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Abstract. Object classification is a very demanding field in computer
vision, especially when dealing with medical imaging datasets, which are
often small and have unbalanced distributions. Deep learning (DL) meth-
ods have proven to be effective in dealing with such problems and have
established themselves as the state-of-the-art. ImageCLEFtuberculosis
is a challenge that encompasses the classification problem on medical
images, and is divided into two subtasks: Drug Resistance Detection
and Tuberculosis classification. For both subtasks, provided images were
pre-processed to segment the lungs from the CT volumes. Afterwards,
pre-processed CT volumes were fed in batches to a 3D convolutional neu-
ral network. Test results for the Drug Resistance detection task scored
an accuracy of 46.5% and AUC of 0.46, while in the Tuberculosis classi-
fication task an accuracy of 24% and Cohen’s Kappa value of 0.022 were
obtained. Using data augmentation and weight normalization, the over-
fitting problem could be reduced, and submitted models’ performance
improved.

Keywords: 3D-CNN, Neural Networks, Deep Learning, Medical Imag-
ing, CT, Tuberculosis, ImageCLEF

1 Introduction

The ImageCLEFtuberculosis task [1] from ImageCLEF 2017 [2] is a challenge
centered on medical imaging, that has the motivation of improving tuberculo-
sis treatment and reducing its impact on patients through the development of
systems capable of extracting the tuberculosis type and drug resistances from
image data alone. Usually, working with medical imaging datasets encompasses
distinct challenges such as the limited access to data, its reduced size and the
unbalanced distributions. Deep learning (DL) methods have been increasingly
explored in the field of image analysis, with neural networks leading to major
breakthroughs in renown challenges, such as the MNIST Digit Image Classi-
fication Problem and the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [3], where they are considered the state-of-the-art [4]. These networks
present great interest since they automatically learn high-level representations
from the data, and can be used to reduce the data dimensionality [5].



In recent years, deep learning has started to make a significant appearance in
the field of medical imaging with promising results [6]. Following this trend, this
article assesses the viability of this technology to solve ImageCLEF challenges
through the development of a 3D Convolutional Neural Network (CNN) model.

The ImageCLEFtuberculosis task is divided into two separate and indepen-
dent subtasks: drug resistance detection and tuberculosis classification. The goal
of the first task was to assess the probability of a tuberculosis (TB) patient hav-
ing a resistant form of tuberculosis based on the analysis of a chest CT scan,
whereas the second one focused on classifying the TB type from five possible
types of TB.

This article describes the proposed solution and runs submitted by the Bioin-
formatics team for both subtasks. The developed methodology is presented in
Section 2, results are presented and discussed in Section 3, and finally Section 4
draws some conclusions and future work.

2 Methodology

To address the MDR detection and TB type subtasks from ImageCLEFtuber-
culosis, we propose a two-stage pipeline: Data pre-processing and a DL model
(Figure 1). The pre-processing stage was applied to both subtasks whereas the
DL model was fine-tuned for each subtask.
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Fig. 1. Pipeline Overview.

Pre-processing stage used the Computed Tomography (CT) images, seg-
mented the lungs, and resized data to be ready to feed the DL model. On the
other hand, the DL model used batches of pre-processed data and classified it.
Each of the stages is explained in more detail in the next subsections.

An important aspect of proposed approach is related with the fact that a
CT volume is composed by several images and the observation that a single slice
might provide poor classification results. So, we decided to feed the DL models
with volumes composed of stacks of CT slices, option that conducted us to use
of a 3D-CNN model instead of a conventional CNN model. This option brought
also implications concerning the shape of the models input tensors, which were
solved in the data pre-processing step.

Data Pre-processing

Pre-processing stage has the responsibility of preparing data for posterior pro-
cesses, namely feeding the DL model. For the drug resistance detection subtask,



a train dataset with 230 CT volumes and a test dataset with 214 CT volumes
were provided. In this subtask data had two possible classes. Regarding the tu-
berculosis classification subtask, a train dataset with 500 CT volumes and a
test dataset with 300 CT volumes were provided, with data having five possible
classes. CT volumes had a variable number of slices, with slice size being 512x512
pixels [1].

In the training datasets, CT volumes had the lungs segmented using masks
created with a developed algorithm. To create the masks, the following method
was used: a thresholded was applied to the images where intensities below -300
Hounsfield units were set as background, the pixel values were normalized to
have an intensity range from 0 to 255, and resulting images were passed through
a binary thresholding process with a threshold value of 20. Using scikit-image1,
small holes and small objects were removed, using methods with the same name
and parameterized with minimum size of 100 and connectivity of 4. Next, the
two methods were reapplied but with a minimum size of 1000. The result is the
desired masks.

Obtained masks were highly similar compared to those provided to the par-
ticipants [7]. Dice’s coefficient, which is scaled from 0 to 1 with 1 corresponding
to image equality, was computed to assess the similarity between created masks
and the original provided masks, with a global average value of 0.9755 being
obtained. Regarding the test dataset, provided masks were used to ensure that
test data to feed the 3D-CNN was not tampered.

After this, the resulting masked volumes were reshaped to comply with the
NHWC channel ordering (number of samples x height x width x channels) used
in CNNs. In our case, the number of samples corresponds to the number of CT
slices. Next, each CT slice was resized to dimensions of 256x256 pixels.

The resulting volumes were resized, regarding the number of slices, so that
all volumes had the same number of slices. This was achieved by padding the
top and bottom of each volume, resulting in a final volume with fixed size (real
data in the center, and padding in the extremities). Finally, data was normalized
to have zero mean.

For each subtask, processed datasets were saved in HDF5 files resulting in
two HDF5 files per task with the train and test sets.

Deep Learning

As expressed, we opted by a 3D-CNN model for the DL model stage. The model
was implemented with TensorFlow [8] version 1.0.0 with support for GPU, which
massively increases the speed and efficiency of training and developing models
such as neural networks. Moreover, TensorBoard was used during the develop-
ment of the 3D-CNN model for debugging and optimization purposes. Some
additional functions needed for the models’ development were imported from
TFLearn2 (v0.3), a DL library that provides a higher-level API to TensorFlow.

1 http://scikit-image.org
2 TFLearn: http://tflearn.org



The 3D-CNN model training ran on an Ubuntu server machine equipped with
an NVIDIA Tesla K80 GPU accelerator.

Regarding the DL model itself, Figure 2 presents an overview of the built
model with the respective composition of each layer. The decision to use a 3D-
CNN model with seven convolutional layers and two fully connected layers was
empirical.
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Fig. 2. Diagram of the neural network model used.

Literature supports that deeper models can be more powerful than shallow
ones, as the former can learn how to represent high-level abstractions, presenting
particular interest for the fields of vision, language and other AI-level tasks [9].
However, it is also known that deeper models are more difficult to train due to
problems such as the vanishing gradient problem, where initial layers learn at
slower speeds than final layers. Naturally, the deeper the network, the more prone
it is to the vanishing gradient problem [10]. Moreover, deeper models demand
bigger compute power, which is a very significant overhead. Thus, bearing in
mind the associated implications of creating a deep neural network, and the
existing limited compute power, it was decided to build a network with a small
number of layers.

As it is possible to observe in Figure 2, the network’s first six layers share the
same structure (but not the hyperparameters). In these six layers, the incoming
tensor is passed through a sequence of 3D convolution, 3D max pooling, batch
normalization and non-linear activation function.

Batch normalization is very important as it addresses a phenomenon called
internal covariate shift, which slows down the training of neural networks [11].
Concerning the activation function, since the sigmoid activation function can
cause problems when training deep neural networks [12], a variation of the recti-
fied linear unit (ReLU) – the leaky ReLU – which can lead to better performances
was used in this neural network [13].

Overfitting is other serious concern in neural networks, specially when dealing
with medical imaging datasets which frequently consist of reduced amounts of
data, with unbalanced distributions. For that reason, dropout [14], a regularizer
used to reduce overfitting in neural networks, was used in our model. However,
it was only applied to the fully-connected part of the network as convolutional
layers have considerable inbuilt resistance to overfitting [15]. Also, L2 regular-
ization was used in each convolutional layer to reduce model overfitting, and the
last Fully-Connected layer has a softmax activation function.



The described 3D-CNN was used for both subtasks, though with different
hyperparameters due to the fine-tuning procedure performed for each subtask.
All Leaky ReLUs were used with the leaking coefficient α = 0.1 and Dropout
with a drop probability of 0.5 for both subtasks. Table 1 summarizes the remain-
ing hyperparameters for the models’ layers. It should be noted that the hyper-
parameters were defined with compute power constraints in mind. All weights
were initialized as described in [16].

Table 1. List of layer hyperparameters for the MDR detection and TB type models.
The following parameters are displayed: number of units/filters, kernel size, stride and
L2 weight decay.

Layer
MDR Detection TB Type

Units Kernel Stride L2 Units Kernel Stride L2

Conv1 35 11 2 0.01 20 7 3 0.001

Max1 5 5 5 2

Conv2 60 7 7 0.001 15 11 3 0.001

Max2 5 5 5 2

Conv3 60 5 3 0.002 15 9 3 0.001

Max3 3 2 5 2

Conv4 60 5 3 0.002 15 7 7 0.001

Max4 3 2 5 2

Conv5 92 5 3 0.002 32 5 3 0.001

Max5 2 2 2 2

Conv6 92 3 2 0.003 64 3 2 0.001

Max6 2 2 2 2

Conv7 128 1 1 128 1 1

FC1 128 128

FC2
Num

Classes
Num

Classes

Concerning data handling, the training dataset was split into 80/20 parcels,
for training and validation splits respectively. Data distribution had moderately
balanced classes for the MDR detection subtask, whereas for the TB type subtask
a less balanced dataset was provided. For each subtask, data was split taking
into account class distributions, in order to ensure the same class distribution in
training and validation splits. Even though the network was prepared to work
with K-fold cross validation, due to time constraints and the inherent nature of
the training process of a neural network, the network was validated offline using
a single combination of the 80/20 split.



Furthermore, the model was fed with mini-batches of data containing com-
plete CT scans, where each sample is one of the CT volumes being forwarded
through the net. Since this type of network is demanding in terms of memory
and computational cost, and aiming to enable the use of bigger batch sizes, each
pre-processed volume was cropped into a fixed smaller number of slices, corre-
sponding to the size of the smallest volume in the original dataset. As expressed,
this cropping method extracts data from the center of each CT volume.

In order to prevent the network from learning a given data sequence/order,
data splits were shuffled in each epoch, prior to being fed to the model. Finally, a
group of four metrics was used to assess model performance, consisting of: cross
entropy, accuracy, precision, and recall.

3 Submitted Runs and Results

A single run was submitted for each subtask of the ImageCLEFtuberculosis task,
with the results and respective neural network configurations being discussed in
this section.

In both subtasks the neural network models were trained using an Adam
optimizer [17] for stochastic optimization, with the following settings being used:
α = LearningRate, β1 = 0.9, β2 = 0.999 and ε = 10−8. Table 2 summarizes
some of the hyperparameters used in order to train the neural network for each
subtask. All hyperparameters were defined empirically.

Table 2. Hyperparameters used in the neural networks for the submitted runs.

Hyperparameter
MDR detection

(Subtask 1)
TB type

(Subtask 2)

Batch Size 18 30

Learning Rate (LR) 7 x 10−5 9 x 10−6

LR Decay 5% 5%

Decay Interval 10 epochs 15 epochs

As previously mentioned, the graphics card used to accelerate the training
of the neural network was an NVIDIA Tesla K80, which possesses two separate
GPUs. Due to the use of the graphics card for other tasks, the MDR detec-
tion model was trained using a single GPU whereas the TB type model was
trained using both GPUs. Therefore, and as shown in Table 2, it was possible
to significantly increase the batch size for the TB type network.

Learning rate was reduced by a fraction of 5 percent of its value after 10 and
15 epochs for subtask 1 and subtask 2, respectively. Validation was performed
in intervals of 3 epochs for the MDR detection’s model, and in intervals of 2
epochs for the TB type’s model.



Table 3. Performance metrics used in the validation of submitted models.

Metric
MDR detection

(Subtask 1)
TB type

(Subtask 2)

Accuracy 0.5501 0.1744

Precision 0.5470 0.5223

Recall 0.3440 0.4413

The best results obtained for each subtask during the validation phase are
shown in Table 3. In MDR detection, which is a two class problem, the trained
model favors the retrieval of the most frequent class but struggles to detect
the less frequent and more relevant class, leading to a substantially lower recall
comparatively to obtained accuracy and precision.

In the TB type task, a multi-class problem (five classes), it is possible to see
that the tuned model attained a lower accuracy, while keeping slightly similar
precision and improved recall. The impact of having a higher number of classes,
combined with a less balanced dataset for this task had a repercussion on the
validation accuracy which was significantly lower than in the MDR detection
task. Such accuracy value demonstrates that the neural network had difficul-
ties in identifying the classes in data, which explains why some classes had no
occurrence registered in the validation dataset.

Regarding the testing phase, in the MDR detection subtask contestants had
to submit the probability of each patient having MDR, whereas for the TB
type task submissions had to contain the expected TB type for each TB pa-
tient. Model performance was assessed with different metrics for each subtask:
in MDR detection, performance was measured with Accuracy and Area Under
the Curve (AUC) obtained from the ROC-curves produced with the submitted
probabilities; in TB type classification Accuracy and Cohen’s Kappa were the
selected metrics. Table 4 presents test results both for the submitted run and
for the best run in each subtask.

The list of test results for the two subtasks comprised in ImageCLEF’s tu-
berculosis task [1] clearly demonstrates the high difficulty associated with this
challenge’s proposition. On the one hand, submitted runs performed worse in
each subtask than the remaining entries. On the other hand, for the MDR de-

Table 4. Test results obtained for the submitted models, and best submissions for
each subtask.

Metrics
MDR Detection TB Type

Our Run Best Run Our Run Best Run

Test Accuracy 0.4648 0.5164 0.2400 0.4033

AUC 0.4596 0.5825

Cohen’s Kappa 0.0222 0.2438



tection subtask, the top ranking model had an accuracy just slightly over 50%
whilst our model’s test accuracy was nearly 47% (the best overall accuracy was
56.8%). Concerning AUC, our model scored lower than the top ranking entry by
a bigger margin.

For the TB type subtask, test results were in general worse comparatively
to results of the MDR detection subtask. In this subtask, the top ranking entry
had an accuracy of 40% compared to our model’s 24.3%, and a Cohen’s Kappa
of 0.24 compared to the marginal value of 0.02 obtained by our model.

Aside from the comparison with other models’ performance, it is noticeable
that for subtask 1 our model had lower accuracy in the test phase (46.5%) than
in the validation phase (55%), whereas for subtask 2 the opposite occurred with
test accuracy (24%) being higher than validation accuracy (17.4%). For the first
part, it is very likely that the model suffered overfitting to the training dataset
(a common issue when dealing with medical imaging datasets), and testing per-
formance suffered a significant impact from that. For the second part, there
exists the possibility of having a test dataset less balanced, regarding class dis-
tribution, than the training dataset. By having a class distribution more skewed
towards the more frequent classes, our model can attain higher accuracy scores
than during the validation process.

In spite of our models’ poor performance in general, the final ImageCLEF-
tuberculosis result list [1] shows that there are other entries with comparable
performance. Fine-tuning a model is a slow, thorough process that should be
methodical. In our approach, the search for the best hyperparameters was em-
pirical and not extensive enough due to limitations in terms of available time.
There is much confidence that there exists a big margin for progress and im-
provement in our work, provided there is more time to better train the models,
and correctly fine-tune them.

4 Conclusion and Future Work

The ImageCLEFtuberculosis task is a challenge that encompasses the classifica-
tion problem on medical images. This task was divided into two subtasks: Drug
Resistance Detection and TB classification. In the first subtask the objective was
to assess the probability of a TB patient having a resistant form of tuberculosis,
whereas on the second one the goal was to classify the TB type from a pool of
five possible types.

In this paper we presented two separate runs that were submitted for the
two subtasks. In both subtasks, provided images were pre-processed for this
challenge. Although the test results of our submitted runs for both subtasks
were low (46.5% accuracy, AUC of 0.46 and 24% accuracy, Cohen’s Kappa of
0.022, respectively), the majority of the submitted runs behaved in a similar
way, since the differences in terms of accuracy between the best submitted run
and our own were of 5% and 15% for the MDR detection and TB type subtask,
respectively. As a side note, it is interesting to notice in the list of submissions



that various entries used DL approaches to tackle this challenge, which shows
that DL is an area that holds great promise.

Since overfitting was an effective reality during the development of the neural
network models, in the future we hope to evaluate the impact of techniques
such as data augmentation and weight normalization on our models’ results.
Furthermore, running the model with K-fold cross-validation and performing an
ensemble of the resulting networks could further improve our results.
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