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ABSTRACT

Finding the right storage model (i.e., row-wise or column-wise
storage) is an important task for a database system, because
each storage model has its best supported application. Moreo-
ver, if we consider the usage of a co-processor (e.g., a GPU),
another dimension opens up that influences the selection of
the storage model. In fact, factors such as favored memory
access pattern of the device and data transfer costs play
a vital role in a hybrid CPU/GPU system, influencing the
optimal storage model. Since there is currently no evaluation
of when to use a column or row store for data manipulation
(i.e., we look at insert/update/project operators) in a hybrid
CPU/GPU system, we present a framework in OpenCL that
we use to investigate the break-even points that determine
when to use which storage model.

1. INTRODUCTION

In the literature, there is a big debate about the best
storage model for main-memory online transaction processing
(OLTP) [5, 13]. The most well-known solution is a delta
store [18] that is optimized for insertions relying on a row-
wise storage of inserted tuples. In fact, since inserts and
deletes work on all attributes of the tuple, a row-wise storage
structure is best suited for these operations. In contrast,
updates that involve a smaller number of attributes could
perform better with a column-wise storage.

Considering the usage of co-processors (e.g., GPUs), several
researchers [1, 2, 9, 10] argue for employing a column-wise
storage as well, because a column store

e allows for coalesced memory access, which is especially
important for GPUs
e has a better compression rate, allowing for more data
to be stored in the limited device memory
e can reduce the amount of data to be transferred if only
a subset of the columns is needed
However, the main field of application for co-processors is
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Figure 1: Experimental setup

online analytical processing (OLAP)'. As a result, it is still
unclear what the break-even points between a row-wise and a
column-wise storage for co-processor-accelerated OLTP are.
In this paper, we investigate the favored storage model
for inserts, updates, and projections on the TPC-C bench-
mark for a CPU/GPU system implemented in OpenCL (cf.
Fig. 1). This builds the basis for further research to state
whether column or row stores should be used for co-processor-
accelerated OLTP. In particular, we contribute:
e a description of data structures for a column or row
store for co-processor acceleration (Section 4.1)
e implementation details of OLTP operators in OpenCL
(Section 4.2)
e a first proof-of-concept by evaluating the framework
for inserts, updates, and projections (Section 5)
We end this paper with a conclusion and future extensions
in Section 6.

2. GPU-ACCELERATED DATA MANAGE-
MENT

GPU-acceleration has already shown a potential for enab-
ling performance speedups of several cardinalities [1, 9, 14,
15, 16]. Apart from its high potential for compute-intensive
tasks [6], GPUs in a co-processing environment are rather
limited for I/O intensive applications. Some reasons for that
are special architectural challenges that arise when a dedi-

! Although GPUTx is an OLTP-centric system using also a
column store, there is no evidence whether a row store would
hinder transaction processing.



cated GPU is used in a hybrid system. In fact, there are
two aspects that are important: latency and bandwidth bet-
ween memory of different devices as well as between different
memory types of one device. The former is mainly defined
by the transfer overhead incurred by the PCle bus, while
the latter one is dependent on the used device. For instance,
CPUs have a self-managed cache hierarchy that is usually
opaque to the user, but GPUs allow for different memory
types that should be exploited by the programmer to reach
peak performance [8]. In the following, we discuss the transfer
overhead, memory types and processing model for GPUs.

Transfer overhead.

To process data on the GPU, necessary data has to be
shipped from the CPU RAM (Host side) to the GPU RAM
(Device side) if it is not already present. Compared to the
bandwidth of the on-chip GPU memory (several 100s of
GB/s), the bandwidth of the PCle (currently ca. 16 GB/s;
ca. 32 GB/s announced for 2017) is relatively small. Hence,
a good data placement is needed to hide this limitation — in
fact, data should be distributed on the devices beforehand
and operator placement should follow this distribution [3].

GPU memory types.

Apart from the caches that work similar to those of the
CPU, the GPU features several other memory types [8]. On
a GPU, there are global, constant, texture, shared and local
memories [12, 17]. Overall, the memory types go from a slow
but large global memory shared among all compute units of
a GPU, over smaller, but cached read-only memory (constant
and texture memory) to small but very fast writeable memory
shared among processors of a block (shared memory) or
compute units of a streaming processor (local memory). Due
to the space limitations of each memory type, data has to
be loaded carefully into the right memory locations to fully
benefit from the GPU acceleration.

GPU processing model.

As mentioned before, a GPU has an internal memory
hierarchy that is used for efficient access of data. To make
the most out of the available hardware the GPU work group
should fetch data from the global memory using a coalesced
memory access pattern. Whenever a work group fetches data
from the global memory a minimum number of elements
are fetched together, hence the work group can utilize this
pre-fetched memory block with a fast shared memory. To
achieve this optimized execution behavior of the GPU each
thread within a work group should access adjacent blocks of
memory, this phenomenon where each work item within a
work group accesses a sequential block of memory is termed
Coalesced Memory Access.

3. RELATED WORK

There are several state of the art databases which use GPU
acceleration for either OLAP or OLTP scenarios. Hence in
this section, we provide a short overview about their systems
and especially the storage schemes used by each.

GPU Accelerated Systems for OLAP.

Considering analytical processing, most of the systems
stick to a column-wise storage of data. These systems include
GDB by He et al. [9], CoGaDB by Bref} et al. [2], Ocelot by
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Heimel et al. [11]. While GDB relies on processing the queries
on the GPU side only, CoGaDB and recent extensions to
Ocelot allow the system to process operators either on the
GPU or the CPU [4].

GPU Accelerated Systems for OLTP.

To the best of our knowledge, there is only GPUTx as a
system working on OLTP processing using GPU accelerati-
on [10]. GPUTx uses a column store, because they argue for
a better coalescing of memory access. However, they miss
an extensive evaluation in this direction. Hence, our goal is
to propose data structures and operator implementations to
compare column and row stores for OLTP data manipulation
in order to find a suitable storage model for this workload.

4. STORAGE MODEL IMPLEMENTATION

In this section, we present the design choices that were
taken to implement a column and row store. To this end, we
first introduce the data structures that represent the column
and row store. Second, we describe how to implement inserts,
updates and projections in a row and column store using
OpenCL.

4.1 Data structures

In a row store implementation all values of a tuple are
stored next to each other in a contiguous block of memory,
followed by the next tuple’s values. One implementation of
the row store which enables efficient data access is to store the
data in an array of type char. The length of each attribute’s
value is fixed and set to the maximum allowed length for this
attribute. Therefore, all values of an attribute, regardless of
their actual sizes, occupy equal number of bytes. To access
an attribute of a tuple, an array of offsets containing the
position of each attribute within a tuple has to be passed to
the operator. In this way, the operators’ implementation is
independent of the table schema. Thus, the complete table
is represented as a char array of size N * size_of_a_tuple,
where N is the number of entries.

In a column store, all the values of a column are stored
together in one block of memory. To implement this in C++,
each column can be represented as a vector containing all
the values from the column, thus, each column’s values are
stored in a contiguous block of memory. Then the complete
table can be represented as an instance of a structure that
contains all the vectors.

4.2 Operator implementation in OpenCL

OpenCL (Open Computing Language) is an open standard
for parallel heterogeneous computing, that can be used with
CPUs, GPUs and other devices from different vendors.

We implemented three operators using OpenCL: insert,
update and projection. The basic methodology behind the im-
plementation of all three operators is the same with changes
in input and output data, as well as the operations performed
on the data.

e Insert. The input data of the insert operator consists
of a table with T entries, where T is the number of
tuples to be inserted. For the output table the same
amount of memory is allocated as for the input table.
The operator copies fields from the input table to the
corresponding fields in the output table.
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e Update. The input data consists of the initial table
and a list of positions that should be updated. Attribu-
tes, that have numeric type, are increased by 10; text
fields get rewritten and replaced by the same data. The
operator returns the updated table.

e Projection. As input, this operator accepts the initial
table and the list of positions of rows, that should be
returned, the output data consists of K entries, where
K is the number of queries. The operator materializes
the attributes of the selected tuples according to their
position and writes them to the output data.

In our implementation, the kernels (programs executed
on OpenCL devices) for the row store are different from
the kernels for the column store, since we use different data
structures to represent the tables. For the column store we
implemented a separate kernel for each attribute type. In
the row store there is only one kernel that is responsible for
performing operations on all the attributes.

Row Store Functions.

In Listing 1, we show the functions that we used to ac-
cess single fields or to store data, from inside the row store
kernels. The array offsets contains the position of each
attribute’s value in a tuple, where the first element of the
array is always 0 and the last element represents the size of
one tuple in bytes. Therefore, the size of this array equals
number_of_attributes + 1 and can be used to get a tuple’s
size (lines 2, 9) and to compute the size of an attribute (line
12).

The function read_value is used to get a pointer to an
element. The pointer to the tuple that contains this element
is computed by adding one tuple’s size multiplied by the
tuple’s position (the number of the row) to the pointer to
the first element of the whole table (line 3). Then the offset
for the required attribute is added to this pointer (line 4).

In the function write_value the element’s position is com-
puted in exactly the same way. After this step, the new value
is written to this position by copying? the number of bytes
that the value’s type takes (line 12).

global char *read_value(global char *data, int

global void write_value(global char *data, int

tuple_position, int field, global int offsets[], int
num_of_attributes) {
int tuple_size = offsets[num_of_attributes];

global char xoffset = data + tuple_position *
tuple_size;
offset += offsets[field];
return offset;
}

tuple_position, char xvalue, int field, global int

offsets[], int num_of_attributes) {

int tuple_size = offsets[num_of_attributes];

global char xoffset = data + tuple_position *
tuple_size;

offset += offsets[field];

memcpy (offset, value, (offsets[field+1]
field]));

— offsets]|

Listing 1: Functions to access or write a value, given
its position

2The OpenCL language does not provide the function memcpy,
thus, it has to be implemented manually and added to the
kernel.

26

The whole operator implementation is using the global_I D
in order to determine the position of the value that has to
be manipulated. Afterwards, the functions read_value and
write_value are used to perform data manipulation at the
specified positions according to the three operators.

Column Store Functions.

The column store implementation is straight-forward. For
each attribute type, there is a kernel that retrieves its global_I D.
The global_ID is then used to determine the array position
of the data to be manipulated or retrieved.

5. EVALUATION

The operators were evaluated on the CUSTOMER table
from the TPC-C benchmark [19] with changes in sizes of some
of the text fields. The table’s entries consist of 21 attributes,
5 of them are integer numbers, 4 are floating point numbers
and 12 attributes are text variables of different length. Both
integer and floating point numbers are occupying 4 bytes,
the full size of one tuple is 203 bytes. For our experiments
we used 30000 entries and the execution time for all the
experiments was averaged over 20 runs.

We executed the operators on CPU and GPU using Open-
CL for both device executions and we measured the execution
time in milliseconds for different number of queries and the
following combinations:

e CPU and row store
e CPU and column store
e GPU and row store
e GPU and column store

In our evaluation we used a machine with the following
configurations:

e CPU: Intel(R) Core(TM) i5-2500 @3.30 GHz
e GPU: NVIDIA GeForce GT 640

e OpenCL 1.2
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Figure 2: Execution time for the insert operator (in-
cl. transfer time)
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Figure 3: Execution time for the update operator
(incl. transfer time)

|

Response Time in ms

1k 5k 10k 20k 30k 40k 50k 60k 70k 80k
Number of Tuples

—&— CPU & Row Store —F— CPU & Column Store
—&— GPU & Row Store —k— GPU & Column Store

Figure 4: Execution time for the projection operator
(incl. transfer time)

Execution time including the transfer time.

In Fig. 2-4, we show the execution time for the insert,
update and projection operators respectively including the
time for data transfer®, but excluding the time taken for
generating the data and compiling the kernels.

One can note from the figures that for the operators in-
sert and projection (Fig. 2 and 4) the CPU shows the best
performance on high numbers of queries independent of the
storage model. However, the row store performs better than
the column store for inserts and projections on the CPU. In
contrast, the more data we insert or project, the more is the
row store outperformed by the column store on the GPU.
Only for small batch sizes (around few thousands of tuples),
a row store storage is beneficial for the GPU. In fact, CPU on
a row store is on average 1.5 times faster than the second-best
combination (CPU on column store) and almost five times
faster than the worst performing combination (GPU on row
store).

For the update operator (Fig. 3), column store (on both
CPU and GPU) outperforms row store when the number
of queries exceeds 25000, however, for 1000 - 25000 queries
CPU on row store is faster that the other combinations. CPU

3For GPU we measured the time for transferring the data
from CPU memory to GPU memory; for CPU it’s the time
for copying the data inside RAM.
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and column store handles the data in average 1.5 times faster
than GPU and column store. The poor performance of the
row store on a big number of update queries is due to the
data structure: numeric values are stored in the array of type
char, so changing these values and writing them back to the
array requires two type conversions for each value.

Execution time excluding the transfer time.

Fig. 5-7 shows the time for executing the kernels only.

The general picture stays the same except for the following
changes. For the insert operator (Fig. 5), CPU on row store
is still 1.5 times faster than CPU on column store, but for
the project operator (Fig. 7) row store gets outperformed by
column store.

In contrast to the execution time including the transfer
time, for the update operator (Fig. 6) GPU on column store
performs 1.4 better than CPU.

Overall, the time to transfer the data to the device has an
impact on the break-even points that mark when a column-
store operator is outperformed by a row-store operator. Ho-
wever, for our evaluated operators, the transfer time is not
an exclusive criteria for using either of the storage models.

Execution time for different fractions of the table’s co-
lumns.

The execution time (including the transfer time) for diffe-
rent fractions of the table’s columns was measured for the
update and projection operations, launching 50000 and 5000
queries respectively (Fig. 8 and 9), since in real world appli-
cations it is rarely needed to update or return the values for
all the attributes.

For the update operator, column store has the best perfor-
mance independent from the number of attributes that are
updated. However, for the projection operator the picture
is different. When all attributes are selected, CPU and row
store performs better than CPU and column store, the same
can be observed for GPU. With a decreasing number of attri-
butes, it changes to the opposite: column store shows better
performance, because only the columns that need to be re-
turned are transferred. In case of row store, the whole table
still needs to be transferred, although only some attributes
are processed.

Response Time in ms
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Figure 5: Execution time for the insert operator (ex-
cl. transfer time)
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Figure 6: Execution time for the update operator
(excl. transfer time)
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Figure 7: Execution time for the projection operator
(excl. transfer time)

Evaluation summary.

To summarize our evaluation, we found three interesting
facts: (1) Small batch sizes are good for a row store operator
on the GPU. (2) For bigger batch sizes, row store operators
fall behind the performance of a column store implementati-
on. This is due to a better coalescing when parallelizing a
column store operator on the GPU compared to a row store
operator, because it has to handle attributes of different
sizes. (3) Transfer times only play a vital role for operators
that work on a subset of attributes. Hence, the best storage
model for insert operators is independent of the transfer
time but only depends on the best coalescing for the current
implementation.

Still, our current implementation makes some assumptions
that may hinder the performance of the row store on the
GPU. Especially inserts could be implemented to allow for
better coalescing. Currently, inserts work on the granularity
of attributes (i.e., float values, integer values and even arrays
of chars), which inherently leads to changing offsets for the
compute units on neighboring values. As a consequence, the
insert operator should be implemented to work on a char gra-
nularity. Furthermore, the impact of code optimizations, such
as SIMD or loop unrolling, should be further explored [7].

The selection of CPU and GPU for the experiments defines
the point, at which one combination is outperformed by
a different one. However, the impact of the hardware is
expected to become less significant with increasing number
of queries.
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Figure 8: Execution time for the update operator for
different fractions of the table’s columns
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Figure 9: Execution time for the projection operator
for different fractions of the table’s columns

6. CONCLUSION

Due to the different device properties and application sce-
narios, the best storage model to be used can vary. In this
paper, we investigate the break-even points for inserts, upda-
tes and projections in a hybrid CPU/GPU system. Given the
data structures and operator implementations in this paper,
our results suggest that CPU performs best with a row store
and GPU with a column store for inserts and projections.
For update operations, a column store seems to be the best
storage model for both devices. However, our implementation
still leaves some tuning opportunities for the row store open
which could boost its performance beyond the one of the
column store on the GPU. This opportunity is left open for
future work.
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