
A new Model for Scalable θ-subsumption

Hippolyte Leger, Dominique Bouthinon, Mustapha Lebbah, and Hanane Azzag

Universite Paris 13, Sorbonne Paris Cite, L.I.P.N UMR-CNRS 7030 F-93430,
Villetaneuse, France

{hippolyte.leger,hanene.azzag,mustapha.lebbah,

dominique.bouthinon}@lipn.univ-paris13.fr

Abstract. The θ-subsumption test is known to be a bottleneck in In-
ductive Logic Programming. The state-of-the-art learning systems in this
field are hardly scalable. So we introduce a new θ-subsumption algorithm
based on an Actor Model, with the aim of being able to decide sub-
sumption on very large clauses. We use Akka, a powerful tool to build
distributed actor systems based on the JVM and the Scala language.

Keywords: θ-subsumption, Inductive Logic Programming, Actor Model,
distributed computing, Akka

1 Introduction

θ-subsumption has been introduced by Robinson [16] to replace the logic im-
plication which is undecidable [11]: a clause C θ-subsumes a clause D if and
only if there exists a substitution θ such that Cθ ⊆ D. Most of the Inductive
Logic Programming (ILP) systems ([18, 14]) use θ-subsumption to check that
a hypothesis covers an example. θ-subsumption is decidable and equivalent to
logical implication when C is not self-resolving and D is not tautological [7].
Unfortunately, the worst case time complexity of θ-subsumption is (O(|D||C|))
even when C and D are Horn clauses and D is fixed and ground. The basic
θ-subsumption algorithm, based on SLD-resolution used in Prolog, is inefficient
when the predicates are not determinate [13, 9]. Many researches have achieved
to design efficient θ-subsumption algorithms [4, 12, 10, 17]. Although researches
have been conducted to make ILP capable of dealing with large data in a paral-
lel environment (for instance [5, 6, 3, 19]), as far as we know, no system focuses
on θ-subsumption under modern framework and paradigms. Our motivation is
to design a simple, general model for a scalable subsumption engine that could
easily be integrated into relational machine learning systems using distributed
platforms. In this paper, we show how to model θ-subsumption than can be run
on cloud computers, and present preliminary results.

2 Preliminaries

We consider here the θ-subsumption between two function-free definite Horn
clauses C and D, where D is variable-free (ground). In our context a (ground)

41

substitution is a finite set {X1/v1, . . . , Xn/vn} where Xi is a variable and vi is
a constant. A variable appears only once in a substitution, which is applied to a
first order formula to substitute variables with constants. Two substitutions are
not compatible if they assign two distinct values to the same variable, otherwise
they are said compatible. Let us introduce an example of θ-subsumption that
will be used throughout this paper:

Example 1
C = t(X)← p(X,Y, Z) ∧ q(Z, T) ∧ r(T, T, U).
D = t(a) ← p(a, b, c) ∧ q(c, e) ∧ r(e, e, g) ∧

p(a, b, d) ∧ q(d, f) ∧ r(f, f, g) ∧
r(e, f, g).

Example 1 shows that Cθ ⊆ D both for θ = {X/a, Y/b, Z/c, T/e, U/g} and
θ = {X/a, Y/b, Z/d, T/f, U/g}. Let us consider the following properties that
will be used in our model:

Property 1. C θ-subsumes D if and only if

1) there exists a substitution α only referring to the variables of head(C), such
that head(C)α = head(D) and,

2) there exists a substitution µ only referring to the variables of body(C)α, such
that body(C)αµ ⊆ body(D).

(The proofs of all the properties presented in this paper can be found here :
https://lipn.univ-paris13.fr/~leger/ilp2016.html)

Example 1 we have head(C)α = head(D) = t(a) with α = {X/a}, and
body(C)α = {p(a, Y, Z), q(Z, T), r(T, T, U)}. For µ = {Y/b, Z/c, T/e, U/g} we
have body(C)αµ ⊆ body(D). Thus C θ-subsumes D with θ = α ∪ µ.

Property 2. Let A = {a1, . . . , an} be a conjunction of literals and B be a con-
junction of ground literals. Then A θ-subsumes B if and only if there exists a
set of compatible substitutions {µ1, . . . , µn} such that aiµi ∈ B (1 ≤ i ≤ n).

Let us consider A = body(C)α and B = body(D) mentioned above. We notice
that Aµ ⊆ B with µ = µ1∪µ2∪µ3 where µ1 = {Y/b, Z/c}, µ2 = {Z/c, T/e} and
µ3 = {T/e, U/g}. So, according to properties 1 and 2, the subsumption problem
of two clauses C and D can be modelled as:

1. seek a substitution α only referring the variables of head(C) such that
head(C)α = head(D),

2. if step1 succeeds: (let body(C)α = {a1, · · · , an}) find a set of compatible
substitutions {µ1, · · · , µn}, where µi only refers the variables of ai, such that
aiµi ∈ body(D) (1 ≤ i ≤ n),

3. if step 2 succeeds: output the substitution θ = α ∪ µ1 ∪ · · · ∪ µn.

Step 1 is very easy to check, so the new model of θ-subsumption we introduce
in the next section focuses on step 2.

42

3 θ-subsumption based on an Actor Model

Given a (usually non-ground) conjunction A = {a1, . . . , an} and a ground con-
junction B, we seek for a set of compatible substitutions {µ1, . . . , µn} such that
µi refers only the variables of ai and aiµi belongs to B (1 ≤ i ≤ n). To solve
this problem we introduce an original subsumption procedure based on an Ac-
tor Model. The Actor Model was motivated by the prospect of highly paral-
lel computing machines communicating via a high-performance communications
network [8], [1]. An actor is a computational entity linked to some other actors
forming a graph, or network. Actors may modify private state, but can only af-
fect each other through asynchronous messages. The message-driven framework
of the Actor Model is well adapted to represent the θ-subsumption process. To
solve our problem we start by building an actor network from A. Then we send
the atoms of B to the network which outputs the first (or all) substitution(s)
ensuring the θ-subsumption. If there is no possible substitution it will only pro-
duce the message ”end”. The network (actually a directed graph) is made of four
types of actors as illustrated in Figure 1:

Fig. 1. Actors network built from a con-
junction A = {a1, . . . , an}.

Fig. 2. Actors network built from the
conjunction A = {p(a, Y, Z), q(Z, T),
r(T, T, U)}. It illustrates how the mes-
sage p(a,b,c) circulates in the network.

43

the input actor is the single input of the network. Each message it receives is a
ground atom from B.

the substitution actor (represented by a circle): each one is associated with an
atom ai of A and is devoted to build substitutions from ground atoms it
receives.

the join actor (represented by a rectangle) has two parents and is devoted to
join the compatible substitutions provided by his parents. It has two internal
memories (left and right) to store the substitutions provided by its left and
right parents.

the output actor is the single output of the network. It receives the final substi-
tutions (if they exist) establishing the θ-subsumption between A and B.

If we do not consider the input and output actors the network is a binary tree
where the substitution actors are the leaves, the other nodes being join actors. A
single join actor, the root of the tree, is linked with the output actor (Algorithm
1 presents the way we build the whole network). The network contains 2n + 1
nodes so the time complexity to build the network is O(n).

Algorithm 1 Building the actors network

buildNetwork(A) /∗ A = {a1, . . . , an} is a conjunction of n literals ∗/
begin

create the output actor out ;
buildTree(out, n) ; /∗ build the tree of join and substitution actors ∗/
S = {s1, · · · , sn} ← leaves(out) ; /∗ get the substitution actors of the tree of root root ∗/
create the input actor in ;
for i← 1 to n do

link si with in ; set ai as internal label of si ;
end for
return in ;

end.

buildTree(j, n) /∗ j: join (or output) actor of the preceding level ∗/
begin

if n = 1 then
create a substitution actor a and store it ; /∗ a new leaf for the tree ∗/

else
create a join actor a ; buildTree(a, n/2 + n mod 2) ; buildTree(a, n/2) ;

end if
link a to j ;

end.

Let us illustrate how such a network is used to check the subsumption through
the network presented in Figure 2 built from the conjunction A = body(C)α =
{p(a, Y, Z), q(Z, T), r(T, T, U)} where C is the clause given in Example 1. We
also assume that the atoms of B = body(D) = {p(a, b, c), p(a, b, d), q(c, e), q(d, f),
r(e, e, g), r(f, f, g), r(e, f, g)} are sent to the network. Note that all the opera-
tions of the actors are made concurrently:

44

– When a ground atom b of B is provided to the input actor, this actor sends
b to all substitution actors associated with the atoms of A built from the
same predicate as b. ex) the input actor receives b = p(a, b, c), then it sends
p(a, b, c) to the actor p(a, Y, Z).

– When a substitution actor associated with an atom ai of A receives a ground
atom b it checks if there exists a substitution µi such that aiµi = b. If µi

exists the actor sends it to the single join actor with which it is linked. ex)
b = p(a, b, c) and ai = p(a, Y, Z) then the substitution µi = {Y/b, Z/c} is
sent to the join actor j1, if b = p(e, b, c) no substitution is sent. The worst
case complexity to check if there exists µi with aiµi = b is O(v.ln(v)) where
v is the common arity of ai and b (ln(v) is the worst case complexity to
access any argument of ai and b).

– When a join actor receives a substitution µ from its left (right) parent it
first stores it in its left (right) internal memory. Then, it joins µ with each
compatible substitution δ found in its right (left) memory and sends µ ∪ δ
to its single successor. ex) the join actor j1 receives µ = {Y/b, Z/c} from
its left parent, then it stores it in its left memory. Assume the right mem-
ory of j1 contains the substitutions δ1 = {Z/c, T/e} and δ2 = {Z/d, T/f}.
Thus µ ∪ δ1 = {Y/b, Z/c, T/e} is sent to the successor of j1, while µ ∪ δ2 =
{Y/b, Z/c, Z/d, T/f} is not considered because it is not a valid substitu-
tion. The complexity to check that µ and δ are compatible is O(|µ|.ln(|µ)|)
(we assume that µ and δ have approximately the same size). So the num-
ber of operations made by a join actor when it receives a message µ is in
O(m.|µ|.ln(|µ|)) where m is the current size of the right (left) memory.

– When the output actor receives a substitution µ it displays µ as a solution
(Aµ ⊆ B). If we do not want any other solutions, the process terminates,
otherwise the actor waits for other substitutions.

We send all the atoms of B to the input actor. To ensure that the activity
of the network stops we then send it a specific end-message. The end message
is broadcasted through the network to the output actor which terminates the
process if there is no solution. The model is correct and complete: each substitu-
tion reaching the output actor is a solution, and every possible solution can be
outputed if the user wishes to (see https://lipn.univ-paris13.fr/~leger/

ilp2016.html for proofs).

4 Experiments

Several programming languages implement the Actor Model. In this work we
use the Akka [2] toolkit which is integrated to Scala [15], a multi-paradigms
(mainly functional) programming language built on the Java Virtual Machine.
The dataset was generated to hold a unique solution substitution. The subsumer
consists of a single clause with 20 literals (20 distinct predicate symbols with an
arity of 10). The subsumee holds 5 literals for each predicate symbol, giving a
total of 100 literals. Note that we have run the test to only find the first possible

45

solution. We have run the same subsumption test (with the same subsumer
and subsumee) multiple times with a varying number of processor cores. This
experiment was done using the Grid’5000 testbed, on an Intel Xeon E5-2660v2
CPU, with reservations ranging from 1 to 20 cores.

Fig. 3. Running time on different number of cores.

In Figure 3, we can see that the performance of the subsumption test increases
along with the number of cores used. In this case the decrease in computation
time eventually reaches a plateau, due to the data size. Please keep in mind that
the number of actors is directly linked to the number of literals the hypothesis
(subsumer) holds. This means that for a bigger clause, the cost-efficiency of
parallelism would be higher.

5 Conclusion and perspectives

We have shown that Actor Modeling is indeed effective at reducing the running
time of the θ-subsumption problem. Due to a lack of time we did not compare
the implementation of our model with classical state-of-the-art solutions like
Subsumer [17] or Resumer[10]. We must also refine our model by applying the
major ILP optimizations, like clause partitioning and linked variables analysis.
We have just implemented a distributed version of our model and started our
first distributed experiment using the Grid’5000 testbed, supported by a sci-
entific interest group hosted by Inria and including several Universities as well
as other organizations (see https://www.grid5000.fr). Finally, we are investigat-
ing another Actor Model for scalable θ-subsumption where the actors are the
subsumee’s literals. This would lead to an increasing number of actors but an
important reduction of the workload for each actor.

46

References

1. Gul Agha. An overview of actor languages. In Proceedings of the 1986 SIGPLAN
Workshop on Object-oriented Programming, OOPWORK ’86, pages 58–67, New
York, NY, USA, 1986. ACM.

2. Jamie Allen. Effective Akka. O’Reilly Media, Inc., 2013.
3. Annalisa Appice, Michelangelo Ceci, Antonio Turi, and Donato Malerba. A paral-

lel, distributed algorithm for relational frequent pattern discovery from very large
data sets. Intell. Data Anal., 15(1):69–88, 2011.

4. Stefano Ferilli, Nicola Mauro, Teresa M. A. Basile, and Floriana Esposito. AI*IA
2003: Advances in Artificial Intelligence: 8th Congress of the Italian Association for
Artificial Intelligence, Pisa, Italy, September 2003. Proceedings, chapter A Com-
plete Subsumption Algorithm, pages 1–13. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

5. Nuno A. Fonseca, Fernando Silva, and Rui Camacho. Strategies to Parallelize ILP
Systems, pages 136–153. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

6. Nuno A. Fonseca, Ashwin Srinivasan, Fernando Silva, and Rui Camacho. Parallel
ilp for distributed-memory architectures. Machine Learning, 74(3):257–279, 2009.

7. Georg Gottlob. Subsumption and implication. Information Processing Letters,
24(2):109 – 111, 1987.

8. Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd International Joint Confer-
ence on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA,
1973. Morgan Kaufmann Publishers Inc.

9. Jrg-Uwe Kietz and Marcus Lübbe. An efficient subsumption algorithm for induc-
tive logic programming. In Proceedings of the 11th International Conference on
Machine Learning, pages 130–138, 1994.

10. Ondrej Kuzelka and Filip Zelezn. A restarted strategy for efficient subsumption
testing. Fundam. Inform., 89(1):95–109, 2008.

11. John W. Lloyd. Foundations of Logic Programming, 1st Edition. Springer, 1984.
12. Jérôme Maloberti and Michèle Sebag. Fast theta-subsumption with constraint

satisfaction algorithms. Machine Learning, 55(2):137–174, 2004.
13. S Muggleton and C Feng. Efficient induction of logic programs. pages 368–381,

1990.
14. Stephen Muggleton, José Santos, and Alireza Tamaddoni-Nezhad. Inductive Logic

Programming: 19th International Conference, ILP 2009, Leuven, Belgium, July 02-
04, 2009. Revised Papers, chapter ProGolem: A System Based on Relative Minimal
Generalisation, pages 131–148. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

15. Martin Odersky and al. An Overview of the Scala Programming Language. Tech-
nical Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

16. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, January 1965.

17. Jose Santos and Stephen Muggleton. Subsumer: A Prolog theta-subsumption en-
gine. In Manuel Hermenegildo and Torsten Schaub, editors, Technical Communica-
tions of the 26th International Conference on Logic Programming, volume 7 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 172–181, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

18. Ashwin Srinivasan. The aleph system. 1987.
19. Ashwin Srinivasan, Tanveer A. Faruquie, and Sachindra Joshi. Data and task

parallelism in ilp using mapreduce. Machine Learning, 86(1):141–168, 2012.

47

