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Abstract. The paper describes the deep learning approach to automatic
visual recognition of 10 000 plant species submitted to the PlantCLEF
2017 challenge. We evaluate modifications and extensions of the state-of-
the-art Inception-ResNet-v2 CNN architecture, including maxout, boot-
strapping for training with noisy labels, and filtering the data with noisy
labels using a classifier pre-trained on the trusted dataset. The final
pipeline consists of a set of CNNs trained with different modifications
on different subsets of the provided training data. With the proposed
approach, we were ranked as the third best team in the LifeCLEF 2017
challenge.

1 Introduction

The plant identification challenge PlantCLEF 2017 [1] is a part of the LifeCLEF
activity [2] organized within CLEF 2017 – The Conference and Labs of the
Evaluation Forum. The task of the challenge is automatic plant identification
using computer vision. A similar task has been the subject of previous challenges
[3,4], yet PlantCLEF 2017 aims at a significantly larger scale: recognizing plants
from 10 000 species.

Two sets of training data, with different properties and sources but both
covering the same 10 000 plant species, were provided by the organizers:

1. A set based on the online collaborative Encyclopedia Of Life (EoL) contain-
ing 256 287 images and corresponding xml files with meta-information. An
important field in the meta-information is the ”Observation ID”, which is an
identifier connecting images of the same specimen (object of observation).
This dataset is considered “trusted”, i.e. the ground truth labels should allbe
assigned correctly.

2. A noisy training set built using web crawlers, or more precisely, obtained by
google and bing image search. It thus contains images not related to the given
plant species. This set is provided in the form of a list of more than 1442k
image URLs. We obtained nearly 1405k images from the list, the remaining
images failed to download.

The evaluation is performed on a test set containing 25 170 images of 13 471
observations (specimen).



The rest of the paper is structured as follows: the deep learning approach and
all proposed modifications are described in Section 2. Preliminary experiments
are described and their evaluation is discussed in Section 3. Post-processing steps
are described in Section 4. The runfiles submitted to PlantCLEF are listed in 5.
Conclusions are drawn in Section 6.

2 The Proposed Methods

In recent years, Deep Convolutional Neural Networks (CNNs) have become the
core of state-of-the-art solutions of many computer vision tasks, especially those
related to recognition and detection of objects. This is also the case for plant
recognition, where in previous PlantCLEF challenges 2015 [4] and 2016 [5,3]
the deep learning submissions [6,7,8,9,10,11,12] outperformed combinations of
hand-crafted methods significantly.

2.1 Inception-ResNet-v2

The submitted model is based on the state-of-the-art convolutional neural net-
work architecture, the Inception-ResNet-v2 model [13] which introduced residual
Inception modules, i.e.inception modules with residual connections. Both the pa-
per [13] and our preliminary experiments show that this network architecture
leads to superior results compared with other state-of-the-art CNN architec-
tures. The publicly available1 Tensorflow model pretrained on ImageNet was
used for initial values of network parameters. The main hyperparameters were
set as follows:

Optimizer RMSProp with momentum 0.9 and decay 0.9.
Weight decay 0.00004.
Learning rate Starting LR 0.01, decay factor 0.94,

exponential decay, ending LR 0.0001.
Batch size 32.

2.2 MaxOut

We experimented with adding maxout to the end of the network, which was
helpful in our submission to PlantCLEF 2016: an additional fully-connected
(FC) layer was added on top of the network, before the classification FC layer.
The activation function in the added layer is maxout [14], maximum over slices
of the layer:

hi(x) = max
j∈[1,k]

zij , (1)

1 https://github.com/tensorflow/models/blob/master/slim/README.md#

pre-trained-models

https://github.com/tensorflow/models/blob/master/slim/README.md#pre-trained-models
https://github.com/tensorflow/models/blob/master/slim/README.md#pre-trained-models


where zij = xTW..ij + bij is a standard FC layer with parameters W ∈
Rd×m×k, b ∈ m×k.

One can understand maxout as a piecewise linear approximation to a convex
function, specified by the weights of the previous layer. This is illustrated in
Figure 1.

Fig. 1: Illustration of maxout from Goodfellow et al. [14].

We added a FC layer with 4096 units. The maxout activation operates over
k = 4 linear pieces of the FC layer, i.e. m = 1024. Dropout with a keep probabil-
ity of 80% is applied before the FC layers. The final layer is a 10000-way softmax
classifier corresponding to the number of plant species needed to be recognized.

We observed is that the additional FC layer has to be batch normalized
[15]. Without normalization, the architecture becomes unstable with the default
setting of hyperparameters, leading to unexpected drop in accuracy.

2.3 Bootstrapping

In order to improve learning from noisy labels, Reed et. al. [16] proposed a simple
consistency objective, which does not require an explicit information about the
noise distribution.

Intuitively, the new objective(s) takes into account the current predictions of
the network, lowering the damage done by incorrect labels. Reed al. propose two
variants of the objective, denoted as Bootstrapping for consistency in multi-class
prediction:

– soft bootstrapping uses the probabilities qk estimated by the network
(softmax):

Lsoft(q, t) =

N∑
k=1

[βtk + (1− β)qk] log qk (2)

Reed et al. [16] point out that the objective is equivalent to softmax regres-
sion with minimum entropy regularization, which was previously studied in
[17]; encouraging high confidence in predicting labels.



– hard bootstrapping uses the strongest prediction zk =

{
1 if k = argmaxqi

0 otherwise

Lhard(q, t) =

N∑
k=1

[βtk + (1− β)zk] log qk (3)

The experiments of [16] show that the two objectives improve learning in the
case of label noise, achieving the best accuracy with hard bootstrapping. We
decided to follow the result of [16] and use hard booststrapping with β = 0.8
in our experiments. The search for the optimal value of β was ommited for
computational reasons and limited time for the competition, yet the dependence
between the amount of label noise and the optimal setting of hyperparameter β
is an interesting topic of future work.

3 Experiments

We used a subset of the test data from the previous year’s PlantCLEF 2016 chal-
lenge to thoroughly evaluate the proposed methods. We only used 2583 images
from the previous year dataset, for which we found species-correspondences in
the 2017 task. This small validation set covers only a small subset of the classes,
but should be sufficient for an approximate evaluation of the method.

The sections below describe the experiments and corresponding design choices:

3.1 Fine-tuning vs. Training from Scratch

The first issue tested was whether the network should be trained from scratch,
or fine-tuned from an ImageNet-pretrained model. We compared the two sce-
narios by training only on the ”trusted” dataset. As illustrated in Figure 2,
training from scratch converges very slow. After 150k iterations (mini-batches)
fine-tuning leads to 65.1% accuracy, while training from scratch only gets to
44.5%. For illustration 150k training iterations take ca. 65 hours on an NVIDIA
Titan X GPU. Therefore we decided for fine-tuning.

3.2 Training on Trusted and Noisy Data

We fine-tuned the system with different settings described in Section 2 on the
”trusted” (EOL) data only, as well as on the combination of both ”trusted”
and ”noisy” data (EOL+WEB). The soft- and hard- bootstrapping were used
for training with ”noisy” data. Figure 3 shows that after 200k iterations, the
networks trained only on the ”trusted” data performed slightly better. The two
best performing networks trained on the ”trusted” (EOL) dataset will be used
in the follow-up experiments.
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Fig. 2: Accuracy (solid) and recal@5 (dotted) when fine-tuning (red) and training
from scratch (blue).

3.3 Filtering the Noisy Data and Further fine-tuning

In order to filter out wrongly labeled examples from the ”noisy” part of the
training set, we used the network pretrained on the ”trusted set” (from Section
3.2) to predict the labels from images. Only images, where the network prediction
was equal to the label were kept in the ”filtered noisy” dataset. This reduced
the size of the ”noisy” set from ca 1405k images to ca 425k images.

Let us denote the two networks fine-tuned on the ”trusted” (EOL) dataset
in Section 3.2 as follows:

– Net #1: Fine-tuned on ”trusted” (EOL) set without maxout for 200k iter-
ations.

– Net #2: Fine-tuned on ”trusted” (EOL) set with maxout for 200k itera-
tions.

Further fine-tuning was performed from these models pre-trained (fine-tuned)
on the ”trusted” set. In order to perform bagging from several networks, we
divide the data into 3 disjoint folds. Then each setting is used to further fine-
tune three networks, each on different 2 of the 3 folds. Each network is further
fine-tuned for 50k iterations.

– Net #3,#4,#5: Fine-tuned from #1 for 50k iterations on the ”trusted”
dataset.

– Net #6,#7,#8: Fine-tuned from #2 for 50k iterations on the ”trusted”
dataset, with maxout.
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Fig. 3: Accuracy (solid) and recal@5 (dotted) for different settings.

– Net #9,#10,#11: Fine-tuned from #1 for 50k iterations on the ”trusted”
and filteret noisy data.

– Net #12,#13,#14: Fine-tuned from #1 for 50k iterations on the ”trusted”
and filteret noisy data, with hard bootstrapping.

– Net #15,#16,#17: Fine-tuned from #2 for 50k iterations on the ”trusted”
and filteret noisy data, with maxout.

Figure 4 shows the validation of the further fine-tuning. Although there are
certain differences, all the networks (listed below) are quite precise, yet do not
individually bring much improvement compared to the networks from Section
3.2. The strength here is in combination of the differently fine-tuned networks.
the red dashed line in 4 shows the final accuracy (after 50k it. of fine-tuning) of
their combination.

4 Post Processing on the Test Set

4.1 Averaging predictions per observation

As shown by the previous year’s challenge winner [12] and confirmed by the
experiments described in this report, averaging the predictions over images of
the same observation (specimen) increases accuracy significantly. Therefore we
also average scores per observations in all submitted runfiles.
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Fig. 4: Accuracy (solid) and recal@5 (dotted) for further fine-tuning using dif-
ferent settings.

4.2 Adjusting Test Set Prediction Distribution

Given the fact that we are evaluating the whole test set of images, we decided
to experiment with adjusting the prediction distribution over the test set. Some
plant species are certainly much rarer to observe than other. We assumed that
the species in the test set might not follow the same distribution as the species
in the training set. We computed the prior p(K) for each class K among the
observations in the ”trusted” dataset, and estimated the prior pt(K) of on the
test set. Let q(K|X) be the prediction confidence for class K, given input image
X. The final prediction taking into account the possible shift in the distributions
was:

q∗(K|X) = q(K|X)

√
p(K)

pt(K)
, (4)

where the square root is used to make the adjustment less severe.

5 Description of the Submitted Runfiles

In PlantCLEF 2017, each participant is allowed to submit up to four runfiles
with the results. We submitted the following run files:

– CMP Run 1 combines all 17 networks by summimg their results.
– CMP Run 2 uses the prediction distribution adjustment from Section 4.2 on

top of the results from the first runfile.



– CMP Run 3 combines only networks trained on the ”trusted” data.
– CMP Run 4 again adds the prediction distribution adjustment on top of

results from the third runfile.

Fig. 5: Results of the PlantCLEF 2017 [1] challenge.

6 Conclusions

The difficulties of the challenge lie in the high number of classes, high intra-class
variations, small inter-class variations, and learning from noisy data downloaded
by web crawlers.

To overcome these difficulties, we employed a state-of-the-art deep learning
architecture and compared a number of approaches to increase the accuracy of
very fine-grained classification when learning from noisy data. The results of the
challenge are depicted in Figure 5. Based on our evaluation, the following steps
increase the classification accuracy:

– Maxout [14] with batch normalisation [15] of the added FC layer.
– Filtering the noisy data using a model trained on a trusted database.
– Bagging of several networks fine-tuned under different conditions.

Adjusting the species distribution on the test set, on the other hand, has de-
creased the recognition accuracy noticeably.
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