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Abstract. Manual image annotation is a major bottleneck in the pro-
cessing of medical images and the accuracy of these reports varies de-
pending on the clinician’s expertise. Automating some or all of the pro-
cesses would have enormous impact in terms of efficiency, cost and ac-
curacy. Previous approaches to automatically generating captions from
images have relied on hand-crafted pipelines of feature extraction and
techniques such as templating and nearest neighbour sentence retrieval
to assemble likely sentences. Recent deep learning-based approaches to
general image captioning use fully differentiable models to learn how to
generate captions directly from images. In this paper, we address the
challenge of end-to-end medical image captioning by pairing an image-
encoding convolutional neural network (CNN) with a language-generating
recurrent neural network (RNN). Our method is an adaptation of the
NICv2 model that has shown state-of-the-art results in general image
captioning. Using only data provided in the training dataset, we were
able to attain a BLEU score of 0.0982 on the ImageCLEF 2017 Caption
Prediction Challenge and an average F1 score of 0.0958 on the Concept
Detection Challenge.
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1 Introduction

Generating a textual summary of the insights gleaned from a medical image is
a routine, yet nonetheless time-consuming task requiring much human effort on
the part of highly trained clinicians. Prior efforts to automate this task relied
on hand-crafted pipelines, employing manually designed feature extraction and
techniques such as templating and sentence retrieval to assemble likely sentences
[9, 13, 14]. Recent deep learning-based approaches to general image captioning,
however, use fully differentiable models to learn how to generate captions directly
from images. In general the advantages of such fully learnable models is that any
part of the model can adapt in a manner most useful for the problem at hand,
whereas a hand-designed system is constrained by the assumptions made during
feature extraction, concept detection, and sentence generation.

In this paper we describe the submission of the University of Sydney’s Biomed-
ical Engineering & Technology (BMET) group to the caption prediction and



concept detection task of the ImageCLEF 2017 caption challenge [4, 7]. This
submission employs a fully differentiable model, pairing an image-encoding CNN
with a language-generating RNN to generate captions for images from a range
of modalities.

2 Background

Image captioning, whereby the contents of an image are automatically described
in natural language, is challenging task in machine learning, requiring methods
from both image and natural language processing. Many early approaches to
this problem involved complex systems comprising of visual feature extractors
and rule based methods for sentence generation. Li et al. [11] utilise image fea-
ture similarity measures to locate likely n-grams from a large corpus of image
and text, then use a simple sentence template and local search to generate a
caption. Yao et al. [22] extract image features such as SIFT and edges to match
images to a concept database, then apply a graph-based ontology to these con-
cepts to produce readable sentences. Ordonez et al. [12] use image features and a
ranking-based approach to locate likely sentences in an extremely large database
of images and text. Such methods require a great deal of hand-crafted optimisa-
tion and produce systems which are brittle and limited to specialised domains.

Recently, deep learning-based encoder-decoder frameworks for machine trans-
lation [16] have been adapted and applied to problem of image captioning. By
replacing the language-encoding Long Short-Term Memory (LSTM) [6] RNN
with an image-encoding CNN, the model is able to learn to generate captions
directly from images. The entire model is completely differentiable so errors
are propagated to the different components proportional to their contribution to
the error, allowing them to adapt appropriately. While there were several precur-
sors that replaced various components of existing image to caption frameworks
with trainable RNNs or CNNs, Vinyals et al. [19] proposed the first end-to-end
neural network based approach to captioning with their “Show and Tell” (also
called Neural Image Captioning (NIC)) model. An updated method, NICv2 [20],
won the Microsoft Common Objects in Contex (MSCOCO) challenge in 2015.
Qualitative analysis has shown that neural captioning methods are preferred in
comparison with conventional nearest-neighbour sentence lookup approaches [3].

There has been limited work in adapting such methods to the medical do-
main, despite the large volume of image and text data found in PACS. Schlegl
et al. [13] present the first such work that leveraged text reports to improve clas-
sification accuracy of CNN applied to Optical Coherence Tomography (OCT)
images. Mahmood et al. [17] present a method that uses hand-coded topic ex-
traction, hand-coded image features and a SVM-based correlation system. Shin
et al. [14] document efforts to mine an extremely large database of images and
text extracted from the PACS of the National Institutes of Health Clinical Cen-
ter (approximately 216 thousand images) using latent Dirichlet allocation (LDA)
to extract topics from the raw text and then correlate these topics to image fea-
tures. Kisilev et al. [9] proposes an SVM-based approach to highlight regions of



interest (ROIs) and generate template-based captions for the Digital Database
for Screening Mammography (DDSM). This is extended using a multi-task loss
CNN in a later work [8].

To the best of our knowledge, only one published work exists for applying
neural image captioning to a medical dataset [15]. In this work the authors
employ an architecture similar to Vinyals et al. [19] to generate an array of
keywords for a radiological dataset.

3 Method

Unless otherwise specified, the same method was applied for both the caption
prediction and concept detection tasks. The set of concepts assigned to an image
in the concept detection task is considered to be a caption where each concept
label is a word in the sentence. In both cases only the supplied training dataset
was used to train the models.

3.1 Preprocessing

In order to simplify the task, each image in the training set was preprocessed in
accordance with the task’s evaluation preprocessing specifications. This involved
converting the caption to lower case, removing all punctuation (some captions
contained multiple sentences, however, after this step each caption became a sin-
gle sentence), removing stopwords using the NLTK [1] English stopword list and
finally applying stemming using NLTK’s Snowball stemmer. No preprocessing
was applied to the ‘sentences’ for the concept detection task. After this prepro-
cessing the count of each unqiue word in the training corpus was taken. Words
that appeared less than 4 times were discarded and this resulted in a dictionary
of 25237 distinct words. For the RNN framework described below, two reserved
words indicating the start and end of sentences are added to the dictionary and
used to prepend and append each sentence.

The images are first resized to 324x324px, and a 299x299px crop is then
selected. During training this is a random crop, but during evaluation a central
crop is used. We apply image augmentation during training to regularise the
model [10]. This augmentation consists of distorting the image, first by randomly
flipping it horizontally then randomly adjusting the brightness, saturation, hue
and contrast. The random cropping and distortion are performed each time an
image is passed into the model and means that it is extremely rare that exactly
the same image is seen twice.

A validation set was provided by the organisers of the task and it entirely
reserved for validation. No part of it was used for training, and specifically we
did use it to build the dictionary of unique words.



3.2 Model

Our method extends Vinyals et. al’s NICv2 model [20] 1. The NICv2 model con-
sists of two different types of neural networks paired together to form an image-
to-language, encoder-decoder pair. A CNN, specifically the InceptionV3 [18] ar-
chitecture, is used as an image encoder. InceptionV3 is one of the most accurate
architecture for general image classification according to the ImageNet [2] bench-
mark, but is significantly more computationally efficient than alternatives such
as Residual Networks [5]. We utilised a RNN based on LSTM units as the lan-
guage decoder as per the original paper, however, we doubled the number of
units from 512 to 1024 as this showed improved results in our experiments.

An image is first preprocessed as described above and then fed to the input
of the CNN. The logits of the CNN are passed into a single layer fully-connected
neural network which functions as an image embedding layer. This image em-
bedding then the becomes to initial state of the LSTM network. As per [20] the
embedding was passed only at the initial state and is not used subsequently. At
each state subsequent to the initial state, then LSTM’s output is passed to a
word embedding layer and then to a softmax layer. At each time step the out-
put of the softmax is the probability of each word in the dictionary. For two of
the caption prediction experiments (PRED2 & PRED4) we modified the base-
line language model to use a 3-layer LSTM model with a single dropout layer
on the output. Increasing the number of LSTM layers improves the ability of
the language model to represent complex sentences and long term dependencies.
Industrial neural machine translation models have been demonstrated to use
decoder layers with up to 8 layers [21].

In all our models we used 1024 units for both the image and word embed-
ding layers. The CNN is initialised using weights from a model trained on the
ImageNet dataset, while the weights for the LSTM are initialised from a ran-
dom normal distribution with values between -0.08 and 0.08 as per [16]. For the
final caption prediction experiment (PRED4) we attempted to domain transfer
the updated CNN weights from the DET2 caption detection model. This was
attempted to avoid corruption of CNNs during end-to-end training (discussed in
Sect. 4).

3.3 Training

The loss optimised during training is the summed cross entropy of the output of
the softmax compared to the one-hot encoding of the next word in the ground
truth sentence. This loss was minimised with standard Stochastic Gradient De-
scent (SGD) using an initial learning rate of 1.0 and a decay procedure that
reduced the learning rate by half every 8 epochs (there were 164541 examples
in the training set and a batch size of 16, so each epoch contains 10284 mini-
batches). Gradients were clipped to 5.0 for all experiments.

1 As per the Tensorflow-Slim implementation available at:
https://github.com/tensorflow/models/tree/master/im2txt
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Fig. 1. Schematic of the Neural Image Captioning architecture with a validation image
and the actual generated caption.

3.4 Inference

As suggested by Vinyals et al. [19] we use Beam Search to generate sentences
at inference time. This avoids the non-trivial issue that greedily selecting the
most probable word at each time-step may result in a sentence which is itself of
low probability. Ideally we would search the entire space for the most probable
sentence, however, this would have an exponential computational cost associated
with it as a forward pass through the entire model must be made for each node of
the search tree. Therefore some search procedure is required in order to find the
most probable sentence given limited computational resources. Our best results
were achieved with a beam size of 3 and maximum caption length of 50.

3.5 Post Processing

The sentence output of the concept detection task was converted to an ordered
set of concept labels.

3.6 Details of Submitted Runs

Tables 1 & 2 detail the specifics of the 3 runs submitted to the concept detection
challenge and the 4 runs submitted the caption prediction challenge.



Concept Detection

Run Description

DET1 CNN weights frozen. LSTM and embedding layers trained for 958069
minibatches (approx. 90 epochs)

DET2 DET1 trained end-to-end for an additional 2658763 minibatches (ap-
prox. 350 epochs total). Model suffered from destructive gradient issue
discussed below.

DET3 Naive merge of DET1 & DET2, using a set union of each model’s
predicted labels
Table 1. Details of Concept Detection submitted runs.

Caption Prediction

Run Description

PRED1 CNN weights frozen. LSTM and embedding layers trained for 1499176
minibatches (approx. 145 epochs)

PRED2 CNN weights frozen. 3-layer LSTM with a single dropout layer. Trained
for 998981 minibatches approx. 97 epochs)

PRED3 Naive Merge of PRED1 and PRED2 based on most non-known words
in sentence

PRED4 CNN Domain transfer from fine tuned detection task model DET3. 3-
layer LSTM with a single dropout layer. CNN weights then frozen and
LSTM and embedding layers trained for 437805 minibatches (approx.
42 epochs)
Table 2. Details of Caption Prediction submitted runs.

4 Results

Tables 3 & 4 detail the training, validation and test results of the various runs.
Please note that due to the high cost of inference, the training scores are esti-
mated based on a random sample of 10000 images from the training set.

We attempted a two-phase training procedure as suggested by Vinyals et
al. [20] for DET2 and some unsubmitted experiments. In the first phase we froze
the CNN weights and trained only the LSTM and embedding layers. Then, once
the language model had begun to converge we trained the entire model end-to-
end with a very small learning rate (1e− 5). This is suggested by the Vinyals et
al. as necessary as otherwise the CNN model will become corrupted and never
recover. However, we found that despite training the LSTM for a very long time
in the first phase and using a very small learning rate in the second phase we
would very quickly corrupt the CNN as evidenced by a sharp increase in dead
ReLUs and a large decrease in BLEU score. We found that BLEU scores would
eventually return to those achieved in the first phase of training, however, the
dead ReLUs did not revive. We believe that the underlying issue is that the
degree of domain transfer required to go from general images to medical images
is vastly greater than that required to go from one collection of general images
to another (i.e. ImageNet to MSCOCO).



Concept Detection

Average F1 Score

Run Train (estimated*) Validation Test

DET1 0.1055 0.1088 0.0838

DET2 0.1119 0.1117 0.0880

DET3 0.0860 0.0952 0.0958

Table 3. Details of Concept Detection results. *Training score estimated on a random
sample of 10k training images.

Caption Prediction

Average BLEU Score

Run Train (estimated*) Validation Test

PRED1 0.1367 0.1315 0.0656

PRED2 0.1590 0.1533 0.0851

PRED3 0.1383 0.1734 0.0982

PRED4 0.1556 0.1489 0.0826

Table 4. Details of Caption Prediction results. *Training score estimated on a random
sample of 10k training images.

4.1 Qualitative Analysis

Table 5 shows some generated and predicted captions from the validation set.
For the first image, the model has learned to generate the exact same caption
as the ground truth, with the exception of the second word which is unknown.
This exact caption, with only the second word different, appears alongside 21
images in the training set. The unknown word, ‘latiterga’, does not appear in
the training set. In the second example, the model has correctly identified the
modality, orientation and anatomy from the image and has generated a very
similar sentence even though no such sentence exists in the training set. It has
not, however, determined that this is a preoperative image. The third example
demonstrates a very poor result. The model has not correctly determined that
there are two subfigures, although it has correctly estimated the magnification
of the left subfigure.

5 Conclusion

Based on the small variance between our training and validation scores we do
not believe that the models were overfitting, however, the large variance between
validation and test scores indicates that there was a large disparity between the
training and validation data and the data in test set. Based on the non-overfitting
analysis we could potentially train a much larger vision model for a longer time
and improve the overall performance.

Additionally the fact that we could not successfully train the vision model
without corrupting the network was a major limiting factor in our experiments.



Future work will investigate the potential of larger language models and de-
vising a training regime that allows true end-to-end training for medical images.

Actual

orthomorpha latiterga sp n holotyp b right
gonopod mesal later view respect cf distal part

right gonopod mesal later subor subcaud
view respect scale bar 02 mm

Predicted

orthomorpha unk sp n holotyp
b right gonopod mesal later view respect cf
distal part right gonopod mesal later subor

subcaud view respect scale bar 02 mm

Scores
BLEU: 0.9304 BLEU1: 0.9629
BLEU2: 0.92 BLEU3: 0.9231

BLEU4: 0.9167

Actual preoper later radiograph right knee

Predicted later radiograph right knee

Scores
BLEU: 0.7788 BLEU1: 1.0
BLEU2: 1.0 BLEU3: 1.0

BLEU4: 1.0

Actual

discret epithelioid granuloma crohn
diseas discret epithelioid granuloma associ

epitheli injuri stain 100x b discret
epithelioid granuloma musculari mucosa
stain 200x histiocyt epithelioid contain

abund eosinophil cytoplasm

Predicted
histolog examin resect specimen

hematoxylin eosin stain magnif 100

Scores
BLEU: 0.0781 BLEU1: 0.1111
BLEU2: 0.0 BLEU3: 0.0
BLEU4: 0.0

Table 5. Sample of predicted and actual captions with associated BLEU metrics.
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