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Abstract. A conceptual model can be an important instrument to support the 
software functional requirements elicitation because it promotes better 
understanding of a domain. However, the representation quality of the 
conceptual model depends on the expressivity of the language used. OntoUML 
is a proposed language to solve expressivity problems. Nevertheless, 
OntoUML models are complicated to build for novice modelers. This study 
presents an experiment performed in order to semi-automatically build a 
conceptual model represented in OntoUML. All the experiment steps were 
executed by a computational environment named ENSURE. The results 
showed that it is possible to identify 60% of the meaningful concepts. 

1. Introduction 
During software development, poor understanding of the business and poor 
communication between the business specialists and the computing specialists can 
compromise the quality of the software (Luis et al., 2008). Therefore, especially in its 
early stages, the use of a common language that enables shared understanding among 
stakeholders is necessary to aid the smooth flow of information obtained from different 
sources (Lee and Gandhi, 2005). 
 The conceptual model is an instrument that enables the use of a common 
vocabulary and facilitates comprehension and discussion of elements that may appear in 
the software. However, the suitability of a conceptual modeling notation is based on its 
contribution to the construction of models that represent reality, thus enabling a 
common understanding between their human users (Mylopoulos, 1992). One of the 
most known conceptual metamodel is the Entity–Relationship (ER) model. However, 
the reason for the popularity of the ER model is also its main weakness. Although the 
metamodel is simple, which helps the conceptual modelers, it does not present high 
expressivity. The UML is also a well-known language for building conceptual models, 
which also presents the same problem of expressivity. 
 Guided by these matters, Guizzardi (2005) proposed OntoUML, a language used 
to represent ontology-based conceptual models. As the language is ontology-based, the 
conceptual models constructed in OntoUML are assumed to be more expressive and 
represent the real world of the domain more faithfully than other languages of 
conceptual representation. The constructs proposed in OntoUML prevent the overload 
and redundancy found in other languages, such as UML. However, as OntoUML is a 
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more expressive language, it proposes a larger set of constructs that are not easily 
identified, especially by novice modelers (Guizzardi et al., 2011). 
 Motivated by these challenges, this study describes an experiment to build semi-
automatically a conceptual model represented by OntoUML. All steps described in the 
Experiment Method Section are executed by a computational environment called 
ENSURE (ENvironment to SUpport Requirement Elicitation). One of the main goals of 
ENSURE is to support the extraction of functional requirements of a domain using a 
conceptual model represented by OntoUML. This paper is organized as follows: in 
Section 2, the background of the proposal is outlined. Section 3 presents the method of 
the experiment, while Section 4 presents the results of the experiment. The final 
considerations and future works related to the proposal are presented in Section 5. 

2. Background 
This section presents the main concepts related to this study. The concepts are not 
exhaustively explained due to space limitation. However, they are discussed enough to 
understand the experiment executed. 

2.1 OntoUML 
The OntoUML language proposed by Guizzardi (2005) was motivated by the need for 
an ontology-based language that would provide the necessary semantics to construct 
conceptual models with concepts that were faithful to reality. The classes proposed in 
OntoUML are specializations of the abstract classes of the Unified Foundational 
Ontology (UFO) and extend the original metamodel of UML.  
 In this study, only the main constructs that make up the object type category will 
be presented (Guizzardi et al., 2011). In this category, constructs are more closely 
related to the static conceptual modeling of a domain. The Object Type constructs can 
be Sortal and Non-Sortal. The Sortal constructs provide identity and individualization 
principles to their instances, while the Non-Sortal constructs do not supply any clear 
identification principles. The Sortal constructs are classified as Rigid Sortal and Anti-
Rigid Sortal. A Sortal is classified as rigid if it is necessarily applied to all its instances 
in all possible worlds. A Sortal is said to be anti-rigid if it is not necessarily applied to 
all its instances. The Rigid Sortal includes the Kind and Subkind categories. A Kind is a 
Rigid Sortal, and therefore has intrinsic material properties that provide clear identity 
and individualization principles. The Kind determines existentially independent classes 
of things or beings and are said to be functional complexes. A Subkind is also a Rigid 
Sortal that provides the identity principle and has some restrictions established and 
related to the Kind construct. Every object in a conceptual model must be an instance of 
only one Kind. There are two sub-categories of Anti-Rigid Sortal: Phases and Roles. In 
both cases, the instances can change their types without affecting their identity. Whereas 
during the Phase construct, the changes can take place as a result of changes of intrinsic 
properties. In the Role construct, the changes take place because of relational properties. 
 Compared with UML, OntoUML has a larger set of constructs, enabling greater 
expressivity of conceptual models and avoiding overload and redundancy (Guizzardi, 
2005). Nevertheless, OntoUML is more complex to use than the traditional languages, 
such as UML, especially for novice modelers (Guizzardi et al., 2011). One of the 
difficulties of constructing a model represented in OntoUML is identifying the correct 
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construct for a given concept to be represented. In this sense, it is important to develop 
automatic or semi-automatic mechanisms that help the domain modeler to identify this 
concept and its correct construct. A linguistic approach with a semantic focus can be 
applied to aid comprehension of the concepts to be modeled (Castro, 2010). 

2.2 Semantic types and Disambiguation 
Dixon (2005) proposed a semantic organization for words in classes of meaning known 
as semantic types. In this proposal, semantic types handle nouns, adjectives, and verbs. 
Generally, in conceptual modeling, nouns are the semantic types that indicate important 
concepts in a conceptual modeling. The semantic types can be mapped to the constructs 
of OntoUML (Castro, 2010) and thereby enable semi-automatic support for their 
identification using Natural Language Processing (NLP). However, one of the 
challenges of automatic identification of the semantic type is the disambiguation of the 
term (Castro, 2010; Leão et al., 2013). 
 A word can have several meanings and the correct identification of its meaning 
may depend on the context in which it is used. The task of computationally identifying 
the meaning of words based on their context is known as Word Sense Disambiguation 
(WSD) (Pedersen and Kolhatkar, 2009). Techniques and algorithms for disambiguation 
are available, such as TargetWord, which is applied only in the case of a target word in 
a sentence, and the AllWord, which is applied to all words in a sentence. An example of 
a disambiguation technique is WordNet::SenseRelated (Pedersen and Kolhatkar, 2009). 
WordNet:SenseRelate is based on WordNet, which is a lexical base for the English 
language. This tool performs the disambiguation of a term found in the base and also 
identifies the corresponding semantic type. Figure 1 illustrates the use of Semantic types 
and Disambiguation concepts, where an example of “driver” term from WordNet 
database is presented. The term “driver” can have different meanings that depend on the 
context and each one can have different semantic type. In the “driver” example, the term 
can be associated to three semantic types: person, communication, and artifact. 
Considering the context, the TargetWord algorithm identifies the correct meaning. 
When the correct meaning is identified, it is possible to retrieve the associated semantic 
type. 

 
Figure 1. Example of a semantic type identified by WordNet. 

2.3 ENSURE 
ENSURE is a computational environment developed to support the execution of tasks 
related to Software Requirement Engineering. This environment contains in the 
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integration of relevant terms, extraction algorithms, terms disambiguation algorithms, 
WordNet database, OLED (2015) (OntoUML editor) and others. 
 This integration and interfaces allow the management of domain texts, identify 
relevant terms, execute terms disambiguation using WordNet database, build conceptual 
model, and derive functional requirements of a domain. The main goal of the 
environment is to support the decision taking in each one of these tasks. The main users 
comprise students of Requirement Engineering, the novice professionals. 

3. Experimental Method 
The experiment to build semi-automatically a conceptual model was conducted based 
on the steps of the method proposed in (Leão et al., 2013; Valaski et al., 2014). The 
main differences in this experiment are a new heuristic to identify the OntoUML 
construct, the execution by a computational environment, and the partial building of a 
conceptual model. Each one of these tasks are executed using the ENSURE. 

3.1 Identifying relevant terms 
The first step was the selection of the text. In this experiment, the same text applied on 
Valaski et al. (2014) was used. This decision was taken to facilitate the comparison 
between the previous and present experiment. The text selected is presented in Table 1 
and describes a domain of bus route. The next step was the selection of the relevant 
terms. The starting point to define the relevant terms is the conceptual model relative to 
the text. The conceptual model is represented using the ER model (Gemino and Wand, 
2005). Table 2 presents the 32 terms identified as relevant. In the context of this 
experiment, the terms are called “gold terms”. They were compared with the terms 
automatically extracted. 
 The last step was the selection of algorithm to extract the relevant terms. The 
topia.termextract version 1.1.0, developed by Python 
(https://pypi.python.org/pypi/topia.termextract/) was used. This tool was chosen 
because of its satisfactory results (Valaski et al., 2014) and its use is free. To analyze 
Topia algorithm results, the metrics precision and recall Fawcett, T. (2006) were used. 

Table 1. Selected text 

Text 

There are two ways for people to travel with Voyager. Either passengers can make a 
reservation on a trip, or passengers can show up at the boarding gate without a reservation 
and purchase a ticket for an unreserved seat. Passengers with a reservation are assigned a 
reservation date, whereas, passengers without reservations are assigned a boarding date. The 
name and addresses of all passengers are collected. Telephone numbers are collected where 
possible. All bus trips are organized into daily route segments. All daily route segments 
have both a start time and an end time. Each daily route segment. Voyager organizes is 
classified as a route segment with a segment number, start town, and finish town. Voyager 
offers a range of trips, and each trip is made up of one or more route segments. For every 
trip there is a trip number, start town, and finish town. If the trip is organized around a 
special event, the event name is also associated with the trip. Each daily route segment that 
Voyager offers is part of a dally trip. A daily trip is undertaken by one or more bus drivers. 
The name, address, and employee number of all drivers is collected. Voyager also records 
information about absent drivers. When a driver is absent. Voyager records the absence start 
date and the details about the absence. The absent driver provides one or more reasons for 
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being absent and each reason is assigned a detail number and a short description. Voyager 
also collects information about the buses used for daily trips. Buses have a make, model, 
and registration number. For buses in use, the average daily kilometers is collected. If a bus 
requires maintenance, Voyager notes the date on which the bus entered maintenance and 
records the one or more problems with the bus. Voyager assigns a problem number and a 
short description for every maintenance problem. Finally, the average cost to repair all 
problems with a bus in maintenance is also recorded. 

 
Table 2. Gold terms 

Terms 

Absence; Absence Start Date; Address; Average Daily Kilometers, Average Cost to Repair; 
Boarding Date; Bus; Daily Route Segment; Daily Trips; Date Maintenance; Description; 
Details; Driver; Employee; End time; Finish Town; Maintenance Problems; Make; Model; 
Name; Passengers; Problem; Registration number; Reservation Date; Route Segment; 
Segment; Event name; Start Time; Start Town; Telephone; Trip; Trip Number 

3.2 Identifying OntoUML construct 
After selecting the relevant terms using Topia algorithm, the following heuristics were 
applied: 
 Rule i: For each relevant term (simple or compound), verify if the last word is 
number, name, or date. If true, the construct suggested must be Datatype. This rule was 
built because it was observed in previous experiment (Valaski et al., 2014) that these 
terms in general are not identified in the semantic database. Furthermore, these terms in 
general are observed to be related to attributes. 
 Rule ii: For each relevant term, where Rule i is not true, apply the algorithm 
TargetWord to disambiguate the term. If the TargetWord obtained the term 
disambiguate, retrieve the associated semantic type. With the semantic type, retrieve the 
OntoUML construct using the mapping described in Table 3. This mapping was 
established by partially using the proposal of Castro (2010). Castro used the Dixon 
(2005) theory to propose some mapping between semantic types and OntoUML 
construct.  

Table 3. Semantic type vs Construct, map. 

Semantic type OntoUML Construct 
Act Relator 
Artifact Kind 
Cognition Kind 
Communication Relator 
Location Kind 
Person Role 
Possession Kind 

 Rule iii: For each relevant term, where Rules i and ii were not true, apply the 
following rules: if compound term (two or more words), verify if it is the suggested 
construct for each word individually. If suggested individually, the construct is either 
Kind or Relator; suggest the construct Relator. Example: Bus Trips, this term does not 
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exist in the WordNet database. However, the terms bus and trip exist. When the 
TargetWord algorithm was executed, the construct Kind was identified to the bus term 
and the construct Relator to the trip term. In this example, rule iii must suggest the 
construct Relator to the term Bus Trips. Rule iii was also extracted based on the 
observation of previous experiments. The simple terms were found, but the compound 
terms were not. This rule is a suggestion to try solving cases where the terms are not 
found in the WordNet database. It is important to emphasize that despite the application 
of these three rules, some terms are not suggested by the environment. The obtained 
results of this step were compared with previous results (Valaski et al., 2014). 

3.3 Building conceptual model represented in OntoUML 
Using the relevant terms, where the corresponding constructs were identified, the 
conceptual model was built. The OLED editor (2015) was used to build the model. In 
this experiment, the model was limited to represent only the elements without their 
relationship. This is a challenge to be addressed in future works. A complete model was 
manually built to compare the results obtained between the manual and automatic 
processes. The precision and recall metrics were used to calculate the accuracy and 
completeness of the results.  

4. Experiment Results 
The results of the experiment are presented according to the steps described in Section 
3. All steps are executed automatically by ENSURE. 

4.1 Identifying relevant terms 
Figures 2 and 3 present the execution sequence to identify the relevant terms. Figure 2 
shows the text selection, which was previously added in ENSURE, and Figure 3 shows 
the results of Topia algorithm execution. The algorithm processing returned 31 relevant 
terms, which are listed in Table 4.  

  
Figure 2. Step 1: Text selection Figure 3. Step 2: Topia results 
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Table 4. Extracted relevant terms by Topia vs gold terms 

Topia terms Gold terms (exact) Gold terms (partial) 
Bus Bus  
Bus drivers - Bus; driver 
Bus trips - Bus; trips 
Date - Boarding date 
Detail number - Details 
Driver Driver  
Employee number - Employee 
End time End time  
Event name Event name  
Maintenance - Maintenance problems 
Maintenance problems Maintenance problems  
Name Name  
Number - Registration number 
Passenger Passenger  
Problem Problem  
Problem number - Problem 
Record - - 
Records information - - 
Registration number Registration number  
Reservation - Reservation date 
Reservation date Reservation date  
Route - Route segment 
Route segment Route segment  
Segment Segment  
Segment number - Segment 
Telephone numbers - Telephone 
Town - Finish town; Start town 
Trip Trip  
Trip number Trip number  
Unreserved seat - - 
Voyager - - 

 
 The results presented in Table 4 show that among the 31 terms identified by 
Topia, 14 terms have exact correspondence with the gold terms, while 17 terms do not 
have exact correspondence.  On the other hand, the results presented in Table 5 show 
that among the 32 gold terms, 14 terms have exact correspondence with the relevant 
terms extracted by Topia, while 18 terms do not have exact correspondence. Based on 
these results, the precision (formula 1) and recall (formula 2) metrics were calculated. 
To proceed with the calculation, the following auxiliary variables are used: CT (total of 
correct terms returned by Topia); nCT (total of not correct terms returned by Topia); 
and CGn (total of gold terms do not returned by Topia). 
 Precision = CT/(CT + nCT) = 14/(14 + 17) = 0.4516                     (1) 
 Recall = CT/(CT + CGn) = 14/(14 + 18) = 0.4375           (2) 
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Table 5. Gold terms vs Relevant Topia terms. 

Gold terms Topia terms (exact) Topia term (partial) 
Absence - - 
Absence start date - - 
Address - - 
Average daily 
kilometers 

- - 
Average cost to repair - - 
Boarding date - Date 
Bus Bus  
Daily route segment - Route segment 
Daily trips - Trip 
Date maintenance - Maintenance 
Description - - 
Details - Detail number 
Driver Driver  
Employee - Employee number 
End time End time  
Finish town - Town 
Maintenance problems Maintenance problems  
Make - - 
Model - - 
Name Name  
Passengers Passenger  
Problem Problem  
Registration number Registration number  
Reservation date Reservation date  
Route segment Route segment  
Segment Segment  
Event name Event name  
Start time - - 
Start town - Town 
Telephone - Telephone numbers 
Trip Trip  
Trip Number Trip Number  

 
 The precision metric shows that Topia algorithm has an accuracy of 45.16%, 
while the recall metric shows that Topia algorithm has a completeness of 43.75%. The 
results were considered reasonable mainly because only the terms with exact 
correspondence were considered. On the other hand, if terms with partial 
correspondence (third column Tables 4 and 5) were also considered, better results were 
obtained. Topia extracted 27 terms with partial correspondence with gold terms (CT), 
while only 4 terms (Record; Records information; Unreserved seat) do not have partial 
correspondence (nCT). Only 9 terms (Absence; Absence start date; Address; Average 
daily kilometers; Average cost to repair; description; make; model; Start time) from the 
gold list do not have partial correspondence (CGn). The precision (formula 3) and recall 
(formula 4) metrics were recalculated. 
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 Precision = CT/(CT + nCT) = 27/(27 + 4) = 0.8709 (3) 
 Recall = CT/(CT + CGn) = 27/(27 + 9) = 0.75          (4) 
 If partial terms are considered to collaborate with the identification of the 
relevant concepts of a model, Topia had an accuracy of 87.09% and completeness of 
75%. 

4.2 Identifying OntoUML construct 
The heuristic described in Section 3.2 was applied with the list of relevant terms 
extracted by Topia. Figures 4 and 5 show the execution sequence to identify the 
construct. Figure 4 shows the XML file created.  An XML file is required to execute the 
TargetWord algorithm described in Section 3.2, rule ii. In this file, the relevant terms 
are tagged in the original text. The TargetWord algorithm performs the disambiguation 
using the WordNet database and returns the corresponding semantic type. Figure 5 
presents the disambiguation result and the construct suggested according to the mapping 
proposed in Table 3.  

 

Figure 4. Step 3: XML file created 

 

Figure 5. Step 4: Disambiguation 
results 

 Among the 31 relevant terms extracted by Topia, the environment suggested 
construct to 28 terms, which comprise about 90% accuracy. Considering these 28 terms, 
13 had the construct suggested as Datatype (rule i), 12 had the construct suggested using 
the disambiguation process (rule ii), and 3 had the construct suggested using semantic 
type assigned by the simple terms (rule iii). In the experiment described in Valaski et al. 
(2014), among the 31 identified relevant terms, only 12 terms had suggested construct, 
comprising about 40% accuracy. The new heuristic contributed to identify mainly terms 
associated to Datatype construct. It also contributed to identify the construct of terms 
not found in the WordNet database, such as Bus Trips, Route Segment, and 
Maintenance Problems. These terms exemplified situations where the compound terms 
are not found but the simple terms are found. It is important to state that this experiment 
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only indicates the possibility to explore this kind of association. Other experiments with 
a diversity of text must be executed to confirm the validation of rule iii. 

4.3 Building conceptual model represented in OntoUML 
The conceptual model was generated both automatically and partially using the relevant 
terms list and the construct suggested. The conceptual model was built on OLED editor. 
Figure 6 shows the results of Figure 5 execution. The automatic identification of the 
relationship among terms is not yet possible on ENSURE. This is a challenge to be 
addressed in future work. 

 
Figure 6. Identified automatic elements 

 The conceptual model in Figure 7 is manually built corresponding to the 
processed text (bus route) to analyze the result of this step. This model represented only 
the elements related to Kind, Role, and Relator (12 elements). The ER conceptual model 
presented in (Gemino and Wand, 2005) was also used to validate the model built. The 
elements associated to Datatype construct were not presented as they were considered 
less representative in this experiment. The model in Figure 7 was named as “gold 
model”.  
 Considering only elements associated to Kind, Role, and Relator construct, the 
environment automatically identified 15 elements (Bus, Bus drivers, Bus Trips, Driver, 
Maintenance, Maintenance Problems, Passengers, Problem, Reservation, Route, Route 
Segment, Segment, Town, Trip, Voyager). Among of them, nine are present in the gold 
model (gray elements). Only the terms Bus drivers, Bus Trips, Maintenance, Route, 
Segment, and Voyager do not have exact correspondence in the gold model. However, 
all terms, except Voyager, have partial correspondence in the gold model. That is, if the 
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exact concept is not identified, it is believed that the partial concept can help in finding 
the exact concept. Among the elements represented in the gold model, only three terms 
were not identified by the environment, namely, Person, Daily Trip, and Daily Route 
Segment. However, the partial terms Trip and Route Segment were found. Considering 
these results, the precision (formula 5) and recall (formula 6) metrics are calculated. 
 Precision = 9/(9+6) = 0.60   (5) 
 Recall = 9/(9+3) = 0.75         (6) 
 In this context, considering only the more representative elements (Kind, Role, 
Relator) of the gold model, the environment had an accuracy of 60% and completeness 
of 75%. The quality and complexity of the text directly influence the accuracy of the 
results. 

 
Figure 7. OntoUML gold model. 

5. Conclusion 
An experiment was performed to demonstrate the semi-automatically building of a 
conceptual model represented in OntoUML. The execution was performed through a 
computational environment called ENSURE. The initial results were considered 
satisfactory because through a domain text, it was identified 60% of the meaningful 
concepts. However, a number of challenges need to be addressed to improve the used 
methods and the environment. Some of these main challenges are: availability of 
algorithm and tools to process natural language with better results and availability of 
terms in semantic database to perform disambiguation. Another challenge is to identify 
automatic relationship among the elements in a conceptual model.   
 ENSURE is an environment built to promote Requirement Elicitation using a 
conceptual model represented in OntoUML as support. From the conceptual model, the 
environment suggests functional requirements of a domain. New implementations are 
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currently executed to improve the building of the conceptual model and the extraction 
of its functional requirement.  
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