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Abstract. Tuberculosis is a widespread disease and one of the top
causes of death worldwide. Especially the distinction between drug-sensi-
tive and multidrug-resistant tuberculosis is still problematic. The Image-
CLEF 2017 Tuberculosis Task 1 aims at the development of a machine
learning system able to decide whether a patient suffers from multidrug-
resistant tuberculosis or not, based solely on a CT scan of that person’s
lungs.

In this paper we describe our approach to solve this problem. This con-
sists of a preprocessing step that denoises the scans and highlights certain
parts of the lungs that we assume to be meaningful for the distinction.
We then utilise a shallow convolutional neural network for the following
classification.
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1 Introduction and Performed Tasks

Mycobacterium tuberculosis, the cause of the tuberculosis disease, has been dis-
covered as early as 1882 by Robert Koch, who, in 1905 received the Nobel Prize
in Physiology or Medicine for that discovery. According to the World Health
Organization (WHO), tuberculosis is one of the top 10 causes of death world-
wide. Adding to this, multidrug-resistant tuberculosis (MDR, TB) is difficult to
distinguish from drug-sensitive tuberculosis (DS TB) and more difficult to cure.

We therefore took part in ImageCLEF 2017 [8] Tuberculosis Task 1 [6], in
order to help to establish a comparably cheap and fast automatic detection
method for MDR TB based on lung CT scans alone. For this task, a training set
of 230 volume scans with labels of the drug-resistancy were given. The objective
was to develop a system that is able to predict a score for the probability of
MDR TB. Since the number of training samples is relatively small, we opted for
a small neural network with very few layers.



The remainder of this paper is structured as follows: In Section 2, we intro-
duce the architecture that we developed during our work on the task. Section 3
gives a brief overview over the results of the challenge and our interpretation.
In Section 4 we show some further experiments with additional network archi-
tectures and Section 5 summarises the paper and gives an outlook to future
work.

2 Method

In this section we describe the main steps of our approach. First we discuss the
preprocessing of the CT scans in order to enhance the visibility of importand
features. Next, we describe the architecture of our convolutional network. We
conclude with a brief description of our training process.

2.1 Preprocessing of CT Scans

First of all, we load the images using the nibabel python library [2].

After loading the image we assume the minimum value in the image as the
code for the background of the scan, i.e. the portion of the volumetric scan that
has not been scanned in reality. Since the spacing of this values to the actual
black value depends on the scanner model, we then set the background value to
the second lowest value —1. Then we simply transform the range of values in the
scans to the interval [0, 1], since the values used in the images are not consistent
throughout the data set. This is likely due to different computer tomograph
models used to create the scans.

According to [3], MDR TB is characterised by less frequent large nodules,
cavities and bronchial dilatation with respect to DS TB. Since all of those phe-
nomena occur in the lungs, we opted to use the provided lung segmentations
that have been extracted by the method described in [5]. The lung segments use
the background value b of the corresponding scan as a symbol that a voxel is
not part of the lungs and then use b+ 1 and b + 2 for showing the two sides of
the lung. Since for the task at hand that division is not of interest, we set b to
0 and both values of b+ 1 and b + 2 to a value of 1. The actual segmentation
of the scan is then derived as the voxel-wise product of the CT scan and the
segmentation mask.

Inspection of the resulting scans shows, that on the one hand, there is still
a large variation of intensity values in different scans (see Figure 1). On the
other hand, as pointed out in [3], the means to distinguish MDR TB and DS
TB are mainly in the characteristics of the nodules, which are among the lighter
portions of the scans. Also, there is a lot of noise in the darker parts of the scans
which we try to get rid off with the following step.

We therefore create an intensity histogram consisting of 256 even spaced bins
for each of the segmented scans, ignoring the background value. We chose a value
of 256 because it is a good tradeoff between colour precision and meaningfulness
of the colour ranges spanned by the bins. Then we search for the bin that occurs



(c)

Fig. 1: An example for the different intensities in normalised scans in (a) and (c)
and the effect of the denoising on that in (b) and (d).

most often and determine the upper border u of that bin. Then we set all values
v < u to u in order to remove the background noise in the darker parts of the
scan. Note that b < u, as well. As can be seen in Figure 1 (a) and (c), it is
not advisable to use one fixed threshold for all images of the data set due to
the large variety in intensity. Figure 2 shows an example of the effects of the
different steps in our preprocessing pipeline.

We increase the contrast by extending the used range of [u, 1] to [0, 1], again,
resulting in a more even intensity among the data set that highlights the nodules
and thus the important parts of the scans. Subsequently, we crop the scan to
the minimal bounding box of all non-zero values. This results in variable sizes
for each dimension.

2.2 Classification with Convolutional Neural Networks

For the actual classification of the scans we put the preprocessed three di-
mensional data sets in a three dimensional convolutional network based on
KERAS [4] with TensorFlow [1] as backend. The architecture of the network
is shown in Figure 3.

The size of the preprocessed data is variable in every dimension except for
the number of channels, which is always one. This is reflected in the input layer
and indeed all of the following layers until the spatial pyramid pooling layer [7],



Fig.2: An example of the effects of the preprocessing for slice 52 of
MDR_-TRN_031. (a) shows the slice of the original ct scan. (b) shows the nor-
malised and segmented slice. (¢) shows the same slice after the denoising.

since scaling to a fixed size induces losses in sharpness due to the necessary
interpolation. This is especially the case in the z dimension because the distance
between slices differs from scan to scan and, in general, that distance is larger
than between the pixels in x and y dimensions.

The first layer of the network is a three dimensional max pooling layer with
filter and stride size of (4,4, 1). This means, that for every 4 by 4 patch from each
slice, we take the brightest pixel of that patch. We do not reduce the number of
slices for the reasons mentioned above. The usage of this layer is to reduce the
memory footprint of the input data since the memory on the university cluster’s
Tesla K20Xm GPUs was limited.

The max pooling is followed by two blocks consisting of a three dimensional
convolutional layer with filter size of (3,3,3) and ReLU as activation function
and a max pooling layer with filter size (2,2, 2), each. In the first block we use 3
convolutional filters and in the second we use 6. We use a relatively low number
of filters in these blocks because the number of training samples is low, too.
These two blocks are followed by a dropout layer with a drop probability of
0.25.

The final fully connected layer expects an input tensor of a fixed size. Due to
the variable input size, a normal flatten layer is not applicable to achieve this.
We therefore use a spatial pyramid pooling layer as introduced by He et.al. in [7].
The layer introduced in this paper is intended for two dimensional images, but
the extension to spatial images such as CT scans is straight forward. Basically,
the idea of spatial pyramid pooling is to utilise max pooling on a fixed number of
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Fig. 3: Architecture of our CNN. The variable sizes of the input are denoted x, y
and z.

regions for every channel of the input data for this layer. The size of the regions
is determined by the number of regions.

For example, let us assume the input data for the spatial pyramid layer in
one instance has a size of 100 x 100 x 100 voxels and one channel and we utilise
a spatial pyramid pooling layer with 1 and 4 as number of bins per dimension!,
resulting in a vector v with 1% 4+ 42 = 65 dimensions. Hereby, the first entry of v
is the maximum value over the whole of the input data, while the second entry
is the maximum value of the first 25 x 25 x 25 voxel block and so on.

In our network, we use a pooling list of 1, 2, and 4 and we have 6 input

channels, thus resulting in an output size of (1% + 23 + 43) . 6 = 438.

! This is in contrast to the notation used in [7], where the parameters determine the
number of bins, i.e. the parameters 1 and 4 would result in an output size of 5.



Finally, the fully connected layer has a softmax activation function and one
output node. We trained the model with categorical crossentropy as loss function
and Adam [9] as optimiser. The whole network has 1015 trainable parameters.

2.3 Training

For the training of our final model we used the whole of the given training set
and threaded it through our preprocessing as described above. The training set
consists of 230 scans, 134 of which are labelled DS TB and 96 MDR TB. We did
not use any additional training data, nor did we add additional annotations to
the training data.

We also opted against the usual techniques of artificial enlargement of the
training set, for example by rescaling or shifting the input images or using filters
on them. In respect to rescaling, all CT scanners known to us produce output
images of 512 x 512 pixels per slide so that a scaling here would lead to unrealistic
data. Shifting of the slides would not be unrealistic, however, due to our usage
of the given lung masks and the subsequent cropping to these regions of interest,
shifted scans would be exact duplicates after preprocessing. Finally, we did not
use any filters on the test set, since we are not sure what the indicators of MDR,
tuberculosis are. We thus cannot ensure that an artificially changed scan does
not change its class.

3 Evaluation

In this section we give a short interpretation of the preliminary evaluation results
as published on the tuberculosis task homepage?. The test dataset was meant
to consist of 214 scans, of which 101 are labelled DS TB and 113 MDR TB.
However, the actual dataset passed to the participants only consisted of 213
scans, as scan MDR_TST_123 was missing. Table 1 gives the complete list of
submitted runs sorted by AUC score. AUC scores range from 0.5825 to 0.4596
and accuracy is in a range from 0.4413 to 0.5681. The best values for every score
are marked bold in the table.

The first thing to note in this context is, that none of these results, including
our own, are exceptionally good. Given that the size of the classes was known,
an ACC score of 0.5280% could be achieved by statically classifying all test data
set points as MDR tuberculosis, i.e. 1. For AUC the result for any guess of this
fashion is 0.5.

Our submitted runs are all results of the architecture described in the pre-
vious section. Only the number of training epochs differs and is given by the
number at the end of the run filename. We selected a number of runs that came
close in numbers to the given class distribution and that also were confident in
the prediction score, i.e. they have a high number of predictions that are either

2 http://www.imageclef .org/2017/tuberculosis
3 Value is computed on the given distribution. The real achievable value is either
0.5305 or 0.5258 depending on whether there are 113 or 112 samples for MDR.



l #[Group Name [Run [ AUC[ ACC‘
1{MedGIFT MDR_Topl_correct.csv 0.5825| 0.5164
2|MedGIFT MDR _submitted_topBest3_correct.csv 0.5727| 0.4648
3|MedGIFT MDR _submitted_topBest5_correct.csv 0.5624| 0.4836
4|SGEast MDR_LSTM_6_probs.txt 0.5620| 0.5493
5|SGEast MDR _resnet_full.txt 0.5591| 0.5493
6|SGEast MDR_BiLSTM_25_wcrop_probs.txt 0.5501| 0.5399
7|UIIP MDR _supervoxels_run_1.txt 0.5415| 0.4930
8|SGEast MDR_LSTM_18_wcrop_probs.txt 0.5404| 0.5540
9|SGEast MDR_LSTM_21wcrop_probs.txt 0.5360| 0.5070

10|MedGIFT MDR_Top2_correct.csv 0.5337| 0.4883

11{HHU DBS MDR_basecnndo_212.csv 0.5297|0.5681

12|SGEast MDR_LSTM_25_wcrop_probs.txt 0.5297| 0.5211

13|BatmanLab MDR _submitted_top5.csv 0.5241] 0.5164

14|{HHU DBS MDR_basecnndo_113.csv 0.5237| 0.5540

15|MEDGIFT UPB MDR_-TST_RUN_1.txt 0.5184| 0.5352

16|BatmanLab MDR _submitted_top4_0.656522.csv 0.5130] 0.5024

17\ MedGIFT MDR_Top3_correct.csv 0.5112| 0.4413

18|HHU DBS MDR_basecnndo_132.csv 0.5054| 0.5305

19|HHU DBS MDR _basecnndo_182.csv 0.5042| 0.5211

20{HHU DBS MDR_basecnndo_116.csv 0.5001| 0.4930

21|{HHU DBS MDR_basecnndo_142.csv 0.4995| 0.5211

22|HHU DBS MDR_basecnndo_120.csv 0.4935| 0.4977

23|SGEast MDR _resnet_partial.txt 0.4915| 0.4930

24|BatmanLab MDR-submitted_topl.csv 0.4899| 0.4789

25|BatmanLab MDR_SuperVx_Hist FHOG_rf_0.648419.csv| 0.4899| 0.4789

26|Aegean Tubercoliosis MDR_DETECTION_EXPORT2.csv 0.4833| 0.4648

27|BatmanLab MDR_SuperVx_FHOG_rf_0.637994.csv 0.4601| 0.4554

28|BioinformaticsUA  |MDR_runl.txt 0.4596| 0.4648

Table 1: Preliminary evaluation results ranked by AUC score. Our submissions
are those by “HHU DBS”.

close to zero or one. From the results, we see the influence of the dropout mecha-
nism on the learning, since the result quality does not correlate with the number
of epochs in training. This is especially evident in the block of ranks 18 to 22.
Also, the lowest number of submitted epochs, namely 113 has the second highest
AUC score of our runs, while the highest number of epochs, 212, has the highest
AUC score of our runs. This run also has the highest accuracy of all submitted
runs.

4 Further Experiments

In this section, we present some other network architectures that we tested
after the run submission deadline on a new Nvidia Quadro P6000 with 24GB of



l Layer [Number of Filterleilter Size[ Stride ‘

Maxpooling 0 n.a. (2,2,1) (2,2, 1)
Convolutionl 3 (3,3,3) (1,1, 1)
Maxpooling 1 n.a. (2,2,2) (1,1, 1)
Convolution2 6 (3,3,3) |(1,1,1)
Maxpooling 2 n.a. (2,2,2) (1,1, 1)
Dropout 0.25 n.a. n.a. n.a.
Spatial Pyramid [1, 2, 4] n.a. n.a.
Dense n.a. n.a. n.a.

Table 2: Network architecture Alt. 1 with smaller initial max pooling.

l Layer Number of Filters[Fﬂter Size[ Stride ‘
Convolutionl_1 4 (5,5,3) (3,3, 1)
Convolutionl_2 4 (3,3,3) (1,1, 1)
Maxpooling 1 n.a. (2,2,2) (1,1, 1)
Convolution2_1 8 (3,3,3) |(1,1,1)
Convolution2_2 8 (3,3,3) (1,1, 1)
Maxpooling 2 n.a. (2,2,2) (1,1, 1)
Dropout 0.25 n.a. n.a. n.a.

Spatial Pyramid [1, 2, 4, §] n.a. n.a.

Dense n.a. n.a. n.a.

Table 3: Deeper network architecture Alt. 2 with initial convolutional layer.

memory in order to evaluate the effects of some of our design decisions. Examples
for this are the strong initial max pooling and the depth of the network. Tables
2 and 3 give an overview over these architectures.

The architecture described in Table 2 is similar to our main architecture
as given in Figure 3, apart from the smaller filter size during the initial max
pooling step. We used this architecture to test, whether using a strong initial
max pooling has a negative impact on the classification.

In contrast to the architecture described in Section 2.2, the one given by
Table 3 is a more conservative design built on two convolutional blocks with two
convolutional layers and one max pooling layer, each. The larger filter size and
stride setting in Convolutionl_1 is due to the fact, that without those settings,
the data was too large for the graphic memory to compute a whole epoch. We
used this network architecture in order to give the network a greater degree of
freedom in training via a larger number of trainable parameters. This is sup-
ported by the addition of an eight region per dimension portion to the spatial
pyramid filtering.

We tested all network architectures we described thus far on different splits of
the 230 training scans. For this, we used the preprocessed scans that we achieved
by utilising the pipeline described in Section 2.1. Then, for each split, we chose
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Fig.4: Results of the preliminary AUC tests. AUC scores are computed with
scikit-learn [10].

30 of the scans to act as a test set and trained each network for 100 epochs
on the remaining 200 scans. We then tested on the corresponding test set. For
each split, we started with previously untrained networks in order to not induce
overfitting. The results of these runs are shown in Figures 4 and 5. To reduce
the impact of the dropout, apart from the first epoch, for the comparison we
chose the best epoch regarding the predicted AUC value of the given range. It
can be seen here, that the difference between the submitted network and Alt. 1
is marginal. From this we deduce, that the stronger initial max pooling’s effect
is negligible.

5 Conclusion

As the results presented in section 3 show, none of the submitted runs yields
outstanding results. This shows, that the distinction between DS TB and MDR
TB is difficult based on CT scans only. On the other hand, [3] indicates that
most likely the distinction can be made upon the nodules. Therefore, we think
it would be interesting to have an annotated dataset in respect to those, i.e.
with annotated bounding boxes for nodules, and cavities among other meaning-
ful findings. The challenge itself would not have to change, i.e. it would still be
possible to build a system that gets a full CT scan as input and outputs the
probability of MDR TB. Also, a larger number of training data would be de-
sirable. We believe, that with more training data, larger networks become more
feasible and therefore a more fine grained distinction might be possible.
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Fig.5: Results of the preliminary ACC tests. ACC scores are computed with
scikit-learn [10].

Future work in our case will include possible revisions of the preprocessing
step, since we believe that a focus on the relevant features such as nodules and
cavities is advisable. Also, we would like to test the architectures presented in
Section 4 on the test data, if possible. The results of our second alternative
approach look especially promising and could yield comparable results to the
winner of the challenge on the full test set. We will also test deeper architectures
in the future.
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