

Evaluating the Expressiveness of a Conceptual Model

Represented in OntoUML and UML

Joselaine Valaski, Sheila Reinehr, Andreia Malucelli

 PPGIa – Pontifical Catholic University of Paraná (PUCPR)

Curitiba – PR – Brazil

joselaine.valaski@pucpr.br, sheila.reinehr@pucpr.br,

malu@ppgia.pucpr.br

Abstract. The expressiveness of a conceptual model depends on the set of

language symbols used for representation. UML is one of the most commonly

used languages for representing conceptual models. However, issues remain

regarding expressiveness that the language OntoUML proposes to resolve.

Therefore, we performed an experiment involving eight professionals and

eighty students to evaluate the expressiveness of both languages. The overall

analysis showed that OntoUML was selected by the participants the most

expressive language in 42% of the situations, while in 39% it was selected as

having the same level of expressiveness as UML. After further analyses, we

identified situations in which OntoUML was the most expressive.

1. Introduction

Requirements elicitation is an activity that seeks to understand stakeholder needs, which

are then transformed into software requirements (Pohl, 1997). However, some flaws in

this activity exist. These derive from the fact that software engineering area attempts to

visualize technology as a solution to a problem without first fully understanding the

problem domain (Zanlorenci; Bunett, 1998). Conceptual modeling is the activity of

formally describing aspects of the physical and social world in order to understand it

fully (Mylopoulos, 1992). Thus, this activity is focused on modeling reality instead of

modeling the computing system (Guizzardi, 2005). From this point of view, conceptual

modeling can be an instrument that supports this activity of eliciting software

requirements, because it aids comprehending a problem domain.

 One of the best known conceptual metamodels is entity relationship (ER).

However, the popularity of ER is also its main weakness (Castro, 2010): the metamodel

is simple, despite the fact that this assists conceptual modelers. However, the metamodel

is not highly expressive. UML is also a well-known language for building conceptual

models, but it has the same problem of expressiveness (Guizzardi, 2005). The concepts

from a universe of discourse are abstract entities that often exist only in the minds of

users. To capture these concepts, they must be represented through concrete artifacts.

This means a language must represent them in a concise, complete, and unambiguous

manner. A language that has flaws of expressiveness may compromise understanding of

requirements artifacts in later phases. According to Mylopoulos (1992), the suitability of

a conceptual modeling notation is based on its contribution to the construction of

models that represent reality, thus enabling a common understanding between their

human users. In this regard, Guizzardi (2005) emphasizes using of languages with

35

mailto:joselaine.valaski@pucpr.br
mailto:heila.reinehr@pucpr.br

ontologically well-founded primitives that help represent the reality of a problem’s

domain as precisely as possible.

 Considering these issues, Guizzardi (2005) proposed OntoUML, which is a

language used to represent ontology-based conceptual models. Because the language is

ontology-based, the conceptual models constructed in OntoUML are assumed to be

more expressive and to represent the real world of the domain more faithfully than do

other languages of conceptual representation. The constructs proposed in OntoUML

prevent the overload and redundancy found in other languages such as UML.

 In his thesis, Guizzardi (2005) presents several specific situations in which the

expressiveness of OntoUML is found to be superior to that of other languages, including

UML. Although conceptual modeling is critical for an information system and software

engineering (Guizzardi & Wagner, 2012), (Melo & Almeida, 2014), few studies have

been conducted in this area that examine issues of expressiveness between OntoUML

and UML. Therefore, this study evaluated two conceptual models, those represented in

OntoUML and UML. Both models represented the same context. They were constructed

by specialists in each language and evaluated by professionals and students. The results

revealed situations in which OntoUML is more expressive and others in which the two

languages showed equal levels of clarity. The results thus revealed the benefits of using

OntoUML for conceptual modeling in eliciting software requirements.

 The remainder of this paper is organized as follows. In Section 2 we present

some basic concepts related to OntoUML. In Section 3, we present our research method.

Section 4 discusses the results of our experiment. Section 5 includes final considerations

and indication for future studies.

2. OntoUML

OntoUML was proposed by Guizzardi (2005) based on the need for an ontology-based

language that would provide the necessary semantics to construct conceptual models

using concepts faithful to reality. The classes proposed in OntoUML are representations

of the Unified Foundational Ontology (UFO) constructs. These constructs are

represented using UML stereotypes.

 In this study, only the main constructs that comprise the object type category are

presented (Guizzardi et al., 2011). In this category, constructs are more closely related to

the static conceptual modeling of a domain. The hierarchical structure of these models is

presented in Fig. 1. The object type constructs may be sortal and non-sortal. Sortals

provide identity and individuation principles to their instances, whereas non-sortals do

not supply any clear identification principles. Sortal constructs are classified as rigid and

anti-rigid sortals. A sortal is said to be rigid if it is necessarily applied to all its instances

in all possible worlds. A sortal is said to be anti-rigid if it is not necessarily applied to all

its instances. Rigid sortals include kind and subkind categories. A kind is a rigid sortal

and thus has intrinsic material properties that provide clear identity and individuation

principles. It determines existentially independent classes of things or beings and are

said to be functional complexes. A subkind is also a rigid type that provides an identity

principle and has some restrictions established and related to the kind construct. Every

object in a conceptual model must be an instance of only one kind.

36

 Two sub-categories of anti-rigid sortals exist: phases and roles. In both cases,

instances may change their types without affecting their identities. During the phase

construct, changes may occur as a result of changes to intrinsic properties. By contrast,

in the role construct, changes occur because of relational properties.

ObjectType

Sortal Type

Kind

Non-Sortal Type

Rigid Sortal Type Anti-Rigid Sortal Type

Type

subKind Phase Role

Fig. 1 Fragment of a metamodel (Guizzardi, 2005)

3. Research Method

This section describes the phases of our experiment conducted to evaluate the

expressiveness of the OntoUML and UML languages in a specific context.

3.1 Selection of the Domain Description

The first step in our experiment consisted of defining a context for the construction of

the conceptual model. The objective was to select an uncommon domain, that is one not

commonly known (e.g., a library, a university.) with a smaller scope to lend feasibility

to the experiment. We believe that an uncommon domain brings more discussion to find

their concepts and relationships.

 In accordance with these criteria, the software requirement specifications for an

electronic proxy software program were obtained from specialists in the domain. Based

on these specifications, a description of the main software features was written. This

description is presented in Table 1.

Table 1. Domain description

Text

Only the organization’s representative can grant an electronic proxy.

An organization may have one or more representatives.

To allow the grantor to indicate an active user in the Receita-PR database to grant the

condition of the grantee.

Only one grantee per proxy.

Only one proxy per grantor and the same grantee.

The granting of a proxy is restricted to organizations with a record in the ICMS

database.

To display the services to be granted.

To display a list of organizations (in which the grantor is the organization’s

representative) to be granted.

To select the organization allowed to perform all services.

To allow the grantor to revoke a proxy.

37

3.2 Construction of a Conceptual Model in OntoUML

Based on the scope defined in Section 3.1, specialists were selected to construct a

conceptual model in OntoUML. As OntoUML is still not a widely used language on the

market, few specialists in this language exist. One of the groups trained for this task is

the Ontology and Conceptual Modeling Research Group (NEMO). This group works on

research related to ontologies as well as OntoUML, and is led by Professor Giancarlo

Guizzardi, the creator of OntoUML. Considering their competence in this activity, an e-

mail was sent to the NEMO group with a description of the domain (Table 1), and the

construction of the respective conceptual model was requested. The constructed model

was a collaboration of the three members of the group. Some e-mails were exchanged

between the researchers and the specialists until a consensus was reached on the

representation of the model.

3.3 Construction of the Conceptual Model in UML

For constructing the conceptual model in UML, three specialists in the language were

selected, all of whom held advanced degrees in the field of software engineering and

had professional industry and academic experience. The description of the domain

(Table 1) was sent through e-mail to each specialist with a request to construct a

conceptual model based on the description. E-mails were exchanged between the

researchers and the specialists until a consensus was reached on the representation of the

model.

3.4 Evaluation of the Expressiveness of the Conceptual Models

The objective of this phase was to evaluate the expressiveness of the two conceptual

models constructed by the specialists (OntoUML and UML). Twelve statements were

derived from these models. Using these statements, an instrument was prepared to

evaluate if the statements were more clearly represented in the conceptual model in

OntoUML or UML, or whether both languages exhibited the same level of clarity. The

instrument created for the evaluation is wholly included in Appendix A.

 After the instrument was prepared, a profile for the participants in the evaluation

was defined. Two distinct groups were selected, the first composed of eight

professionals educated in the field of computing with experience in UML modeling, and

the second group consisted of eighty students from undergraduate courses in the field of

computing. The experiment was performed only with classes that had already completed

the course on UML. Neither group (i.e., neither professionals nor students) had prior

knowledge of OntoUML. The experiment was first performed with the group of

professionals, a smaller and more experienced group that could validate the instrument.

Suggested improvements and corrections could thus be collected for later use with the

group of students. One of the improvements applied to the students was the creation of

two models of the instrument. In the first model (Model 1), UML appeared as the first

option in the list and this UML model appeared as Attachment 1. In the second model

(Model 2) (see Appendix A), OntoUML appeared as the first option in the list and the

OntoUML model appeared as Attachment 1. These were necessary to eliminate any bias

related to the order in which options in the list and models were presented. Thus,

Models 1 and 2 were distributed in alternation to the participants.

38

4. Results and Discussion

In this section, results are presented and discussed. First, the results concerning the

construction of the conceptual models by specialists are presented; afterwards results on

the evaluation of the expressiveness of the models by professionals and students.

4.1 Conceptual Model in OntoUML

Fig. 2 presents the final conceptual model constructed by specialists in OntoUML. To

finalize this version, these specialists asked researchers four rounds of questions to solve

doubts.

Fig. 2 Conceptual model in OntoUML

 The specialists in OntoUML revealed that the language’s richer nature generated

several questions concerning the domain, even after the scope was sent. The specialists

also noted that much of the information that is implied in a model must become explicit

when OntoUML is used. In all rounds, specialists revealed information that should be

included in the description of the scope so that creating a final model would be possible.

Much of the information was implied.

 In this experiment, we observed that a high degree of formality and consistency

in OntoUML generated a variety of questions that perhaps would not occur with other

languages. This feedback reinforces the belief that conceptual models in OntoUML may

lend positive support to eliciting software requirements.

4.2 Conceptual Model in UML

Fig. 3 presents the final conceptual model constructed by specialists in UML. The

questions from the specialists were different in this case. Specialist 1 delivered the

version of UML with no questions to clarify. Specialist 2 asked a round of questions and

delivered the version. Finally, Specialist 3 asked two rounds of questions and delivered

the version.

39

Fig. 3 Conceptual model in UML

 The three versions delivered differed considerably. Possible reasons for this

include the lower degree of formality of the language allows for distinct representations

of the same context, and the lack of semantic restrictions does not encourage

questioning during construction. In the delivered versions, a representation focused on

data persistence in a software program instead of on the concepts of a domain. This bias

may be indicative of the lack of use of conceptual models in UML for understanding a

domain. These observations should be studied in greater depth in future studies.

 The version delivered by Specialist 3 was the closest to the representation of the

scope. An in-person meeting was held among specialists to complete the final version

presented in Fig. 3. With the two conceptual models (UML and OntoUML) constructed

by the specialists, the next phase of the experiment was to evaluate the expressiveness

of the models. The results are presented as follows.

4.3 Expressiveness of the Conceptual Models Constructed

First, results are presented for the pilot experiment performed with the professionals.

Table 2 presents an overview of the results. Considering that eight professionals

evaluated twelve statements, ninety-six choices were derived. Among these choices,

twelve (13%) indicated UML the most expressive, forty indicated OntoUML (42%) the

most expressive, and forty-four (46%) indicated the languages exhibited the same level

of clarity.

Table 2. Consolidated results of the choices by professional group

Language Number of Choices Percentage

UML 12 13%

OntoUML 40 42%

Both 44 46%

Total 96 100%

40

 Based on these initial results, we observed situations in which the languages

exhibit the same level of clarity, and others in which OntoUML exhibits a greater level

of clarity than UML. Only some situations occurred in which UML was more

expressive. Considering this first result, each statement was analyzed to identify the

situations in which the languages stood out. Fig. 4 presents the results for each

statement.

Fig. 4 Number of choices by professionals for each of the twelve statements

 Fig. 4 shows that for Statements 1, 2, 7, 8, and 12, both languages exhibited the

same level of clarity. For Statements 3, 4, 5, 6, and 11, OntoUML exhibited a greater

level of clarity. Statements 9 and 10 revealed that OntoUML and both languages

exhibited equal clarity. There has not been any statement in which UML had been the

preferred one.

 Since the professionals had more practical experience with modeling, they may

have had a different viewpoint than students from the field of computing, who have not

yet had considerable practical experience. Thus, the same experiment was performed

with students from different computing majors to identify their perceptions relative to

the expressiveness of the models.

 Table 3 presents an overview of the results from the students. Eighty students

evaluated twelve statements, thus totaling nine hundred and sixty choices. Among these

choices, one hundred and eighty-one (19%) indicated UML the most expressive

language, four hundred and six (42%) indicated OntoUML the most expressive, and

three hundred and seventy-three (39%) indicated that the languages exhibited the same

level of clarity. The perception of the students, despite having less knowledge about

modeling, was very similar to those of the professionals. The students also identified

situations in which the two languages exhibited the same level of clarity, as well as

situations in which OntoUML exhibited a greater level of clarity than did UML. Only

some situations occurred in which UML was indicated the most expressive.

41

Table 3. Consolidated results of the choices by students group

Language Number of Choices Percentage

UML 181 19%

OntoUML 406 42%

Both 373 39%

Total 960 100%

 Table 3 presents the overall results for the eighty students. However, because

these are distinct groups (i.e., with different majors and class schedules) an analysis of

each class was also performed. Table 4 presents these individualized results. In addition,

Table 4 lists the major, the current semester of each student, and the number of

participating students. All classes agreed that OntoUML was more expressive for the

majority of statements. The exception was Class 3 in which OntoUML and Both got the

same percentage (45%). No classes considered UML to be the most expressive overall.

However, the perception of Class 1 and 5, showed a considerable difference relative to

UML: 6% and 29%, respectively. In other words, Class 5 considered UML more

expressive than OntoUML in at least 29% of the situations analyzed, whereas Class 1

considered UML more expressive in only 6% of the situations. This difference may be

related to the extent of student knowledge of UML. However, the reasons behind their

decisions cannot be determined only based on the results of this experiment.

Table 4. Choice of languages by students by class

ID Major Semester No. of

Students

UML OntoUML Both

Class 1 Computer Science 5th 12 6% 49% 45%

Class 2 Information Systems 7th 12 22% 46% 32%

Class 3 Computer Engineering 7th 17 10% 45% 45%

Class 4 Information Systems 6th 9 14% 45% 41%

Class 5 Technology Analysis and Systems

Development 5th 30 29% 36% 35%

 As it happened with the professionals, the experiment with the students yielded

statements in which OntoUML was the most expressive and other statements in which

Both (OntoUML and UML) had same level of clarity. Thus, the results per statement

were evaluated. The overall results are presented in Fig. 5, which shows that for

Statements 1, 2, 7, 9, and 12, the two languages exhibited the same level of clarity. For

Statements 3, 4, 5, 6, 8, 10, and 11, OntoUML exhibited a greater level of clarity. No

statements were identified in which UML was most frequently selected.

42

Fig. 5 Number of choices by students for each of the 12 statements

 These results indicate situations in which OntoUML is more expressive than

UML and situations in which the two exhibit the same level of clarity. To better

understand these situations, we examined statements indicating consensus that

OntoUML was more expressive. The results were grouped by professionals, students

(all eighty), and class. This grouping is presented in Table 5. Table 5 reveals consensus

for Statements 3, 4, 5, 6, 8, 10, and 11 (in gray) in which the representation in

OntoUML was the most expressive.

Table 5. Selection of the most expressive language by statement

Statement Professionals Students Class 1 Class 2 Class 3 Class 4 Class 5

1 Both Both Both Both Both Both Both

2 Both Both Both Both Both Both Both

3 OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML

4 OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML

5 OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML OntoUML

6 OntoUML OntoUML Both OntoUML Both OntoUML OntoUML

7 Both Both Both Both Both Both Both

8 OntoUML OntoUML OntoUML Both OntoUML Both Both

9 Tie Both OntoUML Both Both Both Both

10 Tie OntoUML OntoUML OntoUML OntoUML Both OntoUML

11 OntoUML OntoUML OntoUML OntoUML OntoUML Both OntoUML

12 Both Both Both OntoUML Both OntoUML UML

43

 In OntoUML, the Role construct was used to represent the concept in Statements

4, 5, 6, 10, and 11. Specifically, OntoUML used the role construct to establish that it is

relationally dependent on a universal concept, which carries the principle of identity and

individuation. Representing a relationship of specialization is then required. In addition,

in UML, because of the lack of semantic restrictions, the concepts for these same

statements were represented by means of associative relationships, in which the origin

of the concept is unclear. This finding became clearer when we evaluated Statement 9.

In this statement, the perceptions of the participants were identical. Although in

OntoUML, the role construct was also used, in UML a specialization was employed to

represent the concept, which, based on the perceptions of the participants, resulted in the

same level of expressiveness.

 In Statements 3 and 8, the Relator construct was used. This construct allows the

multiplicities of a specific relationship to be expressed. In UML, associative

relationships were used. These do not allow for the expression of multiplicity in a

certain relationship. For example, in UML, representing that a relationship between the

same grantor and proxy occurs only once is not possible, even though a grantor may be

associated with various proxies and a proxy may be associated with various grantors.

Guizzardi (2005) discusses this deficiency in UML and in other languages.

 We believe that if the participants knew OntoUML and the meaning of its

constructs, the results would have been even more positive. One example is the

representation of Statement 9. OntoUML can represent the fact that it is not sufficient

for the grantor to be the representative of an organization, but that the grantor must be

the representative from the same organization referenced in the proxy. In UML, only the

grantor as the representative of an organization is represented, and this may not

necessarily be the organization referenced in the proxy.

 5. Conclusion

Conceptual models are considered crucial instruments to achieve consensus and

understanding of a domain. Thus, conceptual models are allies that support requirements

elicitation in unknown domains. However, the use of a certain language to represent the

model may undermine its expressiveness. UML is one of the most commercially popular

languages. However, according to Guizzardi (2005), flaws exist in terms of its

expressiveness. OntoUML is a more academic language, and is designed to correct

flaws of expressiveness in languages such as UML. Although Guizzardi (2005)

discussed several specific situations in which OntoUML is more expressive, other

studies have not been conducted that evaluate the perceptions of professionals and

students regarding the expressiveness of OntoUML.

 The objective of this study was to collect these perceptions and identify

situations in which OntoUML is more expressive in an information systems context.

Although our participants lacked knowledge of the constructs of OntoUML, overall it

was considered more expressive than UML. In addition, various situations occurred in

which consensus was reached between the participating groups that OntoUML better

represents certain concepts. In addition, when conceptual models were constructed by

specialists during our experiment, OntoUML was determined to have a high degree of

formality and consistency. Our study showed that OntoUML causes modelers to

44

question the situations of a domain that are not explicit. Thus, models that are more

consistent and faithful to reality were built.

 These results reinforce the need for a conceptual model represented in OntoUML

to support software requirements elicitation. This research can evolve many different

directions. One is developing a computational environment to support constructing a

conceptual model in OntoUML. This conceptual model can then support the derivation

of functional software requirements. Some results were present in Valaski et al. (2014)

Appendix A. Instrument: Model 2

Name: _____________________________________

Read the statements given below that was extracted from the domain electronic proxy.
Analyze the corresponding representation in the conceptual model (Attachment 1 -

OntoUML and Attachment 2 - UML) and enter X for the model that best represents
(represents most clearly) what it is being affirmed.

1. An Organization may have one or more representatives.

Option 1 – It is clearer in the OntoUML model.

Option 2 – It is clearer in the UML model.

Option 3 – Both exhibit the same level of clarity.

2. A Representative is a person that represents one or more organizations.

Option 1 – It is clearer in the OntoUML model.

Option 2 – It is clearer in the UML model.

Option 3 – Both present the same level of clarity.

3. A Representation is a relationship established between an organization and one or
more representatives.

Option 1 – It is clearer in the OntoUML model.

Option 2 – It is clearer in the UML model.

Option 3 – Both present the same level of clarity.

4. Organization ICMS Database is an organization having a record in the ICMS
database.

Option 1 – It is clearer in the OntoUML model.

Option 2 – It is clearer in the UML model.

Option 3 – Both present the same level of clarity.

5. Receita User is a person having a record in the Receita database.

45

…..

6. Grantee is an active user in the Receita database who receives one or more
proxies.

7. Grantor is an organization’s representative who grants one or more proxies.

8. The Proxy relationship between the same grantor and grantee occurs only once.

9. The Grantor of a proxy must be the representative of the organization associated
with the proxy.

10. Proxy Organization is an organization associated with a proxy.

11. Proxy Organization has a record in the ICMS database.

12. Proxy is a relationship established between one grantor, one grantee, one
organization, and one or more services.

References

Castro, L. (2010) “Abordagem Linguística para Modelagem Conceitual de Dados com

Foco Semântico”, Msc Dissertation, Universidade Federal do Estado do Rio de

Janeiro, Rio de Janeiro, Brazil.

Guizzardi, G. (2005) “Ontological Foundations for Structural Conceptual Models,”

Telematica Institut Fundamental Research Series 15, Universal Press.

Guizzardi, G.; Wagner, G. (2012) “Conceptual Simulation Modeling with OntoUML”.

Proceedings of the 2012 Winter Simulation Conference.

Melo, S., Almeida, M. B. (2014) “Applying Foundational Ontologies in Conceptual

Modeling: A Case Study in a Brazilian Public Company”. Access in 20 jun 2016,

available in: <https://www.semanticscholar.org/paper/Applying-Foundational-

Ontologies-in-Conceptual-Melo-

Almeida/91b8f1648480a195f4ae6307741c2a76a11d2c78/pdf>

Mylopoulos, J. (1992) “Conceptual modeling and Telos”, In P. Loucopoulos and R.

Zicari, editors, Conceptual modeling, databases, and CASE. Wiley.

Pohl, K. (1997) “Requirements engineering: An overview”. In Encyclopedia of

Computer Science and Technology. A. Kent, and J. Williams, Eds. Marcel Dekker,

New York, NY, v. 36, suppl. 21.

Valaski, J., Reinehr S. and Malucelli, A. (2014). “Environment for Requirements

Elicitation Supported by Ontology-Based Conceptual Models: A Proposal”. In

Proceedings of the 2014 International Conference on Software Engineering Research

and Practice (SERP'14), ISBN 1-60132-286-0, Las Vegas, USA, p. 144-150.

Zanlorenci, E. P.; Burnett, R. C. (1998) “Modelo para Qualificação da Fonte de

Informação do Cliente e de Requisito Funcional,” In Workshop em Engenharia de

Requisitos.

46

