
Improving Model Performance for Plant Image
Classification With Filtered Noisy Images

FHDO Biomedical Computer Science Group (BCSG)

Andreas R. Ludwig1, Helga Piorek1, Andreas H. Kelch1, David Rex1, Sven
Koitka1,2, and Christoph M. Friedrich1

1 University of Applied Sciences and Arts Dortmund (FHDO)
Department of Computer Science

Emil-Figge-Strasse 42,
44227 Dortmund, Germany

http://www.inf.fh-dortmund.de,
andreasralf.ludwig003@stud.fh-dortmund.de, h.piorek@stud.fh-dortmund.de,

andreas.kelch001@stud.fh-dortmund.de, darex@live.de,
sven.koitka@fh-dortmund.de, christoph.friedrich@fh-dortmund.de

2 TU Dortmund University Department of Computer Science
Otto-Hahn-Str. 14,

44227 Dortmund, Germany

Abstract. The training of convolutional neural networks for image recog-
nition usually requires large image datasets to produce favorable results.
Those large datasets can be acquired by web crawlers that accumulate
images based on keywords. Due to the nature of data in the web, these
image sets display a broad variation of qualities across the contained
items. In this work, a filtering approach for noisy datasets is proposed,
utilizing a smaller trusted dataset. Hereby a convolutional neural net-
work is trained on the trusted dataset and then used to construct a
filtered subset from the noisy datasets. The methods described in this
paper were applied to plant image classification and the created models
have been submitted to the PlantCLEF 2017 competition.

Keywords:
convolutional neural networks, plant image classification, plantCLEF,
oversampling, transfer learning, filtering noisy datasets

1 Introduction

The LifeCLEF plant identification task (PlantCLEF) [5,7] is an annual compe-
tition and part of the LifeCLEF evaluation campaign.
This year’s PlantCLEF task dataset was comprised of 10,000 classes but con-
tained only up to around 1,250 samples per class. Some classes were only rep-
resented by a handful of samples. There was a second, noisy dataset, which was
derived from results of Bing and Google search queries. These results are partly
representing images other than plants or have been labeled incorrectly.



Up to now, image classifiers have rarely been trained with datasets with more
than 1,000 classes. In most of these cases, such datasets were only used to test the
effectiveness and results of large distributed learning systems. In [11] a deep au-
toencoder that was trained on an ImageNet-10K [15] dataset comprising 10,000
classes reached a top-1 accuracy of 19.2 %. It was also tested on the ImageNet-
21K dataset comprising 21,841 classes, where it reached a top-1 accurary of
15.8 % . These results were later improved by [4], where a top-1 accuracy of
29.8 % on ImageNet-21K was reached with Alexnet [9]. With Nearest Class
Mean classification a top-1 accuracy of 23.9 % has been achieved by [12] on the
ImageNet-10K dataset. By using fisher vectors [13] a top-1 accuracy of 19.1 %
was achieved by [16] on the same dataset.

This paper aims to show that modern architectures for convolutional neural
networks, such as InceptionV4 or InceptionResNetV2 [17], can achieve state-of-
the-art results on the given dataset. Furthermore it was assessed if the training
results can be improved by training a subset of the noisy dataset. The subset was
created by filtering the noisy dataset with an already trained neural network.

As seen in [2,3,14] transfer-learning can improve the training results of neural
networks. Therefore the models in this work were trained by an approach similar
to the two phases fine-tuning approach described in [3]. At the beginning, the
weights of the output layer were randomly initialized and then trained with a
small learning rate for a few epochs. Afterward, the entire network was trained.
The methodologies of this paper are further described in Section 2. The training
of the neural networks as well as the overall results of this paper are described
in Section 3. The conclusion can be found in Section 4.

2 Methodology

2.1 Dataset Split

In order to be able to evaluate the quality of the created classifiers, the data of
the Encyclopedia of Life (EOL) dataset were randomly split into a training and
a validation set. The training set consisted of 90 % of the EOL data and the
validation set consisted of the remaining 10 %. In this way, the pretrained models’
performance could be estimated during development. For the final submission,
the models were trained on the complete EOL dataset in order to take advantage
of the full training set.

2.2 Regular Training of the Model

The general approach to the task at hand was to utilize pretrained models pro-
vided on the Tensorflow Slim Git page3 as a starting point for the training.
Since the utilized models have been trained to recognize one thousand differ-
ent classes, many of which are irrelevant for the PlantCLEF competition, these
3 Maintainer: Nathan Silberman and Sergio Guadarrama; [last access: 29.06.2017]
https://github.com/tensorflow/models/tree/master/slim



models were fine-tuned using the training set. As a result of the fine-tuning,
there were models produced containing only the lower level filters of the pre-
trained model and output layers primed to the 10,000 classes of the PlantCLEF
competition. Subsequent to the fine-tuning process, the models were trained fur-
ther utilizing the training set and filtered web datasets. The general workflow is
displayed in Figure 1.
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Fig. 1. The diagram shows the general workflow for Run 1. The EOL dataset was split
in a training and a validation set. A pretrained InceptionResNetV2 checkpoint was
fine-tuned on the training set and evaluated using the validation set. The training was
finished by training the network with the entire EOL dataset.

2.3 Utilized CNN Architectures

The pretrained models on the Tensorflow Slim Git page were trained on the
ILSVRC-2012-CLS dataset [15]. The model checkpoints were published with the
accuracy that could be reached on the corresponding test set. Since the Incep-
tionResNetV2 and InceptionV4 [17] architectures are evidently able to produce
the best accuracies, 80.4 % top-1 for InceptionResNetV2 and 80.2 % top-1 for



InceptionV4. The training was conducted with a fine-tuning procedure similar to
the two-step fine-tuning approach described in [3]. The standard TF-slim data
augmentation4 functions were used for training.

2.4 Filtered Web Datasets

After visually examining the web dataset it became apparent, that apart from
plant images in varying qualities, there were also a large number of images that
displayed unrelated items such as postage stamps or music instruments.

Due to the noisy nature of the web dataset, the data were filtered to reduce
the possibility that the classification results of the existing models are weakened.
For this purpose, the whole web dataset was classified using a model that showed
a good estimate performance. This model has been trained on the whole EOL
set and was submitted as Run 1. Ultimately all the pictures that could be clas-
sified correctly within top-5 predictions were compiled to a web-top-5 dataset
containing 556,584 samples. One could assume that using top-5 web subset for
further training improves the accuracy of the trained model solely with regard
to the classes that have already been learned sufficiently. It would be interesting
to investigate, if filtering different proportions of the predicted classes (e.g. top-
100) could improve the accuracy. However due to limitations of processing time
only the filtering approach described above was pursued. Figure 2 visualizes the
procedure used for filtering the web dataset.

The plots in Figure 3 show the number of occurrences of distinct classes
within the training dataset and the filtered dataset sorted in descending order.
The number of occurrences for every class was logarithmized. The filtered subset
is missing any samples for 696 classes, which is a general problem of the presented
filtering approach. Training data for classes that are already well trained can be
selected from the noisy dataset, but all the images of classes that can not be
classified within a margin will be removed along with the noise. The objective of
further research would be to find a top-x which maximizes noise filtering without
dropping too many classes.

2.5 Oversampling

To improve the results of the classification, multiple crops of an image were used
to calculate an average classification per sample, as described in [6,8,17]. For
each sample, ten crops were created, one at each corner, one centered and a
mirrored version of these five crops. The final prediction was estimated as an
average of the ten samples of every image.

3 Results

The estimated performance metrics were calculated using models that had not
yet been trained with the complete EOL dataset. These models were used to
4 Maintainer: Nathan Silberman and Sergio Guadarrama; [last access: 29.06.2017]
https://github.com/tensorflow/models/tree/master/slim
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Fig. 2. The diagram shows the filtering procedure. At first the noisy dataset is classified
using the finished Run 1 model. Afterwards the images that could be classified correctly
within top-5 predictions were accumulated to a filtered web subset. This web subset
was then used for further training
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Fig. 3. Number of samples per class in training dataset and the top-5 filtered dataset
sorted by the number of samples per class. The number of samples per class is loga-
rithmized

receive an estimate of the performance through classification on the validation
set. It is important to notice that in the EOL dataset, every image belongs to
a unique observation. In contrast, the official test set contains a large number
of observations with multiple images, allowing the model to predict the label
of an image based on an average of multiple images. The official MRR score
was calculated based on observations, whereas the presented validation MRR
scores were estimated on images solely. Table 1 shows the training error of the
finished models and the ensemble. The model performance and accuracy of the
first three runs are presented in Table 2. Run 4 was excluded from both Tables
as it is considered to be broken.

3.1 FHDO BCSG Run 1 - InceptionResNetV2 Trained on EOL
Dataset

The first submission was trained on the aforementioned pretrained model. For
the fine-tuning training step, the logits and auxiliary logits were randomly ini-
tialized instead of being copied from the utilized checkpoint. These two layers
had been trained using a relatively small learning rate of 0.0045 for five epochs.
The two layers were chosen based on the assumption that the lower level layers
have already been suitably prepared for classification tasks while the topmost
layers needed to be primed onto the 10,000 different classes of the PlantCLEF
competition.

Subsequently, all the layers of this model were trained on the training set for
fifty epochs with the parameters shown in Table 3. The model that was trained



Table 1. Classification results on the training datasets using the finished models

Datasets Run ID MRR Top-1 Top-5

Training (90 %)
Run 1 0.898 0.856 0.949
Run 2 0.894 0.854 0.941
Run 3 0.900 0.860 0.946

Validation (10 %)
Run 1 0.509 0.418 0.611
Run 2 0.515 0.426 0.615
Run 3 0.513 0.423 0.614

EOL
Run 1 0.846 0.800 0.901
Run 2 0.835 0.789 0.889
Run 3 0.841 0.795 0.895

Table 2. Official scores on the test set and estimated performance and accuracies on
training and validation set of Run 1-3

Run ID Estimated performance Official score

Training Validation MRR
MRR Top-1 Top-5 MRR Top-1 Top-5

Run 1 EOL 0.889 0.845 0.942 0.471 0.382 0.570 0.792
Run 2 EOL + Filtered 0.887 0.845 0.939 0.503 0.421 0.594 0.806
Run 3 Ensemble 0.890 0.848 0.941 0.493 0.406 0.588 0.804

Table 3. Training parameters for Run 1 and 2

Run 1 Run 2

Mini-batch size 32 32
Steps 50 epochs (334,700 steps) 30 epochs (200,820 steps)
Learning rate 0.045 0.045
Optimizer rmsprop rmsprop
Learning rate decay type exponential exponential
Learning rate decay factor 0.47 0.47
Number of epochs per decay 2 2
Weight decay 0.00004 0.00004



for fifty epochs yielded an MRR of 0.4661 on the validation set and was therefore
chosen as the model for the first submitted run. To finish the training the net
was trained for another five epochs using the complete EOL dataset. Table 4
shows the effect of oversampling on the estimated MRR scores for Run 1.

Table 4. Run 1: The results of classification on the validation set with one central
crop in comparison to oversampling

Crop method Estimated performance

MRR Top-1 Top-5

Central Crop 0.466 0.375 0.567
Oversampling 0.471 0.382 0.570

3.2 FHDO_BCSG Run 2 - InceptionResNetV2 Trained on EOL
and Web-Top-5 Datasets

The second submission was trained analogously to the first submission. As men-
tioned before, a pretrained model was used and only the logits and auxiliary
logits layer were trained for five epochs with a small learning rate of 0.0045.
Eventually, all layers of the model were trained for thirty epochs using the pa-
rameters shown in Table 3.

In order to examine the effect of the web filtering approach, a web subset was
created using the completely trained Run 1 model. Images were added to this
set if the annotated class of the noisy training set was in the top-5 predictions
of the model trained for Run 1. With this, a web subset finally consisting of
556,584 images was assembled. Following the filter process, the Run 2 model
was trained on the web-top-5 dataset for five epochs and afterwards trained for
another five epochs on the training dataset. The parameters for this training
were chosen analogously to the training of Run 1 with a starting learning rate of
0.000275 and five epochs. The learning rate was adopted from the last training
epoch of the previous training step. To finish up the training for this model, the
net was trained for another five epochs on the complete EOL dataset analogue
to the procedure used for Run 1. Before executing the final training step, the
MRR scores were estimated on the validation set, leading to a result of 0.503.
This value could have been biased though, due to the web-top-5 subset being
compiled with a network that was trained on the complete EOL dataset. Table
5 shows the effects of oversampling on the estimated MRR scores of Run 2.
Oversampling improved the MRR scores slightly at the cost of higher computing
demands.

In order to investigate the effectiveness of the filtering approach, the training
procedure of Run 2 was modified and two more models were trained. The starting
point for both models was an InceptionResNetV2 trained on the training set for



thirty epochs. The training for the first evaluation model was conducted once
again with 556,584 images from the web dataset. Instead of being selected by
the filtering approach, they were chosen randomly. The training for the second
evaluation model was conducted with the complete web dataset. The first model
was trained for five epochs (86,966 steps) and the other model with an equivalent
number of steps (86,966 steps). The training parameters were chosen analogously
to the training of the Run 2 model. Afterwards the models were trained on the
training dataset for another five epochs. The results on the validation set showed
that using the filtered data for training improved the estimated MRR scores
compared to using a randomly drafted dataset or the whole noisy dataset. The
results of this analysis are displayed in Table 6.

Table 5. Run 2: The results of classification with one central crop in comparison to
classifaction with oversampling on the validation set

Crop method Estimated performance

MRR Top-1 Top-5

Central Crop 0.492 0.411 0.582
Oversampling 0.503 0.421 0.594

Table 6. The results of training with a filtered dataset in comparison to training with
a randomly drafted dataset or the whole web dataset. The scores were calculated on
the validation set

Run variations MRR Top-1 Top-5 Training steps

Run 2 0.503 0.421 0.594 86,966
Random images 0.487 0.397 0.588 86,966
Whole web dataset 0.495 0.402 0.598 86,966

3.3 FHDO_BCSG Run 3 - Ensemble of Run 1 and 2

Composing an ensemble run from multiple prediction models can improve the
overall accuracy in comparison to a single prediction model [10]. In order to
create an ensemble, the mean values of all the class predictions of the different
models for every image were calculated and then assembled into a new set of
predictions as shown in [10]. The reasoning behind this is that one model might
be better at predicting certain classes while being worse than the other models
on other classes and vice versa. Presumably, the ensemble would be better if it
was composed from a number of accurate and diverse runs.



Due to the fact, that on the validation set, Run 2 was producing the higher
MRR value of 0.503 compared to the value of 0.471 of Run 1, the models were
weighted for the ensemble. In this way the presumably better model would have
a higher influence on the final prediction. Run 1 contributed 1/3 and Run 2
contributed 2/3 to Run 3.

3.4 FHDO_BCSG Run 4

Run 4 was based on an InceptionV4 architecture but did only achieve modest
estimated MRR scores due to misconfigurations.

4 Conclusion

The utilized filtering approach improved the predictions of the resulting model
on the validation set and the official score. The filtering approach increased
computation costs. Recent studies suggest [1], that neural networks can only
recognize samples of unknown classes to a certain extent. Since there were only
few samples available for some classes and since some classes were very similar
to one another, there is a chance that samples belong to a known class other
than the one they were labeled with.

The use of oversampling leads to a minimal increase in estimated MRR scores,
as shown in [17]. Since multiple crops increase the processing time during clas-
sification, the oversampling method is not suited for every scenario.
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