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Abstract. In this paper we address the issue of life logging information
retrieval and we introduce an approach that uses the output of a hier-
archical clustering of data via assessing word similarities. Word similar-
ity is computed using WordNet and Retina ontologies. We have tested
our method during the 2017 ImageCLEF Lifelog challenge, the Sum-
marization subtask. We discuss the performance, limitations and future
improvements of our method.
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1 Introduction

Lifelogging is the process of tracking your own activities at every moment of
the day. But this is not limited only to actions as it also addresses the places
that you visit and the people that you engage into activities with. A formal
definition describes lifelogging as “a form of pervasive computing, consisting of a
unified digital record of the totality of an individuals experiences, captured multi-
modally through digital sensors and stored permanently as a personal multimedia
archive” [1].

Lifelogging consists of best describing all events within a time frame from
ones life. This is usually achieved by wearing a camera which takes automatic
pictures at certain time intervals during the entire day, thus capturing a great
amount of information from the wearer’s point of view. However, this does not
offer temporal or spatial information other than what it can be extracted from
the details of the captured images. In order to solve this, certain devices can be
used to add timestamps and geolocation to the images. In addition, there also
exists devices that offer information about numerous other aspects concerning
the lifelogger’s status and the surrounding environment such as pulse, tempera-
ture, pH or acoustic sensors. As it can be seen, only the environment limits the
type of data that can be collected and all these details build up leading to an
increasingly accurate description of the lifelog.

Extensive details about lifelogging can also be found in [2, 3]. In these 2
papers, different techniques of acquiring data are presented and they offer im-
portant insights on the problems that arise with this new trend. Recent techno-
logical advances have aided the growing trend of lifelogging by offering longer



battery life for the wearable gadgets, a greater variety of sensors that augment
the observable aspects of all events and also higher accuracy for the provided
data. However, all these aspects have the drawback of requiring complex pro-
cessing steps. With the technical problems related to acquisition or storage of
information being solved by the state of the art devices there have been obtained
large volumes of data which need to be interpreted.

As it would be a tedious process to manually annotate and interpret all the
data from a lifelog, an increasing interest in developing techniques that perform
this automatically has emerged. Therefore, Information Retrieval systems fit
the requirements for this job, potentially solving the problems posed by the vast
quantity of data. A rigorous comparative benchmarking campaign regarding
Lifelogging was conducted by the NTCIR initiative [4] and has now also been
adapted by the CLEF initiative in the ImageCLEF Lifelog task [5].

This paper describes our participation to ImageCLEF Lifelog Summarization
Task, one of the 4 tasks approached by the ImageCLEF benchmarking cam-
paign [6]. The summarization task aims at clustering a lifelog database given 10
topics. Each of these topics consists of a short paragraph which briefly describes
what is considered relevant and what is not for that specific task. Our work
focused on finding a correlation between the textual description of a topic and
the confidences provided by the concept detector for each image in the given
database. For each image we computed the Wu-Palmer similarity measure [7]
between the most relevant concepts and a selection of words from the topic de-
scription. What ”relevant concepts” means and how the selection has been done
is described in the following Section. Each similarity measure is then weighted
by the confidence assigned by a concept detector for the relevant concept, thus
obtaining a score for each image. The images from the database are clustered
with an off-the-shelf hierarchical clustering implementation. In the end, the sim-
ilarity score is used to sort and select the best candidates from these clusters.
Related works have been described in [4] with [8] and [9] being closest to our
approach as they also computed a similar WordNet [10] based similarity distance
in their algorithms.

The remainder of the paper is organized as follows. In Section 2 we explain
our proposed system, in Section 3 we present our experimental results, followed
by the conclusions in Section 4.

2 The proposed approach

Due to the fact that the given data contained a large variety of information, our
algorithm tries to capture this aspect by approaching several tasks in parallel.
It also mixes up textual and visual information in the process of selecting the
best candidates for the requirements of the task. In Fig. 1 a general diagram
of the involved processes shows that visual and textual descriptions interleave.
An important aspect of this algorithm is that it relied solely on the information
provided by the organizers and no additional annotations or external data have
been used.



Fig. 1. General diagram of the proposed algorithm.

The algorithm starts by analyzing the output of the concept detector pro-
vided by the organizers and selecting for each image the most probable concepts
only. Each topic out of the list of 10 is then parsed such that relevant words are
kept only. Also, information regarding location, activity and the targeted user are
extracted. The image database comes with an .xml file that describes each image
in terms of activity, location, timestamp and descriptive information related to
the user the image belongs to. The similarity score is computed using WordNet’s
builtin similarity distance functions and this concludes the fundamental part of
the textual part. The images undergo an elimination step imposed by the topic
restrictions and thus the number of items of interest is greatly reduced. This
shortlist of images is then subject to a clustering step and, finally, the results
are pruned with the help of the similarity scores presented before.

2.1 Image concepts

An important input to our system is represented by the list of concepts along
with the respective confidences for each image from the database. This has been
obtained by passing each image through the CAFFE CNN-based visual concept
detector and storing the results, as described by the organizing team [5]. This
concept detector acts as a soft classifier with 1000 classes and it outputs a given
confidence level to each class. It is very debatable if this concept detector is fit
for such a task since it covers a large and diverse range of classes, many of which
are not related to the objects depicted or seen on a daily basis by the lifeloggers
from the database. It is worth mentioning that the vast number of concepts may
affect their accuracy and, consequently, the results of our system.

It is obvious that not all 1000 concepts are relevant for one image as it is
difficult even for humans to detect more than a few tens of concepts in a real-life
picture as are the ones from the database. Therefore, it was mandatory to filter
out the unnecessary concepts and we chose to do so based on the confidence
score that was provided by the concept detector. Thus, it became a matter of
design to select a certain threshold above which a concept would be qualified as



relevant. We chose a statistic approach and set the threshold dependent on the
confidence distribution of each individual image.

Let C(i) = (c0, c1, ..., c999) be the set of confidences for any image i in the
dataset. By imposing a threshold:

t = µ+ 3× σ, (1)

with µ being the mean and σ being the standard deviation over C(i). The set of
relevant concepts becomes:

C
(i)
relevant = {ci | ∀ci ∈ C(i) s.t. ci > t}, (2)

thus giving us some insightful information about the concepts that were detected
in the images.

The first notable aspect is that the number of relevant concepts whose con-
fidence is greater than t differs from one image to another due to the standard
deviation. Since all confidences add up to 1 for any image it is clear that the
mean will always be 0.001, leaving the standard deviation as the only variable
parameter when computing the threshold. As for most distributions, there is a
very narrow set, if any, of concepts that have a confidence higher than the given
threshold due to its high value. The results can be interpreted as follows: if there
are some concepts with a very high confidence score they will raise the standard
deviation of the entire set and will eliminate other less confident concepts; if
there are no such highly confident concepts then the algorithm will select the
most probable few from the set, leading to a larger set of concepts. All in all,
this exploits highly confident concepts and it also takes into account the cases
where there is no such certainty and where several guesses are bound together
to form a less probable description of an image.

Since each concept is described as one or several words we used WordNet to
find the common synset to all the words that describe a concept and use it to
describe the concept with one word only. This was also a preliminary step for
computing the similarity score described in Section 2.5.

2.2 Topic analysis

The topics given by the organizers represent the search query for our information
retrieval system. There are a total of 10 topics, each being described by a title,
a short summary and a slightly longer detailed description. Most of the times,
the information from the title and the summary is also present in the detailed
description so we can ignore the words from the title and the summary. More-
over, the detailed descriptions followed a general pattern, stating which user was
targeted by that specific query, what action he was involved in and the place
where he was at the moment when the picture was taken.

The topics also impose restrictions on the conditions under which an image is
relevant or not with some of them being very strict on this matter. However, all
images that are blurry, out of focus or where the hands of the lifelogger covered
most of the picture are considered irrelevant.



As the topic descriptions consisted of a text file, the analysis of the topics
falls under the NLP processing, covered by WordNet’s embedded tools. In other
words, for each of the 10 topics we did as follows: we stripped the general restric-
tions part as it appeared for each topic and did not help discriminate between
them and extracted only the keywords from the text formed by joining the title,
summary and description of a topic. Another step was to remove all stopwords,
which offer little to no information in a sentence. As WordNet was designed for
nouns and verbs only, we kept these parts of speech from the remaining list of
words. We are aware that some important information is lost when removing
adverbs, adjectives and negations but as NLP is not our main research field we
adopted this simplified parsing algorithm.

In the end, for each topic we obtain some coarse, but fundamental information
related to that specific query. As an example, the next topic:

T1. In a Meeting 2
Query: Summarize the activities of user u1 in a meeting at work.
Description: To be considered relevant, the moment must occur at meet-
ing room and must contain at least two colleagues sitting around a table
at the meeting. Meetings that occur outside of the work place are not rel-
evant. Different meetings have to be summarized as different activities.
Blurred or out of focus images are not relevant. Images that are covered
(mostly by the lifelogger’s arm) are not relevant.

is now summarized as the set of words T (1)={‘activities’, ‘u1’, ‘meeting’, ‘work’,
‘occur’, ‘room’, ‘contain’, ‘colleagues’, ‘sitting’, ‘table’, ‘meetings’, ‘place’}. There
is an obvious shortening of the description, but the meaning of the new context is
still understandable to any reader. Automatically extracting the keywords from
a sentence is still an open problem on which the NLP community is still working.

2.3 Narrowing the list of images

Metadata pre-processing involved parsing the xml file associated with the image
database and transferring the useful information in a more user-friendly format
such as a matrix where we stored each important attribute on a different column
for each image. Among these attributes we note the user id, image id and path,
the activity and the location where the said picture was taken. It is worth men-
tioning that the location and activity tags are not very specific, thus offering a
wide range for extrapolating on them only. We discovered 6 different activities
(bus, car, cycling, running, transport, walking) and over 100 semantic locations
as they are tagged in the Moves App [11], but we also note that images are not
mandatory tagged with the activity or location. Some of them do not posses this
attribute and we have filled their corresponding attribute value with 0.

The provided database consisted of images belonging to 3 lifeloggers or users
as it is described in the lifelog task overview [5] and each topic addressed one
particular user only. This meant that the other 2 users could be ignored in the
decision process. The same logic applies to the activity and location fields, where



the topic description would eliminate certain candidate images because of their
respective metadata, e.g. if the query asks for images where the user u1 is in a
meeting at work it is not possible to select images where the location indicates
something else than user u1’s workplace (or 0 if the workplace has not been
annotated in the Moves App) or where the activity is bus, car, cycling, running
or transport. This type of content interpretation allowed us to create a shortlist
of images for each distinct topic which we then used in the clustering part.

2.4 Image clustering

For the clustering part we implemented a hierarchical clustering algorithm based
on the Histogram of Oriented Gradients (HOG) [12] extracted from each image
in the previously described shortlist. For each image we cropped the edges as
follows: 100 pixels from the top edge, 128 from both left and right edge and
25 pixels from the bottom edge. We chose these values as the users wear their
camera around their neck and, quite often, the camera is slightly tilted upwards,
especially when the user is sitting down, thus adding some unnecessary informa-
tion in the upper part of the image or the user’s clothing covers one of the other
3 edges.

The cropped images underwent a resize step as well, bringing them to a
format of 64×128 pixels, so that the HOG extraction process could be performed.
We have used a simple builtin HOG extractor from Python’s cv2 module and
stopped the hierarchical clustering algorithm when 30 clusters were formed.

2.5 Similarity score

The process of finding semantic links between any two words is a very complex
task for NLP and is still an open problem. However, WordNet offers a large
lexical database for English which incorporates not only a glossary, but also a
tree-like structure that connects semantic meanings starting from a root node,
which is the most abstract concept, and descends to more and more particular
concepts. Even so, this tree-like structure has been developed for nouns and
verbs only, this being the motive behind the algorithm used for topic description
summarization.

WordNet has its information organized in sets of cognitive synonyms (synsets)
interleaved by means of conceptual-semantic and lexical relations [10]. This
means that the number of edges that have to be passed in order to reach from
one synset to another gives information about how similar these two synsets are.
Having this in mind, a first approach to finding a similarity measure would be
to follow the shortest path between two nodes, count the number of edges along
the way and then set the similarity measure to be inversely proportional to the
previously found number. A maximum similarity score of 1 would be obtained
when the two synsets are the same. However, this does not take into account the
depth of the node from which the two synsets descend. This node is known as
the Least Common Superconcept (LCS) and the distance from the root node to
this node gives a measure of abstractness.



One word similarity measure that takes into account both the path length
between two concepts and the depth of their LCS is the Wu-Palmer similarity
measure. Given the tree structure from Fig. 2 the Wu-Palmer similarity distance
between the concepts C1 and C2 is

dwup(C1, C2) =
2×N3

N1 +N2 + 2×N3
, (3)

where C3 is the LCS, N3 is the depth of the LCS from the root node and N1

and N2 are the depths of C1 and C2, respectively, from the LCS.

Fig. 2. Wu-Palmer similarity distances on a tree.

This approach gives higher similarity values to the pairs of concepts which
have the LCS deeper in the tree structure and the score will always have a value
in the range ]0, 1]. The value cannot be 0 because the depth of the LCS can
never be 0 (the root of such a taxonomy has a depth of 1), and it will be 1 only
when the two synsets coincide.

Another problem that arises when comparing the similarity of two words is
that the previously described method compares the distance between synsets (or
concepts) and not words.A word can, and most of the time will, belong to more
than one synset as we often encounter words with more than one meaning. A
simple way to imagine this is to think of a thesaurus and when we search the
meaning of a word we get numerous entries. Each of those entries represents a
synset. Therefore, when we want to compare two words from a similarity point
of view we actually need to first select the most appropriate synsets for each of
them and compare those two synsets. Since it was not feasible to manually find
the best matching pairs of synsets corresponding to a pair of words we picked the
one that ranked the highest only. Therefore, the Wu-Palmer distance computed
between two words w1 and w2 becomes

d(w1, w2) = max(dwup(si, sj)),∀i, j s.t. si ∈ S(w1), sj ∈ S(w2) (4)

where S(w1) and S(w2) are the set of synsets corresponding to w1 and w2,
respectively.



A different method of computing the similarities between two words involves
projecting them in a word space model [13]. This representation is composed of
sparse semantic bits and it is also known as Distributional Memory [14]. Active
bits can be interpreted as firing neurons in an analogy to neural networks. For
each term we get a semantic fingerprint and in order to measure the similarity
between them one can compute the cosine distance between the two semantic
fingerprints. This has been implemented in the current work with the use of the
Retina API [15]. However, this did not give results as good as in the case of the
previous method, as it is described in the Section 3.

So far, both similarity computation methods target pairs of words only, but
what we needed for this work was to compute similarity scores between a set of
concepts corresponding to a certain image and a set of words corresponding to
a certain topic description summarization. In order to take into account both
the similarity between words and the confidence of every concept we summed
up all similarity measures, weighted by the confidence of the respective concept
for each concept-word pair. Therefore, for a certain image i and a certain topic
j the similarity score is computed as follows:

scorei,j =
∑
k

∑
l

d(wk, wl)× ck, (5)

where wk ∈ C
(i)
relevant, wl ∈ T (j) and ck is the confidence associated to wk.

Thus, we obtain high scores when there is both a high confidence for the given
concept and a strong similarity between it and at least one word from the topic
description summarization.

2.6 Similarity filtering

Finally, once we obtained the clusters and the similarity score between each
image from the cluster and the topic description we select the best candidates
for submitting a run. We remind that the task requested to submit a list of
images for each topic representing images that are both relevant for the topic
query and diverse. Therefore, we sorted the clusters in descending order based on
the mean value of the similarity scores of the images that it contained. From the
n-best ranked clusters we then selected the images with the highest similarity
score and proposed them as the candidates for our run.

3 Experimental results

3.1 Results on development data

Our first approach was to compute the similarity score for each image-topic
pair and just perform an ordering based on that score. Theoretically, images
that contained objects in close connection, from a semantic point of view, with
the topic description should be assigned a higher score. However, this was not
exactly the case, as we saw from visual inspection of the highest ranked images,



but for a few exceptions. We ran several tests to see how the data is distributed
according to the similarity score. Knowing that the confidence scores are not
evenly distributed among the images, as described in Section 2.1, we wanted to
better understand the impact that low values of the confidence-similarity score
products have on the final result. These values can also be considered noise
added to the final score value. Therefore, we imposed several thresholds on this
product. In other words, eq. 5 now becomes

scorei,j =
∑
k

∑
l

d(wk, wl)× ck × 1[d(wk,wl)×ck>th], (6)

where th is an imposed threshold. Having obtained these results we plotted for
each topic the confidence scores vs. the image’s position number in the ordered
shortlist only for the images from the ground truth that was provided by the
organizers. In Fig. 3 and 4 we can see with different colors where the ground
truth images are located in our system’s output. Ideally, all the colored points
should have been as close as possible to the left edge of the figure, namely they
should have the highest confidence scores. We can see that the figures have a
shape similar to a cotangent, but we would have desired for it to be steeper and
concentrating more points on the left side.

Fig. 3. Similarity scores obtained with the Wu-Palmer distance for topic T10.

We can also observe that by imposing thresholds we get a steeper shape as it
was desired. Unfortunately, the concentration of images with a high confidence
score (on the left side of the figure) drops. This is valid for both Wu-Palmer and
cosine distance between semantic fingerprints.



Fig. 4. Similarity scores obtained with the cosine distance for topic T10.

We conclude it is better to not impose any threshold for this type of con-
fidence score computation. An explanation to this is that a significant part of
the noisy concepts have already been eliminated when we imposed the threshold
from eq. 1. This appears to be enough to reduce the noise in the final results.

3.2 Results on test data

However, the obtained results were not satisfactory so we needed to bring last
minute modifications to our algorithm. We wanted to make use of the similarity
score that we previously computed so the extension to the first approach came
in the form of the filtering described in Section 2.6.

In more detail, we ran a hierarchical clustering algorithm on the shortlist of
images corresponding to a certain topic and stopped it when it reached a total
of 30 clusters. The next step was to sort these clusters according to the mean
similarity score computed over the images belonging to each cluster. In order to
submit 50 images for each topic we selected the 2 best ranked images from the
first 25 clusters. The official results of the run can be seen in Fig. 5 and the last
value to be considered in comparing the runs submitted by the participants is
F1@10, as described in [5].

It is worth mentioning that the F1-measure at X was computed as the har-
monic mean of the Precision at X and Cluster Recall at X. Our algorithm ob-
tained various results depending on the topic, with the best values obtained for
topics which contained an enumeration of items which may appear in a relevant
picture or whose shortlist (Section 2.3) is very restrictive.



Fig. 5. F1@X measure official results.

4 Conclusions

We presented the results of our run to the ImageCLEF 2017 Lifelog Summa-
rization subtask. The submitted run yielded results that were not satisfactory
as they were not as good as those of the other participants. However, this work
proposes a system which does not need any additional or external data and it
heavily relies on the outputs of systems that were not tested under these con-
ditions. We were surprised to see that for certain topics our system performed
quite well while for others it was completely unreliable, which lead to an over-
all weak performance. Good performances have been obtained for topics which
contained an enumeration of items that can be present in the image to make
it relevant. Such an example is the topic related to shopping where there is an
enumeration of the types of stores that make an image relevant for that certain
query. Moreover, a good match between these items and the objects with high
confidence identified by the concept detector, such as butcher shop, candy store
or toyshop, also proved vital for the outcome of our system.

We identified a large series of tunable parameters which can improve the
results such as the threshold from eq. 1, the similarity score computation mech-
anism, the number of clusters for the hierarchical clustering etc. Another weak
point was the lack of correlation between the concepts output by the Caffe Con-
cept Detector and the meaning of the textual descriptions of the topics as it is a
daunting task to evaluate similarity between phrases which address completely
different subjects. Having a concept detector trained for the specific task of rec-
ognizing items that we can encounter on a daily basis would offer more precise
information.



Moreover, making use of the entire metadata linked to the database could
have improved the results. On this point we remind that the temporal informa-
tion has not been used. It is clear that once an image is certain to fit a certain
query then it is very likely that at least one of the neighboring images before
and after is also a viable candidate for that specific query. Also, special annota-
tions or interpretation of the topic descriptions could have aided the similarity
computation system.

To sum up, we think that this system offers an interesting perspective on how
a simple clustering algorithm can benefit from a textual interpretation. Further
work can address finding the right set of parameters and better understanding
the mixture of visual and textual interpretation of multimedia content.
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