimized for Xeon Phi
architecture, along with recommendations in terms of imple-
mentation details. The results are tested on a KNC copro-
cessor, showing the importance of careful adaptation of code
and applications when porting from multicore to manycore
architecture.

Another approach from Jha et al. [12] focuses on main
memory hash joins on manycore architectures. They im-
plemented state of the art hash join algorithms (separated
into hardware-conscious and hardware-oblivious ones), run-
ning on a Xeon Phi coprocessor and on a modern CPU in
comparison. Results show again the caution needed when
optimizing for manycore processors, along with better effi-
ciency for hardware-oblivious joins.

Lu et al. [13] added the aforementioned MapReduce model
on a Xeon Phi coprocessor, named MRPhi. This framework
is optimized for vectorization and SIMD instructions using
the wider registers for speedup, in addition to pipelining the
map and reduce phases.

The next attempt from Polychroniou et al. [14] looks
onto vectorization of database operators in general, achiev-
ing speedups through SIMD possibilities. They tested im-
plementations of Gather and Scatter, hash tables, selection
scans, sorting, partitioning, joins and a bloom filtering. Re-
sults are tested through Xeon Phi coprocessor as well as
with a modern CPU, showing the importance of SIMD us-
age when running on modern processors.

All these sources show the necessity of optimizing for pos-
sible settings on manycore processors as well as adjusting
code to run on them. If optimized carefully, speedups are
possible in different fields of processing data. The question
still exists, if manycore processors can be used to speed up
data stream processing in general.

S. PRELIMINARY EXPERIMENTS

Before porting our SPE to KNL, we run a bandwidth and
latency analysis on both multicore and manycore CPU, to
measure differences and derive further decisions. For this
task, we use the Intel Memory Latency Checker (MLC) tool,
which supports KNL since last update. Results are pre-
sented in next subsection.

After that, in addition to bringing PipeFabric on KNI, we
apply first parallelization optimizations into our framework
on a data generator for producing a data stream. Goal of
these preliminary experiments on our SPE using KNL is to
verify the general utilization of a manycore CPU for data
streaming purposes, resulting ideally in a much better per-
formance compared to a multicore processor by exploiting
parallelism opportunities.

For this paper, the results are tested on an Intel Xeon
Phi KNL 7210 with 64 cores and 1.30GHz clock speed per
core. MCDRAM is used in cache mode, clustering mode is
SNC-4 and it uses huge page size for memory, as discribed
earlier in Section 3.1. For comparison between manycore
and multicore, an Intel Core i7-2600 is used, with 4 cores
and 3.40GHz clock speed.

70

[Processor | Memory type | Prefetching | No Prefetch |

i7-2600 L1 1.1ns 1.1ns
L2 3.4ns 3.4ns
L3 3.9ns 14.9ns
Memory 5.7ns 65.7ns
KNL 7210 L1 3.1ns 3.1ns
L2 7.1ns 13.2ns
MCDRAM 15.1ns 172.7ns
Memory 14.2ns 146.3ns

Table 1: Idle latency for memory accesses

5.1 Bandwidth and Latency

The first point to address is general latency and band-
width to caches and memory. The main requirement on
real-time data stream processing is low latency, realised on
software-side by our engine PipeFabric. But on hardware,
the latency needs to be measured with respect to band-
width. As a note, when bandwidth boundary is reached
(e.g. 320GB/s for MCDRAM or 70GB/s for DDR4), la-
tency on a core will increase due to longer time waiting for
data.

An important fact to consider for measurements is the
hardware prefetching mechanism. To speed up memory ac-
cesses, the hardware prefetcher predicts based on already
done instructions the next needed elements in memory and
loads them into cache. This leads to fast accesses when the
prediction was right. When measuring latency, this can re-
sult in much lower values than in real use cases, where mem-
ory accesses can become more random and unpredictable.
Table 1 shows idle latencies for both processors, that means
the time needed for memory accesses without competition.
Numbers are gained through MLC! tool from Intel, allow-
ing not only to disable hardware prefetching, but also fine-
grained control on test cases.

It can be seen that the latencies for KNL are worse than
on i7 processor. This is affected by slower clock speed and
internal manycore structure. Another observation is that
MCDRAM latency is worse than regular DDR memory ac-
cess. At first appearance this can be surprising, but that
is because of measuring idling latency. When demand on
memory increases, e.g. more cores try to access memory at
the same time, MCDRAM latency will stay lower for more
simultaneous accesses as DDR memory would do. This al-
lows more cores to fetch data from MCDRAM on measured
latency than on DDR, where the bandwidth limit is reached
very quick.

As summary, the generally higher latencies for Xeon Phi
should be kept in mind. The greater possible parallelization
degree has to catch up this disadvantage for gaining speedup
against multicore CPUs.

5.2 Insights for Stream Processing

Initially tests done on KNL as well as on i7 CPU show
worse performance when using a manycore processor, as
expected caused by slower clock speed and singlethreaded
execution. This changes fast when increased parallelism op-
portunities of KNL come into play. To point an example,
we picked our tuple generator from PipeFabric (see Section

"https://software.intel.com/en-us/articles/intelr-memory-
latency-checker [Online; accessed 05-May-2017]

— i7-2600 one thread
-~ i7-2600 eight threads o

KNL 7210 one thread A
- - KNL 7210 256 threads /,-/

Runtime [us]

10° 10 0 108 107 0 100
Number of processed Tuples

Figure 3: Speedup for generating tuples

2.3) as source for the query, analyzing the speed of generat-
ing tuples for upcoming operators.

We measure singlethreaded tuple generation first on i7
processor and on KNL manycore. As it can be seen in Fig-
ure 3 (please note the logarithmic scale of runtime at y-axis),
the slow clock speed results in longer time needed to pro-
duce an equal amount of tuples. But with spreading out
tuple generation to as many threads as available (through
OpenMP) a notable speedup can be achieved.

With only little to produce (around a thousand tuples),
the parallelism through more threads generating tuples can-
not catch up the delay of the overhead, leading to major
slow-downs on i7 as well as on KNL. This changes very
quickly, when more tuples are processed. On Xeon Phi,
the speedup gain is much higher than on i7 caused by more
threads generating tuples, exploiting the parallelization pos-
sibilities of a manycore architecture. Very soon the Xeon
Phi catches up to i7 and finishes continuously faster than
the multicore processor.

6. CONCLUSION AND FUTURE WORK

In this paper, we focus on improving data stream process-
ing with modern hardware. Requirements of low latency
and high throughput raise the question if a manycore pro-
cessor can contribute to better performance through its in-
tense parallelization degree. Low clock speed and at most
average cache and memory latency of KNL compared to a
multicore CPU (as shown in Table 1) needs to be compen-
sated through extended parallelism.

Observations on our SPE PipeFabric lead to different op-
timization criteria needed when adapting to manycore pro-
cessor architecture. The increased number of threads for
exploiting parallelism efficiently intensifies delays through
synchronization on data transfer, therefore a better mecha-
nism than locks should result in much better performance.
A thread pool is another important optimization, reducing
overhead of thread creation significantly. Careful fine tuning
is necessary when additional hardware opportunities come
into play, like scheduling threads to certain cores or using
high bandwidth memory. Finally, when utilizing all cores on
KNL maximizing available parallelism, it can surpass per-
formance of a multicore CPU easily even with its higher
latencies to memory and cache.

71

Our future work will focus on more optimization criteria
for Xeon Phi, exploring the influence on runtime through dif-
ferent approaches like using a threadpool or tuple exchange
mechanisms of operators. When a manycore processor can
contribute to better performance on stream processing, the
next question raises, how much better performance can be-
come when fully adapting on underlying hardware. Espe-
cially when compared to todays main solution for through-
put - distributed computing on clusters of multicore proces-
SOrs.

7. REFERENCES

[1] B. Gedik, S. Schneider, M. Hirzel, and K.-L. Wu,
“Elastic Scaling for Data Stream Processing,” IEEE
TPDS, pp. 14471463, 2014.

[2] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and
M. Stonebraker, “Staring into the Abyss: An
Evaluation of Concurrency Control with One
Thousand Cores,” VLDB, pp. 209-220, 2014.

[3] V. Leis, P. Boncz, A. Kemper, and T. Neumann,
“Morsel-driven Parallelism: A NUMA-aware Query
Evaluation Framework for the Many-core Age,”
SIGMOD, pp. 743754, 2014.

[4] J. Fang, R. Zhang, T. Z. Fu, Z. Zhang, A. Zhou, and
J. Zhu, “Parallel Stream Processing Against Workload
Skewness and Variance,” CoRR, 2016.

[5] M. Pinnecke, D. Broneske, and G. Saake, “Toward
GPU Accelerated Data Stream Processing,” GVDB,
pp. 78-83, 2015.

[6] T. Halfhill, “Intel Shows MIC Progress.”
http://www .linleygroup.com/newsletters/newsletter_-
detail.php?num=4729, 2011. [Online; accessed
05-May-2017].

[7] C. Gregg and K. Hazelwood, “Where is the data? Why
you cannot debate CPU vs. GPU performance without
the answer,” in IEEE ISPASS, pp. 134-144, 2011.

[8] Colfax, “MCDRAM as High-Bandwidth Memory
(HBM) in Knights Landing Processors: Developer’s
Guide.” https://colfaxresearch.com/knl-mcdram/,
2016. [Online; accessed 05-May-2017].

[9] Colfax, “Guide to Automatic Vectorization with Intel
AVX-512 Instructions in Knights Landing Processors.”
https://colfaxresearch.com/knl-avx512/, 2016.
[Online; accessed 05-May-2017].

Colfax, “Clustering Modes in Knights Landing
Processors.” https://colfaxresearch.com/knl-numa/,
2016. [Online; accessed 05-May-2017].

X. Cheng, B. He, M. Lu, C. T. Lau, H. P. Huynh, and
R. S. M. Goh, “Efficient Query Processing on
Many-core Architectures: A Case Study with Intel
Xeon Phi Processor,” SIGMOD, pp. 2081-2084, 2016.
S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh,
“Improving Main Memory Hash Joins on Intel Xeon
Phi Processors: An Experimental Approach,” VLDB,
pp. 642653, 2015.

M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang,

B. He, and R. S. M. Goh, “Optimizing the MapReduce
Framework on Intel Xeon Phi Coprocessor,” in I[EFE
Big Data, pp. 125-130, 2013.

O. Polychroniou, A. Raghavan, and K. A. Ross,
“Rethinking SIMD Vectorization for In-Memory
Databases,” SIGMOD, pp. 1493-1508, 2015.

[10]

[11]

[12]

[13]

[14]

