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Abstract. The evolution of Large-Scale Distributed Systems is strongly
associated with the development of solutions for smart cities. They con-
sist of a large-number of sensors, processing centers and services deployed
in a wide geographical area. Due to their complexity and heterogeneity,
such systems face a high-level of uncertainty and the failure of one node
can affect the availability of the whole solution. Monitoring services col-
lect data about the state of components and elaborate a diagnosis, aiming
to increase the reliability of the system. This paper proposes an Abstract
State Machine model to capture the properties and behavior of monitor-
ing services addressing system failures. The method encompasses the
translation of the requirements of the system to ground models. We dis-
cuss the formal solution with respect to the problem domain and execute
a simulation of the model. We discuss the suitability of the method for
distributed systems and compare it with other modeling approaches.

Keywords: Formal Modeling, Abstract State Machines, Large-Scale Dis-
tributed Systems, Monitoring, Smart City

1 Introduction

Large-Scale Distributed Systems (LDS) aggregate computing resources through
a wide area network. Such systems offer scalability and transparency of resources
and compose services for building various applications. Their complexity intro-
duces many challenges like heterogeneity, node or communication failures. Re-
covery and high availability of the system require reliable monitoring.

One of the trends for developing a sustainable future is supported by smart
cities. They encompass applications for enhancing transportation, energy usage,
waste disposal. Sensors, data centers and computing resources collaborate to
process data and provide services to end devices. These services face failures
and availability issues of LDS. Monitors play a key role in detecting issues and
providing data for adaptation plans to bring the system to a normal execution
mode. Monitoring processes are complemented with adaptation processes, which
respond to the existing problems with various restoration plans. The main con-
tribution of the paper consists in analyzing and validating correct behavior of
monitors, whose accuracy enhances the robustness of the system.
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The goal of this paper is to integrate the formal modeling capabilities of the
Abstract State Machines (ASMs) for defining a monitoring solution for LDS. We
motivate the choice of ASMs by comparing them with other formal methods with
respect to their suitability for distributed systems. We present the requirements
of the system from the perspective of a smart city application and propose
a structure for the monitoring framework. Requirements are translated to a
control state ASM. The use of formal methods for defining a solution helps in
understanding possible flaws of the model before deployment [10].

The remainder of the paper is structured as follows. Section 2 captures the
problem domain and the research objectives of the paper. Essential concepts re-
lated to the ASM formal method are presented in Section 3. Section 4 describes
the structure of the monitoring framework and is continued by its formal speci-
fication and validation in Section 5. Related work is discussed in Section 6, after
which conclusions are drawn in Section 7.

2 Smart City Application Case Study

The evolution of distributed systems, Internet of Things (IoT) and network
capabilities played an important role in the adoption of ubiquitous solutions for
smart cities. Widely distributed sensors for traffic, pollution and environment
continuously collect data that are integrated in various applications. The aim is
to sustainably develop cities and improve the quality of life of the the inhabitants.

One of the main areas of interest is provisioning of medical services. Asthma
is a chronic inflammatory disease manifested by airflow obstruction, coughing
and/or chest tightness. The condition is directly affected by the environment
and by the behavioral patterns of the patient. The benefits of a smart city
application empowers patients to take informed decisions and prevent severe
asthma attacks. In a smart city network, air quality sensors provide data related
to the percentage of dust particles and pollutants, while meteorological data
supply humidity and temperature values. Information about traffic is important
for avoiding crowded areas and also indicate the pollution level. Such sensors
are distributed in an LDS and data they provide can be integrated with activity
patterns extracted from smart gadgets for building a knowledge base. Hosseini
et al. [11] proposed an architecture for employing wireless environmental sensors
within a smartwatch application that assesses the asthma risk level.

System nodes refer to sensors and services, which are offered by various cloud
providers (Amazon, Microsoft Azure, etc.). Node problems are propagated to the
whole system, making it hard to identify the source. We emphasize the role of the
monitors for ensuring availability of the system and propose a formal model for
it. The proposal closely follows the subsequent research questions and objectives.

Research Question 1. Can formal methods capture properties of LDS mon-
itors? How does applying formal methods to distributed systems differ from mod-
eling traditional applications?
We analyze existing formal methods and establish the best option given the
characteristics of distributed systems. The choice of the ASM technique is jus-
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tified in Section 3 together with the definition of specific control structures and
properties that can be specified using this approach.

Research Question 2. How can unavailability issues of smart city applica-
tions be tackled by the monitoring solution?
In Section 4 we present the main requirements of the system and how the pro-
posed monitoring model addresses them. We emphasize the unavailability issues
and discuss the novelty of our approach.

Research Question 3. How does the ASM model reflect the properties of
the monitoring framework?
We define the structure of the monitoring solution, capture the workflow in terms
of control state diagram and discuss the important transitions of the system. We
also declare states and rules with the aid of AsmetaL language, which reflect the
behavior of the monitors. Section 5 discusses in more details these aspects.

3 Abstract State Machine Theory

While traditional software development processes integrated formal methods eas-
ier, the evolution of agile methods, distributed systems and novel business models
introduced more challenges. Kossak and Mashkoor [12] propose an evaluation of
the existing formal methods considering modeling criteria, supported develop-
ment phases, tool support, social aspects and industrial applicability.

Given the characteristics of the system described in Section 2, we are inter-
ested in adopting the technique that supports modeling properties of distributed
systems like concurrency and non-determinism. The expressiveness of the model
is important due the heterogeneous nature of the target system. According to
[12] the best candidates for these aspects are ASMs and TLA+. By further con-
sidering the assistance of the model through the software development process,
its coherence and the scalability in industrial applications [12] we adopted the
ASM method. The Unified Modeling Language (UML) is widely adopted in soft-
ware engineering. However, it is considered imprecise and attempts to improve
its operational semantics led to extended mathematical specifications [8].

Petri Nets have been widely used for modeling distributed systems. In [4],
Börger illustrates specific distributed scenarios for assessing the capabilities of
both ASMs and Petri Nets. The paper does not aim to exhaustively assess the
performances of the methods, but to highlight their abstraction capabilities and
graphical complexity. The ASM remarks itself as being able to capture various
concepts in simpler graphical representations.

ASMs rely on the concept of evolving algebras proposed by Yuri Gurevich in
[9]. Their proposal was motivated by their power to improve Turing machines
with semantic capabilities. The ASM method allows a straightforward transition
from natural-language requirements to ground model and control state diagrams,
which can be easier formalized. An ASM machine M is represented as a tuple
M = (Σ,S0, R,R0), where Σ is the signature (the set of all functions), S0 is the
set of initial states of Σ, R is the set of rule declarations, R0 is the main rule of
the machine.
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The specification of an ASM consists of a finite set of transition rules of the
type: if Condition then Updates [3], where an Update consists of a finite set of
assignments f(t1, ..., tn) := t. As ASMs allow synchronous parallelism execution,
two machines might try to change a location with two different values, triggering
an inconsistency. In this case the execution throws an error.

Rules consist of different control structures that reflect parallelism (par),
sequentiality (seq), causality (if...then) and inclusion to different domains
(in). With the forall expression, a machine can enforce concurrent execution
of a rule R for every element x satisfying a condition ϕ: forall x with ϕ do R.
Non-determinism is expressed through the choose rule: choose x with ϕ do R.

Definition 1. A control state ASM is an ASM following the structure of the
rules illustrated in Fig. 1: any control state i verifies at most one true guard,
condk, triggering, thus, rulek and moving from state i to state sk. In case no
guard is fulfilled, the machine does not perform any action.

i

cond1

condn

rule1

rulen

j1

jn

.....

if ctl state = i then
if cond1 then

rule1
ctl state := j1

end if
........
if condn then

rulen
ctl state := jn

end if
end if

Fig. 1. Structure of a Control State ASM

Functions in ASMs are classified according to permissions on different operations.
Static functions refer specifically to constants, while dynamic functions can be
updated during execution. Controlled functions are written only by the machine,
while monitored ones are written by the environment and read by the machine.
Both the machine and its environment can update shared functions.

4 System Overview

This paper describes the monitoring component for an LDS, which is responsible
to identify failures and unavailability of constituent nodes. The description of
the system starts from the presentation of requirements and is completed by an
architectural model, which emphasizes robustness achieved through redundancy.

4.1 Requirements of the Monitoring Framework

Req. 1. Monitoring processes will observe each node of the LDS. In order to
avoid single points of failure, a set of monitors is assigned to every node.
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Req. 2. Before starting data collection, the monitor submits a request to verify
node availability. If no answer is received, the node is considered unavailable.
Req. 3. Data collected by the monitor is used for detecting unavailability prob-
lems and failures.
Req. 4. A monitor that detects a problem must disseminate it locally to other
monitors assigned to the same node and carry out a collaborative evaluation.
Req. 5. Monitoring specific data and events are temporarily logged in a local
storage from where they can be retrieved for analysis processes.
Req. 6. Monitoring processes run continuously in background of the execution.
Req. 7. Each monitor is characterized by a trustworthiness level, based on its
performance. Bad assessment of data indicates a lower trustworthiness.
Req. 8. Monitoring data are also used for system adaptation and evaluation of
reconfiguration solutions.

4.2 Organization of the Monitoring Framework

Fig. 2 illustrates the architecture of the LDS system for a smart city application.
The organization comprises three parts: the client side where different users
request services from providers, the provider side where sensors are deployed
and an internal abstract machine for monitoring and adaptation processes. The
interaction of the clients with the providers is based on a solution defined by [5],
where the client-cloud interaction middleware processes the requests and ensures
the delivery of services to the end user.
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Fig. 2. Architecture of the LDS system

We assume that sensors are deployed among various providers. Sensor Spi

of a provider P is assigned a set of monitors Monitors (Spi) = {mi1, ..., mik}.
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The monitors observe the node by carrying out specific processes: checking avail-
ability, collecting raw data, building higher-level metrics, interpreting data and
logging. In order to reduce the communication overhead, monitors interact only
when a problem is detected and a collaborative decision is required.

Monitoring components indicate abnormal situations together with corre-
sponding data to the adaptation layer, where a case based repository is consulted
and an action plan is proposed. After the deployment of the plan the adapters
request data from the monitors in order to check the efficiency of their actions.

5 Formal Specification

5.1 Control state ASMs

The model contains ASM monitor agents, each carrying out its own execution
according to the the requirements mentioned in Section 4.1. Fig. 3 displays the
control state ASM ground model of the monitor agent. The monitor is initialized
in the Inactive state. If the monitor is deployed by the middleware, then it can
be assigned to a node. From there, the agent moves to the Active state from
where monitoring specific processes start.

Inactive Monitor deployed Yes Assign to node Active

Send request
Wait for

response
Reply arrivedYes

No Timeout Yes

Stop request

Process

response
Collect dataGather metrics

Retrieve

information

Repository

available

Yes
No

Query database Assign diagnosis Interpret data Problem discovered

Yes

No

Report

problem

Gossip issueLog dataLog
Monitor

trustworthy
Yes

No

Fig. 3. Control ASM for the monitor agent

The monitor sends a request to the node after which it moves to the Wait for
response state. The guard Reply arrived is verified and if an answer to the request
is acknowledged, the monitor processes it by calculating the latency and moves
further to the Collect data state. If no reply is recorded, the monitor verifies if
the request has exceeded the maximum allowed delay (Timeout guard). In this
case it stops the current request and moves to the Report problem state. If the
Timeout guard is false, the agent remains in theWait for response state.
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In the Collect data state, the monitor gathers raw data from the node (CPU
usage, memory usage, available storage, number of executing tasks). It moves
afterwards to the Retrieve information state. If the guard Repository available
is verified, the logs are queried. The monitor moves to the Assign diagnosis
state, where data are interpreted. If the guard Problem discovered holds then
the monitor moves to the Report problem state, otherwise it moves to the Log
data state. From Report problem state, the monitor communicates the detected
problem to other monitors assigned to the same node and moves to the Log data
state. Information are then saved in the local repository.

Listing 5.1. AsmetaL specification of the monitor program

ru l e r MonitorProgram =
par

i f ( mon i to r s ta t e ( s e l f ) = ACTIVE) then
par

r SendRequest [ s e l f ]
mon i to r s ta t e ( s e l f ) := WAIT FOR RESPONSE

endpar
end i f

i f ( mon i to r s ta t e ( s e l f ) = WAIT FOR RESPONSE) then
i f ( h ea r tb ea t r e spon s e a r r i v ed ( l a s t ( hear tbeat s ( s e l f ) ) ) ) then

i f ( heartbeat t imeout ( l a s t ( hear tbeat s ( s e l f ) ) ) ) then
par

r StopRequest [ ]
mon i to r s ta t e ( s e l f ) := REPORT PROBLEM

endpar
e l s e

par
r ProcessResponse [ ]
mon i to r s ta t e ( s e l f ) := COLLECT DATA

endpar
end i f

end i f
end i f
i f ( mon i to r s ta t e ( s e l f ) = COLLECT DATA) then

par
r GatherMetr ics [ ]
mon i to r s ta t e ( s e l f ) := RETRIEVE INFO

endpar
end i f
i f ( mon i to r s ta t e ( s e l f ) = RETRIEVE INFO) then

seq
i f ( i sRepo s i t o ryAva i l ab l e ) then

r QueryDb [ ]
end i f
mon i to r s ta t e ( s e l f ) := ASSIGN DIAGNOSIS

endseq
end i f
i f ( mon i to r s ta t e ( s e l f ) = ASSIGN DIAGNOSIS) then

seq
r In t e rp r e tData [ ]

i f ( i sProblemDiscovered ( s e l f ) ) then
mon i to r s ta t e ( s e l f ) := REPORT PROBLEM

e l s e
mon i to r s ta t e ( s e l f ) := LOG DATA

end i f
endseq

end i f
i f ( mon i to r s ta t e ( s e l f ) = REPORT PROBLEM) then

par
r Gos s i p I s su e [ ]
mon i to r s ta t e ( s e l f ) := LOG DATA

endpar
end i f
i f ( mon i to r s ta t e ( s e l f ) = LOG DATA) then

par
r Log [ ]
i f ( isMonitorTrustworthy ( s e l f ) ) then

mon i to r s ta t e ( s e l f ) := ACTIVE
e l s e

mon i to r s ta t e ( s e l f ) := INACTIVE
end i f

endpar
end i f

endpar
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At the end of the monitoring cycle, the trustworthiness of the monitor is
calculated and if the Monitor trustworthy guard holds, a new cycle starts. Oth-
erwise, the monitor moves to the Inactive state from where it needs to be reini-
tialized by the middleware. We, thus, avoid having faulty monitors in the system.

5.2 AsmetaL Specification

ASMETA 1is a toolset for simulating and validating ASM models written in the
AsmetaL language, which capture control structures and functions. The Monitor
domain is part of the Agent universe and it behaves as an ASM machine, having
its own states and transitions. Monitor state is expressed as a controlled function
which is updated by the agent itself. Monitors assigned to a node are expressed
as a sequence, each storing a sequence of Hearbeat requests sent to the node. The
function isProblemDiscovered is left abstract. isMonitorTrustworthy function is
calculated at the end of a monitoring cycle. The calculation of heartbeat timeout
is a derived function combining a monitored value and a controlled function. The
signature of domains and functions of the Monitor agent are important for the
representation of the control state ASM from Section 5.1 in Listing 5.1 2.

5.3 Validation of the Model

Currently, validation deals only with the separate processes for each agent. It
checks the workflow and the transitions from different states. The model was
validated with AsmetaV tool, which allows the creation of scenarios with the
aid of the Avalla language described by [7]. By validation we discover possible
flaws in the design of the ASM model.

For validation we created an instance of the Node domain, which is assigned
three Monitor agents. We checked how various inputs affect the control flow of
the monitors and if the rules and states of the agent match the control state
ASM ground model from Fig. 1 as displayed in Listing 5.2. In a future step of
the validation process we plan to analyze the interaction between monitor agents
and the function to update the confidence degree of a monitor.

6 Related Work

Formal methods have distinguished themselves through the ability to capture
mathematical properties in software specification. LDS systems introduce a higher
complexity and heterogeneity that needs to be handled. We consulted the area
of formal methods and chose the ASM technique proposed by [3].

Modeling LDS has been addressed in several cloud and grid related projects.
CloudML, an extension of the UML language for expressing cloud specific pro-
cesses, has been proposed by the MODACloud project for specifying adaptable
Quality of Service (QoS) models, monitoring operation rules and data [1].

1 http://asmeta.sourceforge.net/
2 The complete specification is available at http://cdcc.faw.jku.at/staff/abuga/

emmsad.rar

http://cdcc.faw.jku.at/staff/abuga/emmsad.rar
http://cdcc.faw.jku.at/staff/abuga/emmsad.rar
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Listing 5.2. Example on an AsmetaV scenario

s c ena r i o Monitor1
s e t as s i gned mon i to r s ( node 1 ) := [ monitor 1 , monitor 2 , monitor 3 ] ;
s e t heartbeat ( monitor 1 ) := hear tbeat 1 ;
s e t heartbeat ( monitor 2 ) := hear tbeat 2 ;
s e t heartbeat ( monitor 3 ) := hear tbeat 3 ;
s tep
check mon i to r s ta t e ( monitor 1 ) = WAIT FOR RESPONSE and mon i to r s ta t e ( monitor 2 ) =

WAIT FOR RESPONSE and mon i to r s ta t e ( monitor 3 ) = WAIT FOR RESPONSE;
s e t h ea r tb ea t r e spon s e a r r i v ed ( hear tbeat 1 ) := true ;
s e t h ea r tb ea t r e spon s e a r r i v ed ( hear tbeat 2 ) := f a l s e ;
s e t h ea r tb ea t r e spon s e a r r i v ed ( hear tbeat 3 ) := true ;
s e t hea r tbea t l a t ency ( hear tbeat 1 ) := 5 ;
s e t hea r tbea t l a t ency ( hear tbeat 3 ) := 15 ;
step
check mon i to r s ta t e ( monitor 1 ) = COLLECT DATA and mon i to r s ta t e ( monitor 2 ) =

WAIT FOR RESPONSE and mon i to r s ta t e ( monitor 3 ) =REPORT PROBLEM;
se t h ea r tb ea t r e spon s e a r r i v ed ( hear tbeat 2 ) := true ;
s e t hea r tbea t l a t ency ( hear tbeat 2 ) := 20 ;
step
check mon i to r s ta t e ( monitor 1 ) = RETRIEVE INFO and mon i to r s ta t e ( monitor 2 ) =

REPORT PROBLEM and mon i to r s ta t e ( monitor 3 ) = LOG DATA;
s e t i sRepo s i t o ryAva i l ab l e := f a l s e ;
s e t isMonitorTrustworthy ( monitor 3 ) := true ;
s tep
check mon i to r s ta t e ( monitor 1 ) = ASSIGN DIAGNOSIS and mon i to r s ta t e ( monitor 2 ) =

LOG DATA and mon i to r s ta t e ( monitor 3 ) = ACTIVE;
s e t i sProblemDiscovered ( monitor 1 ) := true ;
s e t isMonitorTrustworthy ( monitor 2 ) := true ;
s tep
check mon i to r s ta t e ( monitor 1 ) = REPORT PROBLEM and mon i to r s ta t e ( monitor 2 ) = ACTIVE

and mon i to r s ta t e ( monitor 3 ) = WAIT FOR RESPONSE;

Formal modeling was also used for building models for grid services and
processes. The ASM technique contributed to the description of the job man-
agement and service execution in [2]. Specification of grids in terms of ASMs have
been proposed also by [14], where Németh and Sunderam focused on expressing
differences between grid and traditional distributed systems.

ASMs have been also proposed for realization of web service composition. In
[13], Ma et al. introduced the notion of Abstract State Services and showed an use
case for a cloud service for flight booking. Service composition and orchestration
in terms of ASMs have been researched by [6].

7 Conclusions

Formal methods ensure reliable software solutions. LDS introduce a high com-
plexity in the system and building formal models for them is still a challenging
task. We discussed in this paper the aspects of monitoring LDS, proposed a set
of requirements and translated them to an ASM model. The choice of the ASM
technique was justified by comparing it with other available formal methods.

The current model is limited to a set of states and rules that capture the
workflow of the monitors. Timing related constraints, which are essential for
LDS, could not be expressed. However, the focus is on ensuring the correctness
of the monitoring behavior and improving the overall robustness of the system.

As a future work, we will improve the formal model to capture finer-level de-
tails. We plan to achieve loose-coupling by employing ASM modules for different
functionality of the monitoring framework. In order to ensure the correctness of
the solution we will perform verification with the aid of AsmetaSMV tool.
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