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Abstract. Identifying bird species in audio recordings is a challenging field of 

research. In this paper, we summarize a method for large-scale bird sound clas-

sification in the context of the LifeCLEF 2017 bird identification task. We used 

a variety of convolutional neural networks to generate features extracted from 

visual representations of field recordings. The BirdCLEF 2017 training dataset 

consist of 36.496 audio recordings containing 1500 different bird species. Our 

approach achieved a mean average precision of 0,605 (official score) and 0,687 

considering only foreground species. 
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1 Introduction 

1.1 Motivation 

Identifying bird species based on their calls, songs and sounds in audio recordings is 

an important task in wildlife monitoring for which the annotation is time consuming if 

done manually. With the arrival of convolutional neural networks (CNNs, ConvNets), 

automated processing of field recordings made a huge leap forward [1]. Nonetheless, 

processing large datasets containing hundreds of different classes is still very chal-

lenging. In the past years, many ground breaking CNN architectures evolved from 

evaluation campaigns such as TREC, CLEF or the ILSVRC [2][3][4]. Adapting those 

architectures for the purpose of audio event detection has become a common practice 

despite the very different domains of image and audio inputs. Generating deep fea-

tures based on visual representations of audio recordings has proven to be very effec-

tive when applied to the classification of audio events such as bird sounds [5][6]. 
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1.2 Dataset 

The BirdCLEF 2017 [7][8] training data is built from the Xeno-Canto collaborative 

database
1
 and contains 36.496 sound recordings with a total number of 1500 species 

(50% increase from the 2016 dataset). Most audio files are sampled at 44.1 kHz, 16 

bits, mono and show a wide variety of recording quality, run length, bird count and 

background noise. The training set has a massive class imbalance with a minimum of 

four recordings for Laniocera rufescens and a maximum of 160 recordings for 

Henicorhina leucophrys. The training data is complemented with XML-files contain-

ing metadata such as foreground and background species, user quality ratings, time 

and location of the recording and author name and notes. We did not make use of any 

of the additional metadata except for the class id of foreground species. The presence 

of numerous background species distorts the training data and makes single label 

training particularly challenging.  

2 Workflow 

Our workflow consists of four main steps. First, we extract spectrograms from all 

audio recordings. Secondly, we extend our training set through extensive dataset 

augmentation. Next, we try to find the best CNN architecture with respect to number 

of classes, sample count and data diversity. Finally, we train our models using con-

sumer hardware and Open Source toolkits and frameworks. 

2.1 Generating Spectrograms 

We decided to use magnitude spectrograms with a resolution of 512x256 pixels, 

which represent five-second chunks of audio signal. This (relatively large) input size 

is computationally expensive when training ConvNets but our experiments showed 

that high resolution spectrograms contain more valuable details and the overall classi-

fication performance benefits from larger inputs.  

 

We extracted five-second spectrograms for each sound recording using a four-

second overlap, which resulted in 940.740 images. We implemented a heuristic to 

decide whether a signal chunk contains bird sounds or background noise only. We 

mainly adapted the approach of [1] and [9] and removed spectrograms with improper 

signal to noise ratio. Figure 1-3 visualize this process. We selected 869 spectrograms 

containing heavy background noise and no bird sounds for our dataset augmentation 

process.  

 

Despite this method for signal and noise separation, the training data remains dis-

torted. The classification error depends on clean, distinct classes, which is almost 

impossible to achieve if done automatically. Species present in the audio recordings 

are not time coded. Therefore, background species might interfere with feature learn-
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ing, especially for species with only few training samples. The amount of training 

samples greatly influences the generalization error. More samples significantly im-

prove the detection rate; we noticed that classification of species with more than 1000 

spectrograms performed best. Class imbalance affects generalization as well. We tried 

different techniques like cost-sensitive learning to counter this circumstance but no-

ticed that those methods did not lead to a higher mean average precision. However, 

reducing class imbalances seems to benefit real world applications focused on rare 

species. 

 

 

Fig. 1. Magnitude spectrogram after signal preemphasis and value normalization. We use the 

framework “python_speech_features”2 for FFT with a window length of 0.05 and step size of 

0.0097 for five-second chunks of the signal. We use a FFT length of 840 and crop high fre-

quencies, which reduces the input size and is sufficient for most bird species. We did not per-

form any noise reduction. 

 

Fig. 2. Processed spectrogram after median blur, median threshold, spot removal and morpho-

logical closing. This approach suppresses background noise and highlights actual bird sounds. 
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Fig. 3. We only analyze the low frequency crop of the processed spectrogram (top) and decide 

whether it contains signal or noise (bottom). We use the sum of all rows containing signal 

(black) as threshold for bird presence or absence. 

2.2 Dataset Augmentation 

Dataset augmentation is vital to reduce the generalization error. However, most estab-

lished augmentation methods like horizontal flip and random crop are not suitable for 

spectrograms as they might mask the original signal. Dataset augmentation should 

always target the properties of the test data, which are underrepresented or missing in 

the training data. We evaluated different augmentation methods using a local valida-

tion set consisting of ~50.000 samples from 100 species. We incorporated the follow-

ing augmentations into our final runs: 

 

Vertical Roll: Following [1] we implemented a random, pitch shifting vertical roll 

of maximum five percent, which had great impact on the generalization error. This 

seems to be by far the most beneficial dataset augmentation. We tried time shifting 

horizontal roll as well, but found that this augmentation harms generalization. This 

might be because we generated overlapping spectrograms and with that, already used 

time shifted spectrograms. 

 

Gaussian Noise: Synthetic noise often helps convolutional neural networks to fo-

cus on salient image features. Most models will learn to ignore the noise over time, 

which makes them robust even against other (more realistic) noise sources. We simp-

ly added Gaussian noise of random intensity to our spectrograms and re-normalized 

the resulting images. 

 

Noise Samples: In addition to random Gaussian noise, we added noise samples 

(spectrograms our heuristic rejected as bird sounds) which significantly improves the 

classification result and speeds up the entire training process. Most of the sound re-

cordings show similar noise patterns; we tried to counter these patterns with the selec-

tion of 869 noisy spectrograms and randomly added them to our training images. 

 



 

Batch Augmentation: Most sound recordings contain more than one bird species, 

which may vocalize at the same time. We tried to simulate this by randomly combin-

ing spectrograms of the same batch. Combining samples of the same class will not 

affect label distribution, whereas the combination of samples of different species re-

sults in multi-label targets that can be used to train sigmoid outputs.   

 

We applied all augmentations at runtime, during training using CPU idle time. We 

implemented a multi-threaded batch loader, which significantly speeds up training. 

Our batch loader operates during a forward-backward pass iteration executed on the 

GPU. 

2.3 CNN Architecture 

Finding the best CNN architecture is a time consuming task and often done purely by 

intuition. Current state-of-the-art approaches try to tackle this issue with automated 

hyperparameter search [10]. We decided to reduce the amount of possible design 

decisions and relied on current best practices for CNN layouts. All weighted layers 

(except for input and output layers) use Batch Normalization [11], Exponential Linear 

Units (ELU) for unit activation [12] and are initialized using He-initialization [13]. 

We wanted large receptive fields in our first convolutional layers, which have proven 

to be very effective for spectrograms during our experiments. We use filter sizes of 

7x7 and 5x5 for larger inputs and 3x3 kernels for smaller input sizes in deeper layers. 

Table 1 provides an overview of the three model designs we used for our submission. 

 

Although the BirdCLEF classification task with 1500 classes, class imbalances and 

a distorted dataset is rather complex, shallow CNN architectures with classic layouts 

and only a few layers seem to be more effective than more complex highway net-

works with multiple tens of layers like DenseNet [14] or ResNet [15]. We tried differ-

ent implementations of state-of-the-art convolutional networks but found them inferi-

or to our simple CNN architectures. This might be due to the fact, that the image do-

main of spectrograms is very homogenous despite more than 1500 different signal 

types. Most spectrograms contain only little information, leaving most pixels blank. 

This observation is backed by the works of [1][5][6]. 

 

Large input sizes are not common in current image classification publications. 

Most approaches reduce the input size to a maximum of 256x256 pixels. Current 

consumer GPUs are well suited for larger inputs. On the other hand, models with 

large input sizes are considerably harder to train and tune, training takes significantly 

more time and larger inputs do not always benefit generalization. Our experiments 

showed that non-square, high-resolution inputs of spectrograms do indeed achieve 

better classification results especially for large and diverse datasets. We used strided 

convolutions and pooling layers to cope with large inputs.  

 

Additionally, a larger number of filters seems to be more effective than a larger 

number of hidden units. We found that 512 units per dense layer is sufficient even for 



1500 classes. Determining the right amount of network parameters is crucial to avoid 

under- and overfitting. This process is also very time consuming considering the fact 

that less parameters might work well on small validation sets but usually underfit on 

larger datasets. Validation experiments should always show slight overfitting in order 

to have good generalization capacity when trained on more classes. Even though, 

models with a large number of weights did eventually overfit during our experiments 

with 1500 classes, so we decided to dial down the weight count. 

Table 1. Model architectures used for our submitted runs. Every convolutional and every dense 

layer (except the final output layer) has batch normalization before its ELU activations, is He-

initialized and has shape preserving padding. Model 1 is our main model, used most in our 

runs. Model 2 and 3 are part of our CNN ensemble; Model 2 showed best generalization after 

few epochs but needs significantly more time to train than Model 1; Model 3 is used for the 

classification of subsets of the training data with a maximum of 500 classes. Shallow models 

perform better on small class selections and can be combined in ensembles if trained with sig-

moid outputs. 

Model 1 

8 weighted Layers 

~4000s per Epoch 

Model 2 

9 weighted Layers 

~5500s per Epoch 

Model 3 

8 weighted Layers 

~1000s per Epoch 

Conv1, 64x7x7, Stride 2 Conv1, 32x7x7, Stride 1 Conv1, 32x7x7, Stride 2 

MaxPooling, Size 2 MaxPooling, Size 2 MaxPooling, Size 2 

 Conv2, 32x5x5, Stride 1  

 MaxPooling, Size 2  

Conv2, 128x5x5, Stride 1 Conv3, 64x5x5, Stride 1 Conv2, 128x5x5, Stride 1 

MaxPooling, Size 2 MaxPooling, Size 2 MaxPooling, Size 2 

Conv3, 256x3x3, Stride 1 Conv4, 128x3x3, Stride1 Conv3, 256x3x3, Stride 1 

MaxPooling, Size 2 MaxPooling, Size 2 MaxPooling, Size 2 

Conv4, 512x3x3, Stride 1 Conv5, 512x3x3, Stride 1 Conv4, 512x3x3, Stride 1 

MaxPooling, Size 2 MaxPooling, Size 2 MaxPooling, Size 2 

Conv5, 1024x3x3, Stride 1 Conv6, 1024x3x3, Stride 1 Conv5, 512x3x3, Stride 1 

MaxPooling, Size 2 MaxPooling, Size 2 MaxPooling, Size 2 

DenseLayer, 512 Units DenseLayer, 512 Units DenseLayer, 512 Units 

Dropout, p=0,5 Dropout, p=0,5 Dropout, p=0,5 

DenseLayer, 512 Units DenseLayer, 512 Units DenseLayer, 512 Units 

Dropout, p=0,5 Dropout, p=0,5 Dropout, p=0,5 

DenseLayer, 1500 Units DenseLayer, 1500 Units DenseLayer, <500 Units 

Softmax Output Softmax Output Sigmoid Output 

 

Most recent approaches at well-known evaluation campaigns use CNN ensembles 

to achieve their best classification results. Separate predictions are combined (bagging 

and boosting) to form the final ranking. We trained 19 convolutional neural networks 

and selected seven of them for our ensemble submission. Ensembles may not be ap-



 

plicable for real world tasks such as real-time wildlife monitoring but effectively 

boost the overall classification performance. 

2.4 Training 

Time efficient training becomes crucial when training on 1500 classes with more than 

940.000 samples. We tried to optimize our training process in order to save computa-

tion time and maintain a good overall performance at the same time. We evaluated 

different kinds of parameter settings and found the following to be very effective: 

 

Learning Rate Schedule: The learning rate is one of the most important 

hyperparamters when training ConvNets. Fixed learning rates may hinder the optimi-

zation process from converging. Common practice uses learning rate steps, which 

reduce the learning rate on various occasions during training. Although batch normal-

ization allows for larger learning rates, in order to achieve full convergence of the 

learning process, parameter changes have to be minimal near the end of training. We 

found that linear interpolation of the learning rate during training, with changes ap-

plied after each epoch, are very effective and can dramatically improve the classifica-

tion result. We started our training process with a learning rate of 0.01 and decreased 

it over 55 epochs to a value of 0.00001. 

 

Optimizer: Choosing the best optimizer for stochastic gradient descent parameter 

updates is vital for fast optimization convergence. We decided to use ADAM updates 

[16] (with the beta1 parameter set to 0.5) because of the high convergence speed the 

algorithm provides. In combination with our dynamic learning rate (which is still 

beneficial despite the adaptive nature of the optimizer), we achieved a significant 

speed-up compared to the Nesterov momentum. 

 

Loss function: We use categorical cross entropy and binary cross entropy as loss 

functions for single and multi-label scenarios. We applied L2 regularization with a 

weight of 0.0001. Additionally, we experimented with different kinds of cost-

sensitive loss functions, which increase the loss for misclassifications of rare species. 

Massive class imbalances may lead to a good overall classification accuracy just be-

cause of the dominance of single species. Incorporating class probability distributions 

into the loss function counters this effect if added to the loss alongside cross entropy 

and L2 distance (higher penalty if class is less probable). For the BirdCLEF 2017 

challenge, this method turned out to be ineffective, but we observed a very clean con-

fusion matrix for rare species, which might indicate a real world application of this 

approach. 

 

Pre-trained Models: Re-using already trained models for new training iterations 

can cut the computation time needed until convergence by a great margin. Softmax 

classifier tend to be much more efficient when training ConvNets. Therefore, we 

trained models with single label outputs and used these pre-trained models as starting 

point for our multi-label scenarios with sigmoid outputs. Doing that, we were able to 



skip 20-30 epochs of training time per model. Some of our ensemble models were 

trained on different subsets of the training data. We made use of a pre-trained model 

every time we switched to new subsets. 

 

Batch Size: Increasing the size of batches for the training process is beneficial 

mostly due to the use of batch normalization. Smaller batches lead to more iterations 

per epoch and tend to perform better after the first few epochs. In the end, larger 

batches seem to provide better generalization. Choosing the best batch size always 

depends on the amount of VRAM the GPU provides. We had to set the batch size to 

128, which was the largest we could fit in memory for all models, mainly constraint 

by the large receptive fields we used in the first layers of our ConvNets. 

 

The implementation of our code is done purely in Python using NumPy, Theano [17] 

and Lasagne [18] for models, objectives and solvers, OpenCV for image processing, 

scikit-learn for metrics and Matplotlib for visualization. We did all of our experiments 

on a single PC with a NVIDIA Titan X graphics card. We switched to a NVIDIA 

P6000 GPU for the training of our final models, which provides 24GB of VRAM and 

two times faster training.  

 

We used a local validation split of five percent of the training spectrograms to moni-

tor the training process and limited the total number of samples per class to 1500. 

Training took between 15h and 80h per model on all 1500 classes and ~4h for our 100 

class experimental models. We trained every model for 55 epochs and used early 

stopping to find the best parameter setting. Some models showed their best perfor-

mance after 55 epochs, which indicates that longer training periods may have been 

beneficial. However, we did not proceed training these models due to time con-

straints. 

3 Evaluation 

3.1 Performance on Local Test Set 

We used a local test split of the given training data to evaluate our ConvNets after 

training. Therefore, we randomly separated 10% of all recordings (at least one file per 

species) for our test set. Our test set reflects the dataset distribution of species rela-

tively well and results are comparable to the official scores. The local test data con-

tains 3557 recordings of varying recording quality and length.  

 

We used fixed random seeds and trained every CNN for 55 epochs, selecting the 

best performing snapshot according to the validation loss on a 5% validation split of 

the input spectrograms. Table 2 shows selected results of more than 100 different 

experiments, which we conducted. Due to time constraints, we did not manage to test 

all possible hyperparameter and dataset augmentation combinations, especially for 

our DenseNet and ResNet architectures. However, our experiments indicated that 

classic, carefully tuned CNN layouts outperform highway networks (our most com-



 

petitive model was a DenseNet-32). On the other hand, CNNs with shortcuts need 

significantly less parameters and usually scale with increasing parameter count. There 

might still be a lot of potential laying in those architectures if carefully crafted.  

Table 2. Model evaluation on local test split which contains at least one sample per species. 

Input size was 512x256 pixels (if not stated otherwise) of five-second chunks of each recording 

with no overlap taking ~800ms for each sample prediction. Overlapping consecutive spectro-

grams boost the MAP by ~2% but takes considerably more time to process. We were not able 

to evaluate DenseNet or ResNet architectures with more than 50 layers due to limited re-

sources. 

CNN Type Description MAP FG+BG MAP FG 

Model 1 No dataset augmentation 0,481 0,553 

Model 2 No dataset augmentation 0,468 0,537 

Model 3 No dataset augmentation 0,455 0,527 

Model 1* Dataset augmentation 0,583 0,671 

Model 1** Dataset augmentation, sigmoid activations 0,559 0,643 

Model 1 Dataset augmentation, 10s spectrograms 0,554 0,645 

Model 1 Dataset augmentation, 256x128px specs 0,576 0,663 

Model 2 Dataset augmentation 0,573 0,661 

Ensemble*** Seven models, average pooling 0,629 0,711 

DenseNet-32 Dataset augmentation 0,558 0,642 

*used as model for Run 1 **used as model for Run 2 ***used for Run 3 

 

We selected the best models based on the results of our local test set evaluation for 

our submission. Additionally, we selected seven ConvNets for an ensemble. Predic-

tions were pooled only by averaging the probabilities for every species based on the 

prediction for all five-second spectrograms of every recording. We tried numerous 

prediction pooling strategies like linear interpolation, thresholds or dilation but found 

none of them outperforming simple average pooling. However, fine-tuning the predic-

tion process can lead to significantly better results for the same tested model. 

3.2 Official Scores 

We submitted four runs, each of them pursuing a different strategy. Our submission 

contains the result of two single models (Run 1&2) and the predictions of two ensem-

bles (Run 3&4). All runs are fully automatic with no manual interference. Only Run 4 

uses additional metadata. 

 

TUCMI Run 1: This run was composed of the predictions of a single model 

(Model 1, see Table 1) with softmax activations to demonstrate our best performing 

model on a single label task. Prediction took an average of 833ms per sample record-

ing (on a P6000 GPU).  

 



TUCMI Run 2: We used the fully trained net from our first run as pre-trained 

model for this attempt of a multi label predictive CNN with sigmoid activations. We 

used batch augmentation with an average of two labels per sample of each batch to 

simulate simultaneously vocalizing bird species. Expectedly, this net did not score as 

good as our first model due to the distorted training set, which makes multi label pre-

dictions very challenging. It performed slightly better in the soundscape domain, 

which was the focus of this attempt. However, we expected a significant difference 

between both runs for the soundscape recordings, which was not the case. Prediction 

took an average of 950ms per sample recording. 

 

TUCMI Run 3: Ensembles of CNNs are widely used in evaluation campaigns 

such as TREC or CLEF. Despite their lack of real world application, ensembles often 

score best, which is also the case for our seven-model ensemble. Bagging predictions 

benefits from models trained on different portions of the training data. We decided to 

train four models on species containing up to 300, 500, 1000 and 2000 training sam-

ples (Model 3), one model trained on 256x128 pixel spectrograms (Model 2) and both 

models of our first two runs. This run is our best performing attempt; prediction took 

an average of 6s per sample recording due to sequential testing. 

 

TUCMI Run 4: Dedicated models tend to perform better if the number of ex-

pected audio events is fixed. We tried to estimate the most probable bird species pre-

sent in the soundscape recordings based on the given geo-coordinates and the corre-

sponding eBird frequency bar charts for the months of June, July and August. We 

ranked species based on the probability of occurrence in the Loreto/Peru area and 

trained a second ensemble for 100 selected species with different CNN layouts and 

multi label predictions. This is our only metadata assisted run, focused solely on 

soundscape prediction and performed similar to our models trained on 1500 species. 

Prediction took an average of 4s per sample recording due to sequential testing. 

Table 3. Official scores (Mean average precision) of our submitted runs. Our ensemble scored 

better in all categories than our other runs; our dedicated model trained on selected species 

performed nearly as good as the models trained on all 1500 species for soundscape recordings. 

Run FG+BG Only FG Soundscapes 2017* Soundscapes 2016 

1 0,564 0,644 0,111 0,063 

2 0,547 0,652 0,131 0,064 

3 0,605 0,678 0,162 0,079 

4 0,064 0,068 0,091 0,062 

*only the 2017 soundscapes were time-coded (predictions every five seconds) 

3.3 Additional Scores 

The soundscape domain with multiple birds vocalizing at the same time, diverse 

and noisy backgrounds and, most importantly, no explicit training data is by far the 

most challenging test set. We tried to tackle these difficulties with a dedicated model 



 

ensemble, trained on specific bird species only. Considering the overall results for the 

2017 time-coded soundscapes, our Run 4 did not perform as expected. However, ad-

ditional evaluation results kindly provided by the organizers (Table 4) show, how 

important the selection of the right bird species for neural net training can be. This is 

important for future real world applications of wildlife monitoring. The results verify 

that dedicated models specialized for the identification of bird species of a specific 

region outperform general models trained for the detection of a wide variety of bird 

species.  

Table 4. Additional results (MAP) provided by the organizers for time-coded soundscape re-

cordings detailed by country. Our dedicated Run 4 (trained on samples for bird species most 

probable for Loreto/Peru) outperforms all other runs by a great margin for soundscapes record-

ed in Peru.  

Run All Colombia Peru 

1 0,099 0,101 0,003 

2 0,119 0,121 0,007 

3 0,144 0,146 0,026 

4 0,061 0,059 0,158 

 

This basically implies two detection strategies: Either limiting the bird species dur-

ing the training of dedicated models or using probability measures based on species 

appearance for general models to refine classification results. The second option 

seems to be the most flexible, allowing for the adaption of one model to multiple 

scenarios such as changing seasons or the relocation of monitoring systems without 

the need to train a new model. Future experiments will have to show whether both 

methods perform equally good. 

4 Source Code 

We made a refined and commented version of our source code alongside detailed 

instructions publicly available on GitHub
3
. This repository enables everyone to repro-

duce our submissions, to train own models and evaluate results. We added our select-

ed noise samples and a pre-trained model from our first run. We will keep the reposi-

tory updated and will add some functionality for demo applications in the future. If 

you have any questions or remarks regarding the source code, please do not hesitate to 

contact us. 

                                                           
3 https://github.com/kahst/BirdCLEF2017 



5 Future Work 

There are a number of techniques that we think might help to improve bird sound 

classification upon our current results. Aside from better-crafted and tuned ConvNet 

architectures, extensive dataset augmentation and more training time, we would like 

to assess the following methods:  

 

Reducing dataset distortion: A clean dataset with sharp classes is vital especially 

for multi label tasks like soundscape recordings. While this task could be done manu-

ally, we propose a more efficient way using neural nets trained to distinguish between 

noise and bird sounds. The excellent Warblr and FreeSound datasets
4
 provide several 

tens of thousands of samples for training. 

 

3D-Convolutions: Mapping audio signal chunks to images via FFT is very effec-

tive but does not fully account for the sequential nature of continuous signals. With 

the rise of 3D-Convolutions [19], we could think of sequence preserving image inputs 

like sequential stacks of spectrograms. Every input signal is split into chunks of 30 or 

more seconds, each second encoded as spectrum. All spectrograms of such a chunk 

form a 3D input (actually 5D: batch size, channels, stack size, width, height) which 

contains valuable information concerning bird sound occurrences over time. This 

approach will likely reduce the dataset distortion for birds with single calls in long 

time spans as well. 

 

Snapshot Ensembles: Pooling the predictions of multiple CNNs is important for 

top scoring results in evaluation campaigns. Training ensembles is very time consum-

ing and requires different datasets and/or network architectures. Snapshot Ensembles 

[20] try to reduce the amount of training time needed for an ensemble by using repeat-

ing learning rate cycles, which lead to independently converged models using the 

same dataset and architecture. Benchmarks show that those ensembles outperform 

state-of-the-art model architectures. 

6 Conclusion 

We provided insights into our attempt of large-scale bird sound classification using 

various convolutional neural networks. After we conducted numerous experiments to 

identify the best techniques of dataset augmentation, training methods and network 

architectures, our best submission to the 2017 BirdCLEF challenge achieved a score 

of 0,605 MAP ranking second of all submissions. The results show that there is still a 

lot of room for improvements especially for the soundscape domain, which likely is 

the most important real-world application. Additionally, we provide a GitHub reposi-

tory for the free use of our code base and with that, hope to offer a baseline for future 

BirdCLEF tasks. 

                                                           
4 http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge/ 
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