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Abstract. This paper elaborates the Sentinel-2 image processing ap-
proaches used for the estimation of the population of an area of interest
at Image CLEF Remote 2017 lab by the FabSpace 2.0 Darmstadt team.
The task is introduced by Image CLEF Lab as a new pilot task in 2017
(Remote) which aims at exploring Copernicus Earth Observation data
(i.e. Sentinel-2 satellite imagery) in order to estimate the population of
an area of interest [2]. Therefore, the pilot task is focusing on mapping
human settlement to estimate population using Sentinel-2 data for hu-
manitarian activities and/or establishing communication infrastructure
etc. Human societies and civilizations have been expanding with con-
sequent impact throughout the decades. The expansion of human soci-
eties has wider implication in relation to the physical environment and
other natural resources. Therefore, it could be a fundamental potential
of technological innovation in supporting human activities and suffer-
ings throughout mapping diverse human societies in the world. Although
there exist a lot of previous studies used commercial and non-commercial
high to moderate resolution satellite imagery for the estimation of the
population, this study will investigate the potential of the new Sentinel-2
European satellites. They provide data with 10 m resolution imagery for
free, thanks to the Copernicus open data policy for all imagery in five
days interval. Thus the use of Sentinel-2 data to develop any new appli-
cation i.e. population estimation can be cost effective and is reasonably
accurate.
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1 Introduction

The dispersal and distribution of human population through decades has been
observed with attendant impacts. As the human society evolves and expands
with accompanying changes in the demographic structure; inevitable conse-
quences on the environment is and has been manifesting and will continue to



manifest. These manifestations have wider implications for the society through
its interactions with different sectors: markets, the physical environment, urban-
ization (through urban heat island), ecosystems, food, water and other natural
resources. Although emphasis on climate and land use change [16] as well as pol-
lution has often been cited as environmental consequences of growing population
density across scales; other challenges like migration with shifts in pressure from
one geographic space to another have been documented [15] [30].

However, when viewed from the prism of globalization and an Information
and Communication Technology - ICT -driven and ICT-enabled society, human
population expansion in all its three dimensions, size, distribution and compo-
sition [16] could offer incredible potential for markets and technological inno-
vations. Such potential can only be realized if there are empirically -validated
means or methods of mapping human population and demonstrating how these
means can support policy reviews and recommendations on the mitigation or
promotion of certain developments depending on the objective. It has also been
noted that there is a huge potential for markets and innovations in technology
arising relevant policy instruments on growing human population [8] [32].

Remote Sensing and Geographic Information System GIS) offer this scien-
tific opportunity in mapping the size and distribution of population at spatio-
temporal scale. In the following studies which have addressed the application
of remote sensing in mapping of human population dynamics. Remote sensing
therefore has the capability of supporting areal interpolation and statistical mod-
elling methods of population studies by Jensen and Cowen 1999 [19], Dobson,
Bright et al. 2000 [9], Wu, Qiu et al. 2005 [33], Lu, Weng et al. 2006 [25], Dong,
Ramesh et al. 2010 [11], Salvati, Guandalini et al. 2017 [29].

High resolution satellite imagery, like Quickbird satellite imagery or even
imagery from Landsat mission is also suitable in contrast with ground survey and
Arial photo in terms of cost and time summarised by Alsalman, Abdullah Salman
et al., 2011 [1]. Javed and Jocelyn, 2012 [18] also underlines the effectiveness
of Google Earth satellite images for the classification of high, medium, and low
population density and non-populated areas. Different other studies as Langford,
Mitchel, 2013 [22], Checchi, Francesco, et al., 2013 [5], Bennie, Jonathan, et al.,
2014 [3], Stevens, Forrest R., et al., 2015 [31], Lin, Changqing, et al., 2016 [23]
are also depicting the usefulness of satellite images i.e. Quickbird, Landsat and
MODIS in population estimation.

The cutting-edge infrastructure at FabSpace 2.0 Lab Darmstadt offers an in-
credible opportunity for answering complex social issues like population dynam-
ics and supporting sustainable development policies, ideas and technologically
-driven innovations with potential for markets using remote sensing and GIS
tools. Therefore, the current task of ImageCLEF Remote 2017 is of great inter-
est to explore the effectiveness of Sentinel-2 satellite imagery in such a complex
operation.



2 Data

This study used Level-1C optical multispectral data from MSI (Multi Spectral
Instrument) of Sentinel-2 mission. The data was pre-calibrated from the acqui-
sition sensor [13], which is provided by Image CLEF Remote 2017 task [2]. This
specific work used the 10 m resolution visible Red (Band 2 with 490 nm wave-
length), Green (Band 3 with 560 nm wavelength) and Blue (Band 4 with 665
nm wavelength) and Near Infrared (Band 8 with 842 nm wavelength) bands
[13]. These bands are used due to their high spatial resolution and large spec-
tral wavelengths (from 490 nm to 842 nm) [13]. While the estimation of the
population is based on the identification of households and built-up areas land
covers. These four optical bands are used to build a false colour composite map,
which is useful to make different land covers map [12]. The other demographic
and geographic data was collected for the City of Lusaka of Zambia, and West
Uganda from secondary sources and Image CLEF Remote 2017 task definition
[2].

3 Data Processing

Data from Level-1C optical multispectral data from Sentinel-2 MSI (Multi Spec-
tral Instrument) were pre-processed by Top of Atmospheric Correction to avoid
dispute for the analysis [13]. The optical multispectral bands for City of Lusaka
of Zambia, and West Uganda are pre-clipped according to the area extension for
this study, which is defined by Mdecins Sans Frontires in 2016, where City of
Lusaka of Zambia is divided into 73 areas of interest and West Uganda is divided
into 17 areas of interest [17] [2].

4 Data Analysis

The satellite data provided by Image CLEF Remote 2017 task [2] and all others
demographic and geographic information collected from secondary sources were
analyzed to estimate population of selected region of Uganda and the city of
Lusaka, Zambia [2]. The Sentinel-2 satellite imagery were analyzed by supervised
and unsupervised classification using different methods and tools.

In the first set of run the provided bands 2,3,4 (VIS) and 8 (NIR) of Sentinel-2
images have been stacked [2]. Afterwards a supervised classification was carried
out using the Semi-Automatic Classification Plug-in (SCP) in QGIS [7]. At first
the regions of interest (ROI) or training input has been selected and separated as
of different macro-classes like water surface, clouds, cloud shadow, streets, hous-
ing area, vegetation and agriculture. From this ROI the spectral signatures for
defined classes are calculated considering the values of each pixel located in the
same ROI. By applying Minimum Distance, Maximum Likelihood or Spectral
Angle Mapping classification algorithm, each pixel is compared with the spectral
signatures of the classes [7]. For this work, Minimum Distance and Maximum



Likelihood algorithm have been used. However, the Maximum Likelihood al-
gorithm computes the probability distributions for the classes based on Bayes
theorem [7].

The results have been reclassified to get raster data containing only housing
areas. The reclassified raster data was vectorized to apply the polygon identity
tool from SAGA 1 software. This tool used the provided shape data for Uganda
and Zambia to add the respective city area codes to the created classification
output. To merge the separate polygons of the identity tool results, the dissolve
function in QGIS was used and the number of population of each polygon has
been estimated. The areas of the dissolved classified polygons were calculated
by the field calculator in QGIS. For the required population data in Lusaka,
this area was multiplied by densities determined by dividing the population of
Lusaka with the classified housing areas.

The second run of data analysis performed by K-Means Cluster Analysis [26]
as unsupervised land classification and Maximum Likelihood Classification [7] as
supervised land classification. K-Means Cluster Analysis was performed by Near
Infrared band data for both study areas Lusaka and Uganda (Figure 1, 2 and
Figure 3, 4). Maximum Likelihood Classification was performed by false colour
composite map (Figure 5 and Figure 7) and by only the Near Infrared band for
both study area (Figure 6 and Figure 8) [See the Annex-1].

Near Infrared band is appropriate for the good land classification and land
cover change analysis in multi direction, primary focus on vegetation mapping
[12], [14], [20], [10]. False color composite raster is also well suited to do the differ-
ent land classifications. Here the false color composition is based on chronological
sequences of Near Infrared band, Red band and Green bands whereby the blue
band stays unused. Near infrared band is used primarily for vegetation land
cover. Red band is used for mapping man-made objects, water, soil, and vege-
tation. Green band is used for mapping vegetation and deep water structures.
Blue band is also used for atmosphere and deep water mapping [21], [4], [6].
Therefore, this study only highlighted the use of Red, Green, Blue, and Near
Infrared bands as the study is focusing on the population estimation, which is
depending on the classification of man-made built-up areas, vegetation or soil
covers, and water bodies.
K-Means Cluster Analysis

K-Means Cluster Analysis as unsupervised land classification is based on 11
different clusters because within 11 clusters the lands are identical; however, this
analysis was run by 5 clusters and 15 clusters separately, while 5 clusters showed
less identical land covers and 15 clusters showed mixed land covers. The analysis
is performed by SNAP (Sentinel Application Platform) version 5 provided by
European Space Agency - ESA2.

K-means is one of the simplest unsupervised learning algorithms that solve
the well-known clustering problem [26]. The term ”k-means” was first used by
James MacQueen in 1967 [26]. The standard algorithm was first proposed by

1 http://www.saga-gis.org/en/index.html
2 http://step.esa.int/main/toolboxes/snap/



Stuart Lloyd in 1957 as a technique for pulse-code modulation, and published by
Bell Labs in 1982 [24]. K-Means Cluster uses an iterative refinement technique it
is called the k-means algorithm [24]. The K-means algorithm is an algorithm for
putting N data points in an I-dimensional space into K clusters. Each cluster is
parameterized by a vector m(k) called its mean. The data points will be denoted
by x(n) where the superscript n runs from 1 to the number of data points N.
Each vector x has I components xi. This will assume that the space that x lives
in is a real space and that it has a metric that defines distances between points,
for example,

d(x, y) =
1

2

n∑
i

(Xi − Yi)
2

Maximum Likelihood Classification
Maximum Likelihood Classification as supervised land classification is run

with 4 different types of supervised land classes for City of Lusaka and 3 different
types of supervised land classes for west Uganda (excluding Cloud), as

1. Built-Up areas (Including households, and manmade structures)
2. Vegetation (Including bare soils)
3. Waters (Including every existing water types)
4. Cloud

The supervised land classes are based on 75 identical training sites. The
identification of training sites is based on ESRI base map3, false colour composite
map (Red, Green, Blue and Near Infrared band), and Near Infrared band.

The maximum likelihood classification works based on two principles

1. The cells in each class sample in the multidimensional space being normally
distributed

2. Bayes’ theorem of decision making

The tool considers both the variances and covariance of the class signatures
when assigning each cell to one of the classes represented in the signature file.
With the assumption that the distribution of a class sample is normal, a class
can be characterized by the mean vector and the covariance matrix. Given these
two characteristics for each cell value, the statistical probability is computed for
each class to determine the membership of the cells to the class.

Maximum Likelihood algorithm calculates the probability distributions for
the classes, related to Bayes theorem, estimating if a pixel belongs to a land cover
class [7]. In particular, the probability distributions for the classes are assumed
the form of multivariate normal models [28]. In order to use this algorithm, a
sufficient number of pixels are required for each training area allowing for the
calculation of the covariance matrix. The discriminate function, described by
[28], is calculated for every pixel as:

3 http://www.esri.com/data/basemaps
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Where:
Ck = land cover class k;
X = spectral signature vector of an image pixel;
p (Ck) = probabilitythatthecorrectclassisCk;
|
∑

k | = determinantofthecovariancematrixofthedatainclassCk;∑−1
k = inverseofthecovariancematrix;

Yk = spectral signature vector of class k.

4.1 Results

The summary of the modeled output is presented in the table 1, where the
measured data was validated with the ground truth provided by Image CLEF
remote 2017 [2]. The result from final run (non-official run) showing statistics
for population for Uganda (UGD) and City of Lusaka, Zambia (ZMB) has sum
of deltas of 19 and 34, RMSE of 2199 and 15505 and Pearson correlation of 0.87
and 0.81 respectively. The statistics for the number of dwellings/household for
UGD and ZMB are sum of deltas of 24 and 34, RMSE of 638 and 3073 and
Pearson correlation of 0.87 and 0.81 respectively. In the case of Lusaka the best
result was calculated using the supervised Maximum Likelihood Classification
method where using only near infrared band showed better result than the false
color composite raster (i.e. R,G,B and NIR stack image). While for Uganda
the best results were obtained by K-means unsupervised clustering using near
infrared band as an input and the best result was obtained in the first run
thereby parameters remains same in the final run.
Lusaka District, Zambia

In the case of City of Lusaka, Zambia, from the literature search the total
district area is 360 Km2, the total population is 2,330,200 as of the population
projection on 01.07.2016, the average household size is 4.9 person per household
and the density is 6,472 person/Km2 with the change rate of +5.17 percent
per year (2010 to 2016) where the urban population is 40.2 percent of overall
population [27]. In the Image CLEF remote 2017 challenge [2], the whole Lusaka
city was divided in 73 geographical units and population was estimated and
validated with ground truth for each geographical unit.

According to the K-Means Cluster Analysis it is found that the total district
built-up area including mixed use area is 318.59 Km2 and the total population
is 1,542,496 and total household 314,795.

From Maximum Likelihood Classification for the City of Lusaka as of the
area denoted by the task with false color composite raster (R, G, B and NIR),
it is found that the district built-up area is 145.95 Km2 the total population is
1,324,568 and total household is 270,320. The result from the classification using



Table 1. Details of the classifications results (German FabSpace) [2]

Population
Study Area Sum Delta RMSE Pearson
1st Run
Uganda 19 2,199 0.87
Zambia 68 30,510 0.11
Final Run
Uganda 19 2,199 0.87
Zambia 34 15,505 0.81

House Count
Study Area Sum Delta RMSE Pearson
1st Run
Uganda 24 638 0.87
Zambia 76 6,055 0.11
Final Run
Uganda 24 638 0.87
Zambia 34 3,073 0.81

only near infrared band shows the built-up area is 174.48 Km2, the total pop-
ulation is 1,540,516 and the number of household is 314,390. In the calculation
of population, first the overall population was estimated and then 40.2 percent
of urban population was added to reach the highest accuracy.
West Uganda

The current population of Uganda is 41,473,759 as of May, 2017, based on
the latest United Nations estimation, the population density in Uganda is 209
per Km2 and 5 persons per household, the total land area is 199,816 Km2, and
17.3 percent of the population is counted as urban population [27]. According
to the challenge description [2] the 17 geographical unit was selected to estimate
population and validated afterwards with the ground truth.

According to the K-Means Cluster Analysis it is found that the total district
built-up area is 38.80 Km2 and the total population is 40,291 and the total
number of households are 8,058.

The Maximum Likelihood Classification using only NIR band results shows
the number of population for the selected 17 regions are 43,963 including 17
percent urban population on top of the total population and the total household
estimated as 8,792 where the calculated built-up area is 23.03 Km2. While, using
RGB and NIR stack data shows the total population is 54,043, total households
are 10,808 and the total area is 22.20 Km2.

5 Conclusion

The calculation of population by satellite data is based on the estimation of
household areas and built up areas and the population density. The identifi-



cation of land classification for household and built-up areas is not uniform, it
depends on the area type, and it is challenging due to the heterogeneous spectral
reflectance from mixed up different household and built up areas with other land
use types as bare soil or dense green vegetation. The problem is more severe in
the case of differentiating reflectance value of building rooftop, road and bare soil
as all has almost same type of materials. Beside these limitations, the number of
floors of any buildings is not measured for this activity, because this pilot task
used Sentinel-2 MSI sensor data which is not sufficient to perform this. However,
the height of buildings or any structure could be measured by the objects shadow
detection analysis, but it is time consuming and will be challenging to achieve
the necessary analytical accuracy. Though, there is an emerging opportunity to
make the study more effective. Although, this pilot task used both unsupervised
and supervised land classifications to minimize the calculation error as much as
possible. The supervised land classifications are done by Maximum Likelihood
Classification algorithm and unsupervised land classification through K-means
cluster analysis with more than 80 percent accuracy. This particular pilot task
found the fusion of unsupervised and supervised land classifications for house-
hold and built up areas with Sentinel-2 MSI sensor is promising to calculate the
population.

However, there were some difficulties to run the classification as for the city
of Lusaka, big challenges were to segregate agricultural areas that have been
classified as housing area and the big gaps of density between poor and wealthy
housing areas. In Uganda it was also difficult to mark off the built-up areas from
the areas with bushland and open vegetation. For Uganda, the classification faced
problems to detect the distinct housing areas and differentiate these with other
macro-classes due to same spectral signatures. Moreover, the area in Uganda
is rural with only few settlements and low population density. While in Lusaka
the difficulties are the differentiation of housing areas from informal settlements
with high population density to high income areas.
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ANNEX-1: Classification results from the final run.

Fig. 1. K-Means Cluster Analysis of City of Lusaka (Source: FabSpace 2.0 Darmstadt
lab, 2017).



Fig. 2. K-Means Cluster Analysis of City of Lusaka supervised by Maximum Likelihood
classification (Source: FabSpace 2.0 Darmstadt lab, 2017).



Fig. 3. K-Means Cluster Analysis of West Uganda (Source: FabSpace 2.0 Darmstadt
lab, 2017).

Fig. 4. K-Means Cluster Analysis of West Uganda supervised by Maximum Likelihood
classification (Source: FabSpace 2.0 Darmstadt lab, 2017).



Fig. 5. Maximum Likelihood Classification of City of Lusaka with False colour com-
posite raster (Source: FabSpace 2.0 Darmstadt lab, 2017).



Fig. 6. Maximum Likelihood Classification of City of Lusaka with Near Infrared band
(Source: FabSpace 2.0 Darmstadt lab, 2017).



Fig. 7. Maximum Likelihood Classification of West Uganda with False colour compos-
ite raster (Source: FabSpace 2.0 Darmstadt lab, 2017).

Fig. 8. Maximum Likelihood Classification of West Uganda with Near Infrared band
(Source: FabSpace 2.0 Darmstadt lab, 2017).


