
Enabling Compliance Monitoring for Process Execution
Engines

Marwa Hussein Zaki�, Ahmed Awad�, and Osman Hegazy

Information Systems Department, Faculty of Computers and Information, Cairo University,
Giza 12613, Egypt

m.hussein, a.gaafar, o.hegazy@fci-cu.edu.eg

Abstract. Most of organizations try to ensure that their business processes are
compliant with regulations and laws, so runtime monitoring of process compli-
ance is considered to be of crucial importance. In this regard, there are several
frameworks that enable the monitoring based on variants of event processing
technologies. Most of these frameworks presume a rich activity lifecycle model
for the execution of tasks. However, most of process execution engines support
simpler lifecycle models. Thus, these frameworks fall short in monitoring com-
pliance for such engines due to missing needed input events.
The goal of this paper is to enable compliance monitoring for different process
execution engines. First we propose a middleware layer that maps different exe-
cution engines’ lifecycles states to a reference lifecycle model. Also, unmatched
states will be derived from execution’s engine states. Additionally, we implement
compliance anti patterns to prove the feasibility of our approach.

Keywords: Business Process Management; web services; compliance; runtime
monitoring; lifecycle mapping

1 Introduction

Most of the organizations try to ensure the compliance of their business processes
against regulations and laws to avoid non-compliance penalties [21]. As a result, differ-
ent approaches were developed to check the compliance of a business processes through
different phases of a business process lifecycle [13,21] e.g., at design time [21], at the
process execution (runtime) [3] or at the evaluation phase [18].

Compliance monitoring at process execution time is considered of utmost impor-
tance because not every possibility of violation can be checked at design time. Several
approaches have been developed to enable the monitoring of running processes compli-
ance, e.g. [14,3]. Most of the monitoring frameworks presume a rich activity lifecycle
model, cf. [3,10] compared to the simple task lifecycle models supported by business
process execution engines. So, many of the expected execution events by the moni-
toring frameworks will be missing. This introduces the threat of having violations go
undetected. To make use of those frameworks, the gap between what is provided by
execution engines and what is expected by monitoring frameworks has to be filled.

In this paper, we propose a mapping approach that fills the gap between the activ-
ity lifecycle models supported by different process execution engines and the reference

2 Marwa Hussein Zaki, Ahmed Awad and Osman Hegazy

lifecycle model proposed by Russell et al. [19] and supported by the BP-MaaS moni-
toring framework [3], as an example monitoring framework, and two process execution
engines: Activiti [17] and jBPM [6]. For each, we have studied the supported task life-
cycle models of the engines, compared them to the reference lifecycle and identified
the mapping. To achieve the compliance monitoring, we implemented the compliance
patterns presented in [3].

The rest of the paper is organized as follows: Section 2 presents our proposed model,
Section 3 discusses related work and Section 4 concludes the paper with an outlook on
future work. The needed preliminaries, some of the background techniques and a simple
running example are provided in an extended version of this paper [9].

2 Enabling Monitoring

Lifecycle Mapping Logic

 Reference

Lifecycle

Compliance

Rules

Monitoring

System

Event Mapping

Reference

Events

Engine Raw

Events Stream

Violation

Events

Fig. 1: Proposed monitoring system framework

Our contribution can be seen as a middleware which consists of: a) An engine-
specific mapping to the reference task lifecycle b) Implementation of the compliance
monitoring anti patterns in [3]. Fig. 1 depicts the architecture of the middleware. The
Lifecycle Mapping Logic is a set of rules used to perform the mapping from Engine’s
raw events to the reference events. Currently, these rules are manually derived and pro-
grammed into an executable language. For the case of jBPM, the mapping rules are
encoded as Drools rules. For Activiti, rules are encoded as extensions to the engine and
written in EPL syntax, more details are given later in this section. The mapping logic is
done offline and once per process execution engine. It only needs to be revisited in case
either the engine lifecycle or the reference lifecycle is changed. At runtime, the moni-
toring system detects and throws violation events, if any, based on the input compliance
rules and the events coming from the reference events stream.

2.1 Reference Task Lifecycle

The lifecycle in Fig. 2 illustrates the state transitions of tasks as follows: a work item (a
task) is created by the system. It is either directly started or allocated to a resource. A

Enabling Compliance Monitoring for Process Execution Engines 31

Lifecycle Mapping 3

task can be delegated to another resource either by the system (escalate), or the respon-
sible resource (delegate). After assigning a resource, the task will be started. However,
the resource can skip it to be completed directly. Moreover, a resource can suspend a
task to be suspended and resume it again (resume) to be started and finally completed
or (redo) it after completion. If the resource fails to execute the task failed, it can try
to (restart) it again or (reallocate) to another resource . More details about this lifecycle
could be found in the extended version of this paper [9].

Fig. 2: Reference task lifecycle model adapted from [19]

2.2 Lifecycle Mapping

The lifecycle mapping part has two inputs: (1) Engine Raw Events Stream and (2) Life-
cycle Mapping Logic which contains a list of rules used to obtain the corresponding
reference event. The output of this part is the Reference Event Stream which contains
the mapped and the derived missing reference events.

There are four different possibilities for mapping an engine-specific event/state to
the reference state. The first possibility is that there is a direct correspondence. Both the
engine activity state and the reference state carry the same name and meaning. The sec-
ond possibility is that there is a naming mismatch but a conceptual match. For instance,
the engine defines activity state assigned which is matched with the reference state
allocated. The third possibility is that the reference state can be derived via observing a
pattern over one or more of the engine’s states. As an example, the reference state tran-
sition resumed can be derived by detecting a sequence of suspended and started events
of the same task instance and the same performer. The last possibility is that there is no
mapping possible, this means that the engine does not support this state.

We investigated different execution engines’ lifecycles for different languages such
as BPMN, BEPL and workflow systems (YAWL). A survey about these engines and
their lifecycles could be found on the extended version of this paper [9] We report im-
plementation on jBPM [6] and Activiti [17] as Camunda 1 and Activiti almost have the
same API functions. We investigated the YAWL workflow engine’s lifecycle [20] with-
out a specific implementation as this workflow system is more scientific and complex
for regular user; rather than BPMN execution engines which are easier to understand
and use. Table 1 summarizes the mapping between the different states of these engines’s
lifecycle to the reference lifecycle.

1 https://camunda.com/

32 Enabling Compliance Monitoring for Process Execution Engines

https://camunda.com/

4 Marwa Hussein Zaki, Ahmed Awad and Osman Hegazy

Table 1: Mapping the lifecycle of different engines to the reference lifecycle

Reference states Engine States
Activiti jBM Camunda YAWL

Created create created new Enabled
Allocated assignment reserved assigned Enabled 2

Started Rule 1 in progress Rule 1 Fired
Suspended Rule 2 suspended Rule 2 Suspended
Failed no mapping failed no mapping Failed
Completed complete completed completed Complete

The direct mapping and the naming mismatch are straightforward. In the latter case,
when the engine generates an event with the mis-named state, our approach generates
another event copying all the data of the original event except for the state where the
conceptually equivalent state is substituted. In the third case, the approach can derive
the reference state by observing the occurrence of one or more of the engine’s events.
This process happens by adding engine extension to throw a new event when the engine
performs an operation on the task that is not supported by its lifecycle. The following
rules are specific for each engine.

For Activiti and Camunda engines:

– Rule 1: (Start on Create) action can be inferred when task t is created with per-
former ri and the system directly starts this task. If the start event is not supported
by the engine, we consider that the task is immediately started after creation and a
new start on create event is thrown and mapped to started reference event.

– Rule 2: (Suspended) event can be inferred when the whole process instance is sus-
pended as the engine doesn’t support the suspended state on the task level. When
the engine reports a wait state for the process instance, we can detect that a sus-
pended event occurred and is thrown to the stream.

After the investigation of the Activiti and Camunda engines, we found that the failed
state is not supported and there is no way of mapping this state.

2.3 Compliance Monitoring Implementation

This subsection provides the implementation details of compliance monitoring within
Activiti and jBPM engines. We use complex event processing (CEP) with the help of
Esper within Activiti which consists of four parts: (1) Business Process Model where we
define task listeners in the XML file defining the process, (2) Task Listeners that detect
any change in the task’s state through the process execution and generate a predefined
event to be analyzed later, (3) Esper Engine that is responsible for generating streams
and populating them with events coming from different sources, initiating listeners to
detect events from the engine, throwing new events in case of any changes after pro-
cessing and communicating with our middleware (4) Stream; that contains all kinds of

2 Enabled state with more information about the resource

Enabling Compliance Monitoring for Process Execution Engines 33

Lifecycle Mapping 5

events either raw, mapped or complex events thrown from our middleware. All the logic
for mapping events or implementation of compliance anti patterns is implemented using
Event Processing Language (EPL) and Drools Rule Language (DRL).

The following lists present a sample EPL query of the implementation of the map-
ping cases.

Listing 1.1: EPL statements for naming mismatch for the allocated state

1 insert into referenceeventsstream(taskInstanceId , receiveTime ,

2 eventType , performer) select taskInstanceId ,receiveTime ,

3 'allocated',performer from engineraweventsstream where
4 eventType = ? "

jBPM supports the CEP technology through the integration with Drools [2]. The
mapping approach on jBPM starts by defining an active session to register the streams
which contains the raw events generated from the process instances execution. After
that Drools rules match the incoming events with the defined mapping logic and fires
when a mapping match is found.

The following list introduces a sample of the Drools rule used in the naming mis-
match case in jBPM for the inprogress state.

Listing 1.2: inprogress detection drools rule

1 rule "inprogress Rule"

2 when
3 $mevent:events(tasktype=="InProgress") from
4 entry-point engineStream then
5 $mevent.seteventType("started");

6 update($mevent);

The second part of our approach is the implementation of the compliance rules us-
ing the anti patterns technique presented in [3]. We implemented most of the patterns,
e.g. exist,absence, response, one to one response, next, sequence and separation of duty
using the rule semantics logic of the Drools engine [2]. The framework uses the refer-
ence events stream and the compliance patterns as input and matches each pattern with
its corresponding anti-pattern rule to detect any possible violation as depicted in Fig. 1.

We implement this part using the Drools fusion component which contains complex
event processing features. The anti patterns queries are written using the Drools rule
language (DRL) and are stored in the production memory of the Drools engine. The
compliance rules which present one of the inputs for the compliance monitoring part is
stored in the working memory of the engine as ”facts” to be compared later with the
stored Drools rules. The streams containing events in Drools engine are called entry
points. Based on the compliance rules and the events from the entry points, Drools
rules fire and throw a violation event whenever a violation occurs. The following list
introduces sample of the rules used to implement the compliance rules anti-patterns.

Listing 1.3: Exist anti pattern rule

1

2 Exist anti pattern

3 when Event ($task : task, $ts : tistamp, $type : type,

34 Enabling Compliance Monitoring for Process Execution Engines

6 Marwa Hussein Zaki, Ahmed Awad and Osman Hegazy

4 $pi : processinstance) from entry-point Stream

5 $comprules : Comprules (pattern == "exist", scopestart == $type,

6 $mul: multiplicity)

7 $total: Number(intValue > $mul)

8 from accumulate (Event (task == $comprules.antecedent ,

9 tistamp > $ts, type == $comprules.scopeend, processinstance == $pi,

10 $ant: task) from entry-point Stream,count($ant))

11 then System.out.println("Exist pattern VIOLATION -->

12 the antecedent count

13 is GREATER THAN multiplicity , Evaluate Loan request delegation

14 happened more than once ");

The full set of implemented rules and mapping part implementation on Activiti and
jBPM engines could be found here: https://github.com/MarwaHusseinZaki/Lifecycle-
Mapping.git. Also more details about the evaluation and results of our approach could
be found in this extended version of the paper [9].

3 Related Work

Regarding runtime monitoring frameworks, [1] combines BPM with CEP for monitor-
ing business process execution. They used the activity lifecycle from [23], the refined
process structure tree (RPST) [16] to analyze process models, CEP queries and pro-
cess event monitoring points (PEMPs) to monitor business process execution based on
events in semi-automated environments. [8] introduces a framework that addresses the
gap between events occurring during process execution and the correlation of these
events to the corresponding process using PEMPs. In [4] the authors present a frame-
work for monitoring the progress of task execution and predicting problems during
runtime, using Support Vector Machines (SVMs) machine learning. The authors in [3]
present a runtime business process compliance monitoring framework, BP-MaaS. Their
work is based on compliance patterns for the specification of runtime constraints and
anti-pattern queries notation to detect runtime compliance violations using CEP.

In [11,12], authors presented a framework for monitoring business process com-
pliance by introducing the extended Compliance Rule Graph (eCRG) for monitoring
compliance rules visually with respect to all relevant process perspective. This frame-
work supports the activity lifecycle by capturing the activity states and implements a
correlation mechanism between events. [10] presented a generic framework to monitor
process instances from different process perspectives. They are using the lifecycle from
[19] and defines the events as a points to be tracked by their monitoring system which
carry information from different perspectives. Our work could complement their work
as they are not focusing on the resource perspective in their implementation. [5] fo-
cused on realizing a monitoring component for the YAWL system using sensors, which
monitors conditions that can be achieved through cases.

All the previous work focused on monitoring business process over runtime envi-
ronment based on events with different task or activity lifecycles. Our work aims at
trying to help them by developing a mapping approach that will unify the states of
events produced from process execution with their supported lifecycle to remove any
inconsistency.

Enabling Compliance Monitoring for Process Execution Engines 35

https://github.com/MarwaHusseinZaki/Lifecycle-Mapping.git
https://github.com/MarwaHusseinZaki/Lifecycle-Mapping.git

Lifecycle Mapping 7

With respect to task lifecycle used in monitoring systems, [7] discuss increasing the
number of observed events by capturing data state transition events in non automated
environment. They focus on the object lifecycle states generated from data objects. [15]
addresses the problem of modeling processes with complex data dependencies and their
enactment from process models. They focus on the process data level and data objects.
Meanwhile, [22] presents an approach that captures the whole process life cycle and
all kinds of changes in an integrated way. They are focusing mainly on control-flow
changes. The changes of the resource perspective or data perspective are out of the
scope of that paper.

As discussed above, most of the monitoring frameworks use different task lifecycle
models. Also, most of researches which address lifecycle models focus on either the
data perspective or the lifecycle states extracted from the non automated environments,
not generated from execution engine. For those approches that support automated pro-
cess execution, we position our work as complementary to their work when it comes to
actual implementations on available open source process execution engines.

4 Conclusion and Future Work

In this paper, we proposed an approach that maps different execution engines’ lifecy-
cles states to a reference lifecycle model. Also, the approach infers missing events that
the execution engine does not support. The proposed approach serves as a middleware
between process enactment and third party monitoring systems. To prove the validity of
our middleware, we implemented most of the compliance patterns presented by the BP-
Maas framework to enable compliance monitoring over jBPM engine. We implemented
our approach using Activiti and jBPM open source execution engine and we use CEP
technology with Esper, Java and EPL language and CEP with Drools Rule Language
(DRL). Our approach focus on the compliance monitoring as one of the many cases
of business process monitoring over runtime, but the mapping part can be used by any
framework to support any kind of process monitoring. As a future work, we intend to
apply our mapping approach on more execution engines to prove its feasibility. Also we
will try to expand our monitoring framework by building a dashboard to enable users
enter the compliance patterns and determine the events stream to let the framework
detect possible violations.

References
1. Michael Backmann, Anne Baumgrass, Nico Herzberg, Andreas Meyer, and Mathias Weske.

Model-driven event query generation for business process monitoring. In ICSOC Workshops,
volume 8377 of LNCS, pages 406–418. Springer, 2013.

2. Michal Bali. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, 2009.
3. Ahmed Barnawi, Ahmed Awad, Amal Elgammal, Radwa Elshawi, Abduallah Almalaise,

and Sherif Sakr. An anti-pattern-based runtime business process compliance monitoring
framework. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND
APPLICATIONS, 7(2), 2016.

4. Cristina Cabanillas, Claudio Di Ciccio, Jan Mendling, and Anne Baumgrass. Predictive task
monitoring for business processes. In BPM, volume 8659 of LNCS, pages 424–432. Springer,
2014.

36 Enabling Compliance Monitoring for Process Execution Engines

8 Marwa Hussein Zaki, Ahmed Awad and Osman Hegazy

5. Raffaele Conforti, Marcello La Rosa, and Giancarlo Fortino. Process monitoring using sen-
sors in YAWL. In Proceedings of the First YAWL Symposium, volume 982 of CEUR Work-
shop Proceedings, pages 49–55. CEUR-WS.org, 2013.

6. Simone Fiorini and Arun V Gopalakrishnan. Mastering jBPM6. Packt Publishing, 2015.
7. Nico Herzberg and Andreas Meyer. Improving process monitoring and progress prediction

with data state transition events. volume 1029, pages 20–23, 2013.
8. Nico Herzberg, Andreas Meyer, and Mathias Weske. An Event Processing Platform for

Business Process Management. In EDOC, pages 107–116. IEEE Computer Society, 2013.
9. Marwa Hussein, Ahmed Awad, and Osman Hegazy. Enabling compliance monitoring for

process execution engines. technical report, Faculty of Computers and Information, Cairo
University, 2017. http://scholar.cu.edu.eg/?q=marwa_hussein/files/paper.

pdf.
10. Amin Jalali and Paul Johannesson. Multi-perspective business process monitoring. In BP-

MDS, volume 147 of LNBIP, pages 199–213. Springer, 2013.
11. David Knuplesch, Manfred Reichert, and Akhil Kumar. Visually monitoring multiple per-

spectives of business process compliance. In BPM, volume 9253 of LNCS, pages 263–279.
Springer, 2015.

12. David Knuplesch, Manfred Reichert, and Akhil Kumar. A framework for visually monitoring
business process compliance. Inf. Syst., 64:381–409, 2017.

13. Linh Thao Ly, Stefanie Rinderle-Ma, Kevin Göser, and Peter Dadam. On enabling inte-
grated process compliance with semantic constraints in process management systems - re-
quirements, challenges, solutions. Information Systems Frontiers, 14(2):195–219, 2012.

14. Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil M. P. van der Aalst.
Monitoring business constraints with linear temporal logic: An approach based on colored
automata. In BPM, volume 6896 of LNCS, pages 132–147. Springer, 2011.

15. Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias Weske. Modeling and enacting
complex data dependencies in business processes. In BPM, volume 8094 of LNCS, pages
171–186. Springer, 2013.

16. Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation and gener-
alization of the refined process structure tree. In WS-FM Workshop, volume 6551 of LNCS,
pages 25–41. Springer, 2010.

17. Tijs Rademakers. Activiti in Action. Manning Publications, 2012.
18. Elham Ramezani, Dirk Fahland, and Wil M. P. van der Aalst. Where did I misbehave?

diagnostic information in compliance checking. In BPM, volume 7481 of LNCS, pages 262–
278. Springer, 2012.

19. Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and David Edmond. Work-
flow resource patterns: Identification, representation and tool support. In Advanced Informa-
tion Systems Engineering, volume 3520 of LNCS, pages 216–232. Springer, 2005.

20. Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams, and Nick Russell, edi-
tors. Modern Business Process Automation - YAWL and its Support Environment. Springer,
2010.

21. Oktay Türetken, Amal Elgammal, Willem-Jan van den Heuvel, and Mike P. Papazoglou.
Enforcing compliance on business processes through the use of patterns. In ECIS, page 5,
2011.

22. Barbara Weber, Manfred Reichert, Stefanie Rinderle-Ma, and Werner Wild. Providing Inte-
grated Life Cycle Support in Process-Aware Information Systems. International Journal of
Cooperative Information Systems, 18(01):115–165, 2009.

23. Mathias Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2007.

Enabling Compliance Monitoring for Process Execution Engines 37

http://scholar.cu.edu.eg/?q=marwa_hussein/files/paper.pdf
http://scholar.cu.edu.eg/?q=marwa_hussein/files/paper.pdf

	Lecture Notes in Computer Science
	Introduction
	Enabling Monitoring
	Reference Task Lifecycle
	Lifecycle Mapping
	Compliance Monitoring Implementation

	Related Work
	Conclusion and Future Work

