
Recommending News Articles in the CLEF
News Recommendation Evaluation Lab with the

Data Stream Management System Odysseus

Cornelius A. Ludmann
cornelius.ludmann@uni-oldenburg.de

University of Oldenburg
Department of Computer Science

Escherweg 2, 26121 Oldenburg, Germany

Abstract. A crucial aspect of recommending news articles is the rele-
vance of currentness of articles. Every day, news portals add plenty of new
articles. Typically, users are more interested in recently published articles
(or articles that provide background information to recently published
articles) than in older ones. That leads to the demand to continuously
adapt the set of recommendable items in a recommender system.
In this paper, we share our experiences with the usage of the generic and
open source Data Stream Management System (DSMS) Odysseus as a
Recommender System in the CLEF NewsREEL 2017. We continuously
calculate the currently most read articles based on a stream of impression
events. Our approach uses operators of a stream-based variant of the
relational algebra that respects validity intervals of events. This allows
us to continuously calculate the K most popular articles (Top-K set
regarding to the number of views) in a sliding time window based on well
established relational operations. The flexible composition of operators
allows us to variate, e.g., the grouping of impressions to get different
recommendation sets for different user groups or the exclusion of articles
the user already knows.

Keywords: Recommender Systems, Data Stream Processing

1 Introduction

A recommender system as a component of modern information systems provides
a user with a set of items (e.g., news articles, movies, or products) which might
be of interest to him or her. The challenge is to select a small sample from a big
collection of items that hopefully meets the taste of the user. A common approach
is to learn from previous actions (e.g., page impressions of a web news portal) to
estimate the usefulness of items. The K most useful items are presented to the
user as recommendations.

The CLEF News Recommendation Evaluation Lab [4] (NewsREEL) allows
researchers to evaluate recommender systems with real user data in real-time.
They provide a platform, called Open Recommendation Platform (ORP), that

sends the participants events (impressions and clicks on recommendations) of
real commercial news portals. The participants have to analyze the data and
must answer requests for recommendations with a set of news articles within a
timespan of 100 ms. The recommendations are displayed on the news portal next
to the article a user currently reads. For each participant, the organizers measure
the clicks on the recommendations and calculates the Click Through Rate (CTR).

In order to participate, a participant needs to implement a server that pro-
cesses the events and replies to recommendation requests. The organizers provide
a framework1 that parses the events and lets one implement his/her own algo-
rithms. However, using that framework means you need to take care of the data
management and processing of potentially unbounded data streams of events.

In this paper we present our solution that uses the general purpose Data Stream
Management System (DSMS) called Odysseus2 [1]. It adapts the concepts of
Database Management Systems (DBMS) to process data streams with continuous
queries.

2 Background

In this section we give a summary of the ORP platform, the CLEF NewsREEL,
and the DSMS Odysseus.

2.1 ORP and CLEF NewsREEL

ORP as the technical platform for NewsREEL provides events of user activity
of different news web portals in real-time. Participants are invited to use these
events to calculate recommendations. The recommendations have to be returned
upon request within 100 ms. ORP selects a set of recommendations at random
out of all valid recommendation responses of all participants and displays the
recommendations to the users next to the articles. As evaluation criteria, ORP uses
click through rate (CTR). It counts how many of the requested recommendations
get clicks by the users of the news portals. The fraction of clicks divided by the
number of displayed recommendation sets is the CTR.

Participants have to subscribe the following data streams:
1. Notifications about user events (e.g., a user reads a news article).
2. Requests for recommendations, to which the participants have to respond to.
3. Notifications about new or updated news articles.
4. Error notifications (e.g., a participant response could not be parsed).

In our approach we use the first two streams: The user events stream provides
impressions for news articles in real-time. It comprises the news article ID,
publisher ID, user/session ID, user geolocation code, and other information about
the impression. That is our source of data to calculate recommendation sets.
1 https://github.com/plista/orp-sdk-java
2 http://odysseus.uni-oldenburg.de/

The requests stream triggers the reply of an ordered set of article IDs—the
recommendations. A request consists of similar attributes as the impressions:
The article the user reads currently, the publisher of the article, the user, etc.

The events are pushed via HTTP POST request as JSON documents. The
response of a request for recommendations has to be the article IDs intended
to recommend to the user. For each participant ORP sends the data with an
individual data rate. Participants that are able to process more data in time get a
higher data rate. ORP determines the individual data rate by increasing it until
the participant is not able to answer in time anymore. According to the organizers,
each algorithm has to give at least 75 % of the amount of recommendations the
baseline approach gave in order to be considered. That should ensure that the
algorithms are able to handle the workload and allows the comparison of different
approaches.

Table 1 shows the results of NewsREEL 2017 [6] as provided by the organizers.
It shows the name of the recommender approach, the number of recommendations
given, the number of clicks on recommendations, and the click through rate.
Additionally, we added the last column that indicates if the approach gave at least
75 % of the baseline recommender (BL2Beat). Each recommender that did not
meet this criteria has been grayed out. That applies to each recommender that
gave less than 46,539 recommendations. Our approaches have been highlighted
in bold face.

Recommender # Recomm. # Clicks CTR 75 % BL
Riadi NV 01 443 12 0.0271 no
ORLY KS 42,786 896 0.0209 no

1. ody4 72,601 1,139 0.0157 yes
IRS5 3,708 58 0.0156 no

2. ody5 81,245 1,268 0.0156 yes
3. ody3 59,227 813 0.0137 yes
4. ody2 63,950 875 0.0137 yes
5. IT5 68,582 925 0.0135 yes
6. eins 61,524 817 0.0133 yes
7. yl-2 60,814 747 0.0123 yes
8. WIRG 49,830 600 0.0120 yes
9. ody1 68,768 810 0.0118 yes

10. BL2Beat 62,052 726 0.0117 yes
11. RIADI pn 77,723 879 0.0113 yes
12. IL 79,120 813 0,0103 yes
13. RIADI nehyb 75,535 764 0.0101 yes

Has logs 816 6 0.0074 no
ody0 23,023 166 0.0072 no
RIADI hyb 349 2 0.0057 no

Table 1: Results of CLEF NewsREEL 2017

102 103 104 105 106 107 108 109 110 111 112
Application Time t

Time of
Observationw = 5

. . . E58 E59 E60E61 E62 E63 E64 E65 . . .

WindowOut-dated Elements Prospective Elements

E58
E59 E60

E61
E62

E63
E64

E65Va
lid

ity
In

te
rv

al
s

Overlapping Intervals at t = 109

Fig. 1: Snapshot Reducibility

2.2 DSMS—The Odysseus System

The concept of a DSMS bases on the relation algebra of Database Management
Systems (DBMS). Instead of managing a static database of relations, a DSMS
manages volatile data that is pushed to the system by active sources. That results
in a potentially unbounded sequence of elements—the data stream. Similar to
a DBMS, a user of a DSMS writes a query by the use of a query language and
the system builds a Query Execution Plan (QEP), which consists of reusable
operators. Each operator is responsible for a certain operation. Examples of
common operators are selection (filtering of elements), projection (filtering
of attributes of elements), join (combining of elements of two data streams), and
aggregation (combining a set of elements to a single resulting value).

A relational DSMS extends the concept of a relational DBMS by time-aware
and incremental data processing. The underlying concept has been extensively
studied, e.g. in [3, 2, 5, 1].

We treat events as tuples with a fixed schema. Each event occurs at a certain
point in time t ∈ T with T as set of discrete and ordered time instances, e.g., the
UNIX timestamp or an arbitrary application/event time (cf. [5]).

The most important differences to a DBMS are that a DSMS holds its data in
memory and supports (sliding time) windows.3 That allows to define a finite set
of valid tuples for each point in time t ∈ T , e.g., to calculate a moving average of
all elements not older than 60 seconds. The term snapshot reducibility [5] claims
that the resulting tuples of a query of a stream processing system at a specific

3 In this paper we limit ourselves to sliding time windows. However, there are also other
types of windows, e.g., element windows, tumbling windows etc. that are supported
by our DSMS.

1 /∗ Input and Output Stream Definitions ∗/
2 CREATE STREAM events (type STRING, articleid INT,
3 publisherid INT, userid INT, userloc INT, ...) ...;
4 CREATE STREAM requests (publisherid INT, userid INT,
5 userloc INT, ...) ...;
6 CREATE SINK recommendations (recs LIST_INT) ...;
7
8 /∗ Continuous Query Definition ∗/
9 CREATE VIEW impressions FROM (

10 SELECT articleid, publisherid
11 FROM events [SIZE 30 Minutes TIME]
12 WHERE type = "impression" AND articleid > 0
13);
14 CREATE VIEW counted_impressions FROM (
15 SELECT publisherid, articleid, count(∗) AS counts
16 FROM impressions GROUP BY publisherid, articleid
17);
18 CREATE VIEW topk_sets FROM (
19 SELECT publisherid,
20 nest(articleid) AS most_popular_articles
21 FROM counted_impressions
22 GROUP BY publisherid ORDER BY counts DESC
23 GROUP LIMIT 6
24);
25
26 /∗ Join of Requests and TopK Sets ∗/
27 STREAM TO recommendations FROM (
28 SELECT topk_sets.most_popular_articles AS recs
29 FROM topk_sets, requests [SIZE 1 TIME] AS req
30 WHERE topk_sets.publisherid = req.publisherid
31);

Listing 1.1: CQL Query Definition

point in time t are the same as the resulting tuples of a corresponding query of a
DBMS over the set of all valid tuples at t.

In this paper we use the concept of validity intervals (cf. [5]). This approach
adds an additional operator to the relational algebra—the window operator
ωw(R). It assigns validity intervals to elements of a relational stream R. E.g.,
a sliding time window of size w states that the processing at a point in time t′
should respect all events not older than t′ − w. Therefore, the operator sets a
(half open) validity interval [ts, te) with ts = t and te = t+ w to an event that
has been arisen at time t. Thus, the other operators do not need to know the
window size: The calculation of a result at time t′ need to respect all events
where t′ ∈ [ts, te) for the certain event. These are all events that are not older
than t′ − w.

Fig. 1 illustrates the concept of snapshot reducibility with validity intervals.
It shows the validity intervals for the elements and a sliding time window of
size w = 5. It depicts a part of a data stream from t = 102 to t = 112 with the
elements E58 to E65. A sliding time window of size w = 5 defines that at each
point in time t all elements that are not older than t− 5 should be considered as
valid. That means at point t = 109 in Fig. 1 all elements not older than t′ = 105
are valid. That corresponds to a window from 105 to 109.

To process the events of a data stream, the user writes one or more queries.
In contrast to queries of a DBMS, a query will be executed until the user stops
it explicitly. Such a query is called a continuous query since it processes the data
continuously. To write a query, the users take advantage of a query language,
as the SQL-like stream-based query language CQL [2] or the functional query
language PQL [1].

Similar to a DBMS, the stream processing system translates the query to a
Query Execution Plan (QEP; in the streaming context also called data flow graph).
A QEP is a directed graph of operators. It determines the order of processing
and can be optimized, e.g., by changing the order of operators.

In addition to the actual stream processing, a DSMS is also responsible for
resource and user management, authentication, authorization, accounting, etc.

3 General Approach

To illustrate how to use a DBMS as a RecSys in the CLEF NewsREEL challenge,
we present an approach that recommends the most popular articles of the last 30
minutes as basis query for further improvements. Listing 1.1 shows the definition
of the query in CQL. This is very similar to SQL and consists of a data definition
(DDL) and a data manipulation (DML) part.

The first part is the definition of the input streams (Lines 2-5) and the output
stream (called sink, Line 6). This is similar to a CREATE TABLE statement of
a DBMS. It consists of the name of the stream (e.g., events) and a schema
definition (truncated in Listing 1.1). The stream or sink definition includes also
information about the data connection (e.g., HTTP, TCP) and data format (e.g.,
CSV, JSON). This is omitted in Listing 1.1 because this is out of the scope of
this paper. After parsing the incoming data each event results in a tuple with a
fixed schema.

The second part is the definition of the actual queries. It consists of three
parts: the pre-processing of the events (lines 9-13), the counting of the number
of impressions for each article (lines 14-17) and the aggregation of the six most
popular articles for each publisher (lines 18-24). Each of this is expressed as a view
definition, which allows to reference the results in the subsequent queries. The
impressions view selects the article ID and publisher ID of all events of type
“impression” that have an article ID. Additionally, it defines a sliding time window
of a fixed size (e.g., 30 minutes). The result is used in the counted_impressions
view. It counts the number of impressions (in the time window) of each unique
pair of publisher and article ID. When a new impression arrives or an event
gets invalid, the count changes and a new tuple is produced that updates the
previous value. The topk_sets view aggregates the counted impressions to a list
of articles IDs of the six most popular articles for each publisher.

The third part uses the list of most popular articles to answer the recom-
mendation requests (lines 27-31). For this, we join a request event with an event
of the topk_sets view for the events where publisher ID of request and recom-
mendation set are the same. The stream-based join operator solely joins events

that are valid at the same time (which means they have overlapping validity
intervals). Because the aggregation of the topk_sets view updates the most
popular articles set when they change, all resulting tuples of the same publisher
have non-overlapping validity intervals: For each point in time there is exactly one
valid aggregation result for the same group. By defining a sliding time window
of size 1 (validity of 1 time slice) over the stream of requests, the join assigns
exactly one set of article IDs to each request event.

Re
co

m
m

en
d.

π./

γγπσωImpr.

ωReq.

1

2

3 4 5 6

7 8

Fig. 2: Query Execution Plan

The resulting QEP is depicted in Fig. 2. It consists of the following types of
operators:
– A window ωw(R) as described in the previous section.

We use this operator to control how long the impression events are considered
by the subsequent aggregation operator (1 in Fig. 2) and to limit the validity
of a recommendation request to 1 time slice (2) in order to join it with exactly
one set of recommendations.

– A selection σϕ(R) removes all tuples t ∈ R for which the propositional
expression ϕ does not hold.
We use the selection to filter the impressions from the event stream (3).

– A projection πa1,...,an
(R) restricts the set of attributes of each tuple t ∈ R

to the attributes {a1, . . . , an}. An extended version, called map, allows to use
functions (e.g., πf(a1),a2,f(a3,a4),...,an

(R)) that are invoked with one ore more
attributes.
The projection is used in our example to filter the needed attributes of the
impression events and of the recommendation responses (4 and 8).

– An aggregation γG,F (R) takes a set of tuples t ∈ R and returns for each
group defined by the grouping attribute g ∈ G a single tuple as result that
contains the results of the aggregate functions f ∈ F . Typical aggregate
functions are sum, count, avg, max, and min. The stream-based variant
continuously aggregates tuples that lie in the same window (which means they
have overlapping validity intervals).
We use the aggregation to count the number of impressions of each article
(5) and to nest the 6 most viewed articles into one outgoing tuple (6).

1 State[] state % the current state for each group
2 Event[] events % events in the current window
3
4 for each incoming Event e:
5 for each Event r in events with r.endts ≤ e.startts:
6 state[group(r)]← remove(state[group(r)], r)
7 events← events − r
8 output: eval(state[group(r)])
9 end for

10 state[group(e)]← add(state[group(e)], e)
11 output: eval(state[group(e)])
12 events← events + e
13 end for

Listing 1.2: Algorithm of the aggregation operator.

– A join R ./θ S combines the tuples of R and S for which a condition θ holds.
The stream-based variant claims also that the tuples have overlapping time
intervals. The validity interval of a resulting tuple is the intersection of the
validity intervals of the input tuples.
The join (7) is responsible for the matching of the requests to the recommen-
dation sets.
The important parts of the query are the calculating of a ranking score

(aggregation 5), the building of the recommendation sets (aggregation 6),
and the matching of requests and recommendation sets (join 7). These operators
are heavily influenced by validity intervals of the events, that are assigned by the
window operator.

The calculation of the recommendation sets is implemented by two aggrega-
tion operators: One to calculate the popularity of an article and one to combine
the most popular articles to a recommendation set. Our aggregation operator
is data driven. That means it outputs an updated result for every incoming event.
The operator internally holds a state s for each group and updates this state using
an aggregation function add(s, e) 7→ s for each incoming event e. For the count
function in Listing 1.1 the aggregation function is defined as: add(s, e) = s+ 1.

Since the aggregation is defined over a sliding time window the operator
has to remove all values that do not lie in the window anymore. For that, all
events whose end timestamp of their validity intervals are lower or equal than
the start timestamp of the incoming event have to be removed. This is done
before adding a new event by using a function remove(s, e) 7→ s, e.g., for count:
remove(s, e) = s− 1.

After each change of the state the operator outputs a result by calling the
function eval(s) 7→ e, which calculates the resulting event based on the state. For
count, it just outputs the state value s. Other functions as for example avg
need to calculate the resulting value. Consider a state for avg that consists of a
count and a sum, the eval function is eval(s) = s.sum

s.count . Listing 1.2 illustrates the
algorithm of the aggregation operator.

The second aggregation operator uses the nest function with add(s, e) =
s. insertSorted(e) (sorted by count), remove(s, e) = s. remove(e), and eval(s) =

s. sublist(0, 6). The output is an ordered set of the article IDs of the 6 events on
the top.

Since the recommendation sets are calculated incrementally and continuously,
the calculation of the response to a request is the executing of the join operator.
This leads to very short latencies. The join holds for each group (here the publisher
ID) the latest known recommendation set in a hash map. The operator appends
the matching recommendation sets to each request and gives the result to the
sink that transfers it back to the inquirer.

4 Variations

During the CLEF NewsREEL 2017, we evaluated six different approaches that
are based on the general approach presented in the previous section. Table 2
shows an overview over our approaches and their resulting CTRs.

The approach ody0 uses the aggregation function nest over a sliding time
window of 60 min. to aggregate a set of unique item IDs that have been read in
the past 60 min. After that, a map function is used to randomly draw 6 items to
recommend them. This approach acts as our internal baseline.

All other approaches follow the same pattern. Given a data stream of article
IDs and optional further attributes:
1. Define a sliding time window of size w over the data stream. (In our DSMS,

this is done by annotating validity intervals.)
2. Partition the data by the article IDs and optional other attributes p1, p2, . . . , pn.
3. Apply an aggregation function over each partition that calculates a score for

each item in each partition (over the sliding time window). (In our approach
we used the count function. In case of explicit item rating, the average function
would be an alternative.)

4. Optional: Combine the results of different approaches to prevent underfull
recommendation sets.
This results in a incrementally and data-driven calculated stream of recom-

mendation sets for each partition.
The approaches ody1 and ody2 partition the data by publisher IDs as described

in the previous section. They differ solely in the window size. ody1 considers all
impressions of the past 30 min., ody2 of the past 5 min. The evaluation shows,
that the 5 min. window leads to a higher CTR than the 30 min. window.

ody3 uses the same window size as ody2 but adds as partition attribute the
user location. Because more partitions lead to less data in each partition, our
tests show that a larger window size than 5 min. is necessary to have enough
data in each partition and each window. This approach reaches a similar CTR
than ody2.

In contrast, ody4 and ody5 calculate the recommendations by aggregating
the previously successfully given recommendations of the past 12 hours. This
information is part of the user events stream. For each news article i we cal-
culated the set of news articles that have been successfully recommended to

visitors of item i the most. Additionally, ody5 fills the recommendation set up
with recommendations of ody1 in case that there are less than six successfully
recommended items in the past 12 hours.

Approach CTR

ody0: Random sample of 60 min. sliding time window. 0.0072

ody1: Most viewed articles of 30 min. sliding time window partitioned
by publisher.

0.0118

ody2: Most viewed articles of 5 min. sliding time window partitioned by
publisher.

0.0137

ody3: Most viewed articles of 30 min. sliding time window partitioned
by publisher and user location.

0.0137

ody4: Most clicked recommendations of 12 hour sliding time window
partitioned by item.

0.0157

ody5: Most clicked recommendations of 12 hour sliding time window
partitioned by item filled up with most viewed articles of 30 min.
sliding time window partitioned by publisher.

0.0156

Table 2: Overview over our approaches in the CLEF NewsREEL 2017

5 Evaluation of the Window Size

A crucial parameter is the window size of the impression events. Since we want
to count the current views of each article we have to figure out which time span
leads to a set of impression events that represent the current popularity of articles:
Is the size too large the system is not sensitive to popularity changes (concept
drifts). Is it too small there is not enough data to distinguish the popularity of
articles.

To determine an appropriate window size we conducted an experiment. We
ran 21 queries as shown in Listing 1.1 with different window sizes in parallel over
the same stream (1 to 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 90 min,
2 hrs, 3 hrs, 6 hrs, 12 hrs, 24 hrs). Similar to the Interleaved Test-Then-Train
(ITTT) evaluation method we calculated the reciprocal rank of each article of an
impression event before it has influenced the recommendation set. That gave us
a mean reciprocal rank (MRR) for each query resp. window size. A higher MRR
means there are frequently viewed articles more often near the top. Additionally,
we calculated how often an article is part of the top 6 of the most popular items
in the different time windows (Precision@6).

Because the data rates of the publishers are different (some publishers have
many more impressions than others) we evaluated the window sizes for each
publisher separately.

0.44787

0.44804

0.44798

0.44789

0.44779

0.44769

0.44759

0.44747

0.44733

0.44721
0.4472

0.4474

0.4476

0.4478

0.4480

1 2 3 4 5 6 7 8 9 10
Window Size

M
R

R

(a) Mean Reciprocal Rank

0.58821

0.5885
0.58835

0.5881

0.5878

0.58747

0.58713

0.58679

0.58644

0.58611
0.5860

0.5865

0.5870

0.5875

0.5880

0.5885

1 2 3 4 5 6 7 8 9 10
Window Size

P
re

ci
si

on
 @

 6

(b) Precision @ 6
0.051

0.023

0.01

0.005
0.003 0.002 0.002 0.002 0.001 0.001

0 %

0.01 %

0.02 %

0.03 %

0.04 %

0.05 %

1 2 3 4 5 6 7 8 9 10
Window Size

P
er

ce
nt

 o
f r

ec
om

m
. s

et
s

w
/ l

es
s

th
an

 6
 a

rt
ic

le
s

(c) Percent of Underfull Recomm. Sets

Fig. 3: Mean Reciprocal Rank, Precision@6, and underfull recommendation sets
for window sizes 1 - 10 min and publisher with ID 35774.

Fig. 3 shows the result for the publisher with ID 35774 (window sizes 1 to
10 min). As you can see in Fig. 3a, a window of 2 min. leads to the highest MRR
of 0.44804. Correspondingly, the Precision@6 in Fig. 3b shows that about 59%
of each impression the user views an article that is part of the 6 most popular
articles of the last 2 min. For this publisher, lower or higher window sizes lead to
lower values.

Besides the metrics MRR and Precision@6, we measured how often a window
does not have impressions of at least 6 distinct articles so that the recommendation
sets have less than 6 recommendations (underfull recommendation sets). Fig. 3c
shows the fraction of underfull recommendation sets. As expected, the fraction
of underfull recommendation sets decreases with higher window sizes. Overall,
the fraction of underfull recommendation sets for publisher 35774 is pretty low.

Even a window size of 2 min. has just 0.023% recommendation sets with less
than 6 recommendations.

The results of the other publisher follow this pattern, even though publisher
with lower data rates get better results with bigger window sizes. As a tradeoff
between different publishers we made good experiences with a window size of
five minutes.

6 Conclusions

In this paper we presented an approach for the CLEF NewsREEL 2017. We
implemented a RecSys by using a generic Data Stream Management System.
By analyzing impression events of users we calculated a set of recommendations
based on the popularity in a given time window. To find an appropriate time
window we evaluated different sizes in parallel.

References

1. Appelrath, H.J., Geesen, D., Grawunder, M., Michelsen, T., Nicklas, D.: Odysseus:
A highly customizable framework for creating efficient event stream management
systems. In: DEBS’12. pp. 367–368. ACM (2012)

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB Journal 15(2), 121–142 (2006)

3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS 2002. pp. 1–16. ACM (2002)

4. Hopfgartner, F., Brodt, T., Seiler, J., Kille, B., Lommatzsch, A., Larson, M., Turrin,
R., Serény, A.: Benchmarking news recommendations: The clef newsreel use case. In:
ACM SIGIR Forum. vol. 49, pp. 129–136. ACM (2016)

5. Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window
queries over data streams. ACM TODS’09 34(1), 4 (2009)

6. Lommatzsch, A., Kille, B., Hopfgartner, F., Larson, M., Brodt, T., Seiler, J., Özgöbek,
Ö.: Clef 2017 newsreel overview: A stream-based recommender task for evaluation
and education. In: CLEF 2017. Springer Verlag (2017)

