
Recognizing Bird Species in Audio Files Using
Transfer Learning

FHDO Biomedical Computer Science Group (BCSG)

Andreas Fritzler1, Sven Koitka1,2, and Christoph M. Friedrich1

1 University of Applied Sciences and Arts Dortmund (FHDO)
Department of Computer Science

Emil-Figge-Strasse 42, 44227 Dortmund, Germany
andreas.fritzler@stud.fh-dortmund.de and sven.koitka@fh-dortmund.de and

christoph.friedrich@fh-dortmund.de

http://www.inf.fh-dortmund.de
2 TU Dortmund University

Department of Computer Science
Otto-Hahn-Str. 14, 44227 Dortmund, Germany

Abstract. In this paper, a method to identify bird species in audio
recordings is presented. For this purpose, a pre-trained Inception-v3
convolutional neural network was used. The network was fine-tuned on
36,492 audio recordings representing 1,500 bird species in the context
of the BirdCLEF 2017 task. Audio records were transformed into spec-
trograms and further processed by applying bandpass filtering, noise fil-
tering, and silent region removal. For data augmentation purposes, time
shifting, time stretching, pitch shifting, and pitch stretching were ap-
plied. This paper shows that fine-tuning a pre-trained convolutional neu-
ral network performs better than training a neural network from scratch.
Domain adaptation from image to audio domain could be successfully ap-
plied. The networks’ results were evaluated in the BirdCLEF 2017 task
and achieved an official mean average precision (MAP) score of 0.567 for
traditional records and a MAP score of 0.496 for records with background
species on the test dataset.

Keywords: Bird Species Identification · BirdCLEF · Audio · Short
Term Fourier Transform · Convolutional Neural Network · Transfer Learn-
ing

1 Introduction

Since 2014, a competition called BirdCLEF is hosted every year by the LifeCLEF
lab [5]. The LifeCLEF lab is part of the “Conference and Labs of the Evaluation
Forum” (CLEF). The goal of the competition is to identify bird species in audio
recordings. The difficulty of the competition increases every year. This year, in
the BirdCLEF 2017 task [2], 1,500 bird species had to be identified. The training



dataset was built from the Xeno-canto collaborative database3 and consists of
36,492 audio recordings. These records are highly diverse according to sample
rate, length, and the quality of their content. The test dataset comprises 13,272
audio recordings.

In 2016, a deep learning approach was applied by [17] to the bird identification
task and outperformed other competitors. In this research, a similar method,
inspired by the last year’s winner is used with an additional extension. Transfer
learning [11] is applied by using a pre-trained Inception-v3 [19] convolutional
neural network. Related works of identifying bird species in audio recordings in
the BirdCLEF 2016 task [3] can be found in [8, 12, 14, 17, 20].

2 Methodology

To solve the BirdCLEF 2017 task, a convolutional neural network on audio
spectrograms was used. The main methodology was oriented on the winner [17]
of the BirdCLEF 2016 task. The concept of their preprocessing method was
partially used. The following sections describe the workflow and parameters in
an abstract way, details on the parameters for the runs are given in Section 3.

2.1 Overview

First, the whole BirdCLEF 2017 training dataset was split into two parts. One
part consisted of 90% of the training files and was used to train a convolutional
neural network and the other part consisted of the remaining 10% and was used
to validate on an independent validation set for model selection. For the rest of
this paper, the whole BirdCLEF 2017 training dataset shall be referred to as
“full training set”, the 90% subset shall be referred to as “reduced training set”,
and the 10% subset shall be referred to as “validation set”. The whole pipeline
that creates a model that is ready to solve the BirdCLEF 2017 task can be seen
in Figure 1.

Next, the audio files were preprocessed. The preprocessing step transforms
audio files (.wav, .mp3) to picture files (.png). One audio file typically produces
several picture files depending on the length of the audio file and its content.

Then, the generated picture files that were transformed from the reduced
training set were used to fine-tune a pre-trained Inception-v3 convolutional neu-
ral network. Pre-training was done on the ILSVRC-2012-CLS [15] image classi-
fication dataset by the contributors of Tensorflow Slim model repository, and a
checkpoint file of the model was provided4. By using the provided checkpoint,
the models’ knowledge was transferred to the BirdCLEF 2017 task. For fine-
tuning, Tensorflow Slim5 version 1.0.1 was used. For each picture, an adapted

3 http://www.xeno-canto.org/ (last access: 31.05.2017)
4 http://download.tensorflow.org/models/inception v3 2016 08 28.tar.gz (last access:

27.03.2017)
5 https://github.com/tensorflow/models/tree/master/slim (last access: 23.05.2017)



data augmentation

Tensorflow Slim

Inception-v3

training

full
training

set

reduced
training

set

validation
set

(audio files)

picture
files

picture
files

preprocessing

selecting best model
according to MAP score

on validation set

continuous validation
every few epochs
using MAP score

preprocessing

data augmentation

Tensorflow Slim

Inception-v3

training

full training

Fig. 1: Visualization of the model creation pipeline.

data augmentation was applied that includes time shifting, time stretching us-
ing factors in the range [0.85, 1.15), pitch shifting, and pitch stretching using
percentages in the set {0, . . . , 8}.

The whole training was done in three phases. In the first phase, the top layers
of the pre-trained model were deleted6 and trained from scratch leaving the rest
of the model fixed. The reason for this is to adjust the number of output classes
from the pre-trained network with 1,000 classes to 1,500 species. Afterward,
the second phase was started, and the whole model was fine-tuned including
all trainable weights. Throughout the whole training during the second phase
snapshots of the model were validated every few epochs with pictures that were
transformed from the validation set. This way the models’ progress according to
the MAP score was monitored. It was done to recognize overfitting. After the
second phase, a snapshot with the best-monitored MAP score was selected for
a third training phase. In this phase, image files from the full training set were
used to fine-tune the model further. When the third step was finished, the model
was ready to classify test files.

Finally, the BirdCLEF 2017 test dataset was preprocessed in a similar but
not an identical manner as the full training dataset. Details are described later in
this Section. During preprocessing, every audio file was transformed into many
picture files. In the prediction phase, a fixed region was cropped from the center
of every picture file and was predicted by the fully trained model. The predictions
were combined by averaging all image segments per audio file for final results.
In addition, time-coded soundscapes were grouped in ranges of 5 seconds. The
predictions were ordered in descending order per audio file. Furthermore, predic-
tions in time-coded soundscapes were ordered per 5-second regions. In the end,
a result file was generated.

6 scopes InceptionV3/Logits and InceptionV3/AuxLogits



2.2 Preprocessing for Training

The progress of the following described preprocessing steps can be seen in Fig-
ure 2.

spectrogram after bandpass filtering (900Hz - 15100 Hz), length 9s

noise filtering

silent region removal

segmentation

Fig. 2: Visualization of the preprocessing pipeline. The STFT spectrograms
were logarithmized for better visualization.

Extracting Frequency Domain Representation A frequency domain rep-
resentation was generated for all of the audio files using Short-Term Fourier
Transform (STFT) [1]. For this purpose, a Java library “Open Intelligent Multi-
media Analysis for Java” (OpenIMAJ)7 [4] version 1.3.5 was used. It is available
under the New BSD License, and it is able to process .wav and also .mp3 audio
files. Unfortunately, OpenIMAJ does not support sample overlapping in an easy
way by itself, so it had to be implemented. Furthermore, it seems OpenIMAJ is
not capable of processing audio files with a bit depth of 24 bits. Two time-coded

7 http://openimaj.org/ (last access: 20.05.2017)



soundscape audio files8 in the test dataset were converted from a bit depth of
24 bits to 16 bits with the python library “librosa” version 0.5.0 [9], that is
available9 under the ISC License.

Audio files in BirdCLEF 2017 datasets have different sample rates thus the
window size (amount of samples) that was used for the STFT depended on the
file’s sample rate. For a sample rate of 44.1 kHz, a length of 512 samples was
used to create a slice of 256 frequency bands (later on the vertical axis of an
image). One slice represents a time interval of approximately 11.6 ms. For a file
with a different sample rate, the size of the window was adjusted to match the
time interval of 11.6 ms. Audio files were padded with zeros if their last window
had fewer samples than were needed for the transform.

The extracted frequency domain representation is a matrix. Its elements were
normalized to the range [0, 1]. Every element of this matrix represents a pixel in
the exported image. The logarithm of the elements was not taken, but instead,
the values were processed in a linear manner. The matrix was further processed
using different methods to remove unnecessary information to reduce its size.

Bandpass filtering A frequency histogram of the full training set is shown
in Figure 3. Most of the frequencies below 500 Hz are dominated by noises, for
example, wind or mechanical vibration. This circumstance explains the peak in
the lower frequency range. It was determined by manually examining 20 files
that were randomly selected from the full training set.

One previous work [10] removed frequencies under 1 kHz. Audio record-
ings were in 16 kHz PCM format. The authors in [20] participated in the
BirdCLEF 2016 task and used a low-pass filter with a cutoff frequency of 6,250 Hz.

In this research, a lower frequency limit of 1,000 Hz and an upper frequency
limit of 12,025 Hz was used for bandpass filtering. This reduced the 256 frequency
bands by half to 128 bands.

0,000

0,005

0,010

0,015

0,020

0,025

0,030

0,035

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 kHz

R
el

at
iv

e 
Fr

eq
u

en
cy

Fig. 3: Frequency histogram of the full BirdCLEF 2017 training dataset.

8 LIFECLEF2017 BIRD HD SOUNDSCAPE WAV RN49908.wav and
LIFECLEF2017 BIRD HD SOUNDSCAPE WAV RN49909.wav

9 https://github.com/librosa/librosa (last access: 01.06.2017)



Noise Filtering Median Clipping was applied to reduce noise like wind blowing.
This method was also used by the winner [17] of BirdCLEF 2016 task and
formerly by [7]. It selects all of the elements in the matrix whose values are
three times bigger than their corresponding row (frequency band) median and
three times larger than their corresponding column (time frame) median. The
other elements are set to zero. Afterward, tiny objects were removed. If all of
the 8 neighbor elements of an element were zeros, then the element itself was
also set to zero.

Silent Region Removal The authors in [17] used signal to noise separation to
extract bird calls from audio files. In this research, regions with less information
were deleted to retain bird calls in the following way. If the average of a fixed
region did not reach a threshold, then the region was removed. Every column
was examined on its own. In every column, the number of non-zero elements
was counted and normalized by the total number of elements in each column.
For this procedure, a threshold of 0.01 was used. After this step, the resulting
matrix could have just a few or even zero columns.

In the end, if the resulting matrix had less than 32 columns, the audio file
was completely discarded from training.

Exporting Image Files Images were exported using a fixed resolution. If after
the previous processing steps a matrix had fewer columns than the defined target
width of a picture then the matrix was padded to the desired amount of columns
and its available content was looped into the padded area.

The completely processed frequency representation was segmented into equal-
sized pieces of a fixed length and a predefined overlapping factor. The matrices’
elements were in the range [0, 1] and were scaled by a constant factor as well as
clamped to the maximum value of 255. The elements were used for all of the
three channels in the final picture. As a result, the three channels contained the
same information.

2.3 Preprocessing for Prediction

During the preprocessing of the BirdCLEF 2017 test dataset, one exception was
made to time-coded soundscapes. On these files, silent region removal was not
applied to preserve their full length. Furthermore, no audio files were discarded
if they had less than 32 columns in their matrix.

2.4 Data Augmentation

Due to the input dimension of Inception-v3 (299x299x3) the generated picture
files were processed at this stage before they were forwarded to train the model.
This was done by cropping a region from the original image. First, a target
cropping location was computed with a jitter for the vertical axis (random y



offset). Next, time shifting was applied by moving the starting x position ran-
domly along the x-axis. Then, time stretching was used by moving the target
width by a random factor in the range [0.85, 1.15). After that, pitch shifting
was combined with pitch stretching and was calculated by moving the starting y
position randomly. The target height was reduced randomly the same way. The
maximum amount of pitch stretch was 8% in total. The calculated region was
cropped from the original picture and was scaled with bilinear interpolation to
a size of 299x299 pixels on all of the 3 channels (red, green, blue) to match the
input dimension of Inception-v3. Figure 4 shows this procedure visually.

original random time shiftingrandom vertical jitter

cropping and bilinear scalingrandom time stretching random pitch shifting/stretching

1 2 3

4 5 6

Fig. 4: Visualization of the real-time data augmentation pipeline during train-
ing.

3 Run Details and Results

Although more recent network architectures exist like Inception-v4 [18] and
Inception-ResNet-v2 [18] which might improve the results in comparison to
Inception-v3, the former ones were not used for this research because they are
slower than the Inception-v3. The former ones are also available as pre-trained
models10 and are potential candidates for future work.

Four runs were submitted in total. Three runs used slightly different methods
of preprocessing, and the fourth run combined the results of the former three
runs by averaging them.

10 http://download.tensorflow.org/models/inception v4 2016 09 09.tar.gz (last access:
28.05.2017) and
http://download.tensorflow.org/models/inception resnet v2 2016 08 30.tar.gz (last
access: 28.05.2017)



First, binary run (Run 2) was created with the preprocessing pipeline (com-
pare Section 2.2) and binary images. Next, grayscale run (Run 4) was created
with a few changes to binary run (Run 2) to examine the differences in MAP
scores in comparison to binary run. Lastly, big run (Run 1) was designed by
improving some parts of the previous runs and correcting some mistakes. The
runs were submitted in alphabetical order according to their description names
thus the run’s details in this Section does not follow the run’s number but rather
their temporal creation time.

Training was done on one NVIDIA Tesla K80 graphics card that contains
2 GPUs with 12 GB of RAM each. A mini-batch size of 32 was used per GPU,
which results in an effective batch size of 64. Fine-tuning of a single model until
the stage of prediction took several days. The machine was used non-exclusively.
Predicting was done on one NVIDIA Titan X Pascal GPU.

Table 1 shows the runs’ achieved results measured in MAP score on the
reduced training set and the validation set using all predictions. To show the ad-
vantages of transfer learning, all of the runs were executed twice with identical
parameters. On the one hand a pre-trained Inception-v3 was used, and on the
other hand, the Inception-v3 was trained from scratch. Results in Table 1 show
that fine-tuning a pre-trained convolutional neural network performs better than
training a neural network from scratch, although pre-training was done on an-
other domain. In addition, official results on the BirdCLEF 2017 test dataset of
the submitted runs are stated as well.

Table 1: Achieved results measured in MAP

BirdCLEF 2017 BirdCLEF 2017
training dataset test dataset

official results

Inception-v3 pre-trained pre-trained
from scratch Inception-v3 Inception-v3

R
e
d
u
c
e
d

tr
a
in
in
g
se
t

(9
0
%

su
b
se
t)

V
a
li
d
a
ti
o
n

se
t

(1
0
%

su
b
se
t)

R
e
d
u
c
e
d

tr
a
in
in
g
se
t

(9
0
%

su
b
se
t)

V
a
li
d
a
ti
o
n

se
t

(1
0
%

su
b
se
t)

S
o
u
n
d
sc
a
p
e
s

w
it
h

ti
m
e
-c
o
d
e
s

S
o
u
n
d
sc
a
p
e
s

w
it
h
o
u
t
ti
m
e
-c
o
d
e
s

(s
a
m
e
q
u
e
ri
e
s
2
0
1
6
)

T
ra

d
it
io
n
a
l
R
e
c
o
rd

s
(o

n
ly

m
a
in

sp
e
c
ie
s)

T
ra

d
it
io
n
a
l
R
e
c
o
rd

s
(w

it
h

b
a
ck

g
ro

u
n
d

sp
e
c
ie
s)

Binary Run (Run 2) 0.627 0.415 0.815 0.487 0.069 0.048 0.491 0.431
Grayscale Run (Run 4) 0.490 0.303 0.928 0.541 0.083 0.023 0.504 0.438
Big Run (Run 1) 0.415 0.333 0.832 0.531 0.056 0.041 0.492 0.427
Combined Run (Run 3) 0.672 0.455 0.932 0.598 0.097 0.039 0.567 0.496



3.1 Binary Run: Run 2

The following Section describes only additions and differences compared to the
description in Section 2.

Preprocessing STFT used 512 samples without sample overlapping. After the
step noise filtering, all of the elements in the matrix greater than 0 were set to 1
to create a monochrome picture file. After silent region removal, 45 audio files
were discarded from training.

Images were exported using a resolution of 256 pixels in width and 128 pixels
in height. One image file represents a length of 2.97 s. For this purpose, the
previously generated matrices were segmented into equal-sized fragments of 256
pixels in width with an overlapping factor of 7

8 . Before matrices were exported
to pictures, their elements were multiplied by 255. The resulting values were
used for all of the three channels in a picture. The reduced training set led to
1,365,849 picture files (2.5 GiB). From the validation set, 145,724 image files
were generated (282.6 MiB). The test dataset produced 1,583,771 picture files
(2.66 GiB).

Training and Data Augmentation Learning rates were fixed in this run.
The top layers of Inception-v3 were trained for 1.48 epochs with a learning rate
of 0.01. Training on the reduced training set was done for 15.8 epochs with a
learning rate of 0.0002. A MAP score of 0.487 was achieved on the validation
set. After that, the full training set was used for training for another 4.28 epochs
with a learning rate of 0.0002.

During data augmentation, a region of 128 pixels in width (±15%) and 128
pixels in height (−8%) should have been randomly cropped.

Predicting In the predicting phase, a region of 128x128 pixels was cropped from
the center of every picture file. The cropped length of 128 pixels corresponds to
a time interval of 1.49 s.

Mistakes In this run, data augmentation was implemented incorrectly. No ran-
domness was used. When training was started then the parameters for time
shifting, time stretching, and pitch shifting were generated in a random manner,
but these values were always the same as long as training was not restarted.

The model reached a phase of overfitting. Because the best checkpoint ac-
cording to MAP score was not saved, an overfitted version of the model was
used to complete the BirdCLEF task. The best-monitored MAP score of the
lost checkpoint was 0.511 after 8 epochs of training.

3.2 Grayscale Run: Run 4

This run was almost the same as binary run (Run 2). Here only differences to
binary run (Run 2) are described.



Preprocessing In the preprocessing step, there were only two differences com-
pared to binary run (Run 2). First, the frequency domain representation in the
range [0, 1] was used without being transformed into zeros and ones. Second, be-
fore image files were exported, the elements of the matrices were multiplied by
2,000 and cut off at value 255. This led to picture files that contained grayscale
information. Everything else in the preprocessing pipeline was left unchanged.
The number of files compared to binary run (Run 2) had not changed, but
the file size had increased. The reduced training set had a size of 7.4 GiB, the
validation set consisted of 812 MiB, and the test set counted 7.25 GiB.

Training and Data Augmentation The top layers of Inception-v3 were
trained for 1.74 epochs with a fixed learning rate of 0.02. Afterward, all lay-
ers were trained using an exponential learning rate. The learning rate descended
smoothly. A staircase function was not used. As training had started, the learn-
ing rate had a value of 0.005. After 5.4 epochs, the learning rate reached a
value of 0.0003, and a MAP score of 0.541 was achieved on the validation set.
Unfortunately, training was restarted every few epochs to slightly adjust the
learning rate. Afterward, training was started on the full training set for another
2.6 epochs with an exponential learning rate, starting at 0.0002 and ending at
0.0001.

Mistakes The same mistakes as they were made in the binary run (Run 2) were
also made in this run. Data augmentation was not working properly. This led to
an overfitted model after 6 epochs of training. Training was restarted every few
epochs to correct the learning rate. As a side effect, the model was trained on
more different pictures than the model in the binary run (Run 2).

3.3 Big Run: Run 1

The name big run is derived from the size of pictures that were generated in the
preprocessing step. Pictures were created by processing each channel (red, green,
blue) differently. After 7 epochs of fine-tuning, this model had a MAP score of
0.531. Due to the deadline of the BirdCLEF 2017 task, this model could not be
trained completely as planned. One can assume that if this model was trained
for more epochs, the MAP score should become a little bit better because data
augmentation mistakes from the previously made models were corrected.

Preprocessing STFT used a window size of 942 samples. A slice of 471 fre-
quency bands was generated this way. This slice represents a time interval of
approximately 21.4 ms. Furthermore, sample overlapping of 75% was used.

Bandpass filtering used a lower frequency limit of 900 Hz and an upper
frequency limit of 15,100 Hz. This reduced the 471 frequency bands to 303 bands.

Before the method described in silent region removal was applied, two other
processing steps were executed. First, all of the elements in the first 50 columns



(approximately 0.27 s) were examined. That means the arithmetic mean of that
region was calculated. If the calculated value did not reach a threshold of 0.0001,
then the whole region was discarded. Otherwise, the region to be examined was
shifted with 75% overlapping. This was repeated throughout the whole matrix.
Very silent regions of an audio signal were deleted this way. Second, every column
was examined on its own. If the arithmetic mean of a column did not reach a
threshold of 0.0001, then the column was removed using a special treatment. Up
to three sequenced columns may have each an average value below the threshold.
These columns were not deleted. Up to three following columns were set to zero if
each of their averages was also below the threshold. All subsequent columns each
with an average below the threshold were removed. This procedure separated
parts with much audio information visually even more from each other while
quiet frames were deleted. After these two steps, the process described in silent
region removal was applied. In the end, 7 audio files were discarded from training.

Images were exported using a resolution of 450 pixels in width and 303 pixels
in height. The width of 450 pixels represents a length of approximately 2.4 s.

The completely processed frequency representation was segmented into equal-
sized pieces with a length of 450 columns and an overlapping factor of 2

3 . The
matrices’ were multiplied by 1,000 and then cut off at 255. The result was copied
to three matrices. Each matrix represents a color channel of the final picture.
One matrix (red channel) was blurred using Gaussian blur [16] with a radius of 4.
Another matrix (blue channel) was sharpened using CLAHE algorithm [13]. A
block radius of 10 and 32 bins were used. The third matrix (green channel) was
left untouched. An example of the three differently processed channels is shown
in Figure 5.

The reduced training set was transformed into 816,421 image files (23.3 GiB),
the validation set has produced 87,448 image files (2.5 GiB), and the test set
was converted to 932,573 images (24.4 GiB).

original (green channel) blurred (red channel) sharpened (blue channel) combined (red, green, blue)

Fig. 5: Visualization of the generated channels as well as the final composed
image. For better visualization the spectrogram was not preprocessed.

Data Augmentation A target cropping location was computed with a jitter
of 4 pixels (∆y ∈ {0, . . . , 4}). At this point, the target region had a shape of
299x299 pixels. Time stretching manipulated the target width. Pitch shifting
and pitch stretching were applied by moving the starting y position randomly



by 0, 3, 6, 9, or 12 pixels (that corresponds to percentages in the set {0, . . . , 4}).
Target height was manipulated the same way.

Training During the first phase of training, a learning rate of 0.02 was used for
1 epoch, and a rate of 0.01 was used for a second epoch. After that, the second
phase was started with a learning rate of 0.0008. In the second phase, the learning
rate was exponentially decreased by a staircase function. That means the rate
was adjusted after every epoch was fully completed. A learning rate decay value
of 0.7 for every completed epoch was used. After 7 epochs, the model reached a
learning rate of 0.000066. A MAP score of 0.531 was achieved on the validation
set. The third phase was started using a fixed learning rate of 0.0002 for another
1.98 epochs.

Predicting In the prediction phase, a region of 299x299 pixels was cropped from
the center of every picture file and was predicted by the fully trained model. 299
pixels represent a length of 1.6 s.

3.4 Combined Run: Run 3

Two different methods of combining predictions [6] were tried in every run when
predictions of picture files were combined to create a prediction of an audio
file. Calculating the arithmetic mean was one method. The other method was
majority voting. This can be explained in the following way: a prediction of a
picture is an expert. One asks all of the experts of an audio file to vote for a
single target class. The class with the maximum number of votes is the predicted
class. Calculating the arithmetic mean always performed better. Its MAP score
had a relative difference of 1%–10% compared to the MAP score of majority
voting.

Run 3 had not a separate model that was used to predict test audio files
but rather the predictions of the test dataset of the other three runs were com-
bined. This was done by averaging the predictions of every single picture file
that belongs to one audio file. The combination of results of every model after
the second training phase led to a MAP score of 0.598.

4 Conclusion and Future Work

An approach to identify bird species in audio recordings was shown. For this
purpose, a preprocessing pipeline was created and a pre-trained Inception-v3
convolutional neural network was fine-tuned. It could be shown that fine-tuning
a pre-trained convolutional neural network leads to better results than training a
neural network from scratch. It is remarkable, that this type of transfer learning
is even working from the image to the audio domain.

Unfortunately, the error-free model was not trained long enough to show
its full potential. The models presented in this paper reached fair results in the



context of the competition and leave room for improvement. A possible enhance-
ment concerns the preprocessing pipeline and data augmentation. Future works
should consider transferring the preprocessed frequency domain representation
to a convolutional neural network avoiding the use of picture files.

Furthermore, this research has not focused on identifying bird species in
soundscapes. The winner team of the BirdCLEF 2016 task has extracted noisy
parts from audio files and mixed them into other audio files. Additionally, a sound
effects library with many different ambient noises recorded in nature could be
used. This could increase the diversity of the training files during the phase of
data augmentation further. This approach was not implemented in this research
due to time limitations.

Acknowledgement

The authors gratefully acknowledge the support of NVIDIA Corporation with
the donation of the Titan X Pascal GPU which supported this research.

References

1. Allen, J.B.: Short term spectral analysis, synthesis, and modification by discrete
fourier transform. IEEE Transactions on Acoustics, Speech, Signal Processing, vol.
ASSP-25 pp. 235–238 (1977)

2. Goëau, H., Glotin, H., Planqué, R., Vellinga, W.P., Joly, A.: LifeCLEF bird iden-
tification task 2017. In: Working Notes of CLEF 2017 - Conference and Labs of
the Evaluation forum, Dublin, Ireland, 11-14 September, 2017. (2017)

3. Goëau, H., Glotin, H., Vellinga, W.P., Planqué, R., Joly, A.: LifeCLEF bird iden-
tification task 2016: The arrival of deep learning. In: Working Notes of CLEF 2016
- Conference and Labs of the Evaluation forum, Évora, Portugal, 5-8 September,
2016. CEUR-WS Proceedings Notes, vol. 1609, pp. 440–449 (2016)

4. Hare, J.S., Samangooei, S., Dupplaw, D.P.: OpenIMAJ and ImageTerrier: Java
libraries and tools for scalable multimedia analysis and indexing of images. In:
Proceedings of the 19th ACM international conference on Multimedia (MM 2011).
pp. 691–694 (2011)

5. Joly, Alexis and Goëau, Hervé and Glotin, Hervé and Spampinato, Concetto and
Bonnet, Pierre and Vellinga, Willem-Pier and Lombardo, Jean-Christophe and
Planqué, Robert and Palazzo, Simone and Müller, Henning: LifeCLEF 2017 lab
overview: multimedia species identification challenges. In: Proceedings of CLEF
2017 (2017)

6. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, 2nd Edi-
tion. Wiley (2014)

7. Lasseck, M.: Bird song classification in field recordings: Winning solution for
NIPS4B 2013 competition. Proc. of int. symp. Neural Information Scaled for Bioa-
coustics, sabiod.org/nips4b, joint to NIPS pp. 176–181 (2013)

8. Lasseck, M.: Improving bird identification using multiresolution template matching
and feature selection during training. In: Working Notes of CLEF 2016 - Conference
and Labs of the Evaluation forum, Évora, Portugal, 5-8 September, 2016. CEUR-
WS Proceedings Notes, vol. 1609, pp. 490–501 (2016)



9. McFee, B., McVicar, M., Nieto, O., Balke, S., Thome, C., Liang, D., Bat-
tenberg, E., Moore, J., Bittner, R., Yamamoto, R., Ellis, D., Stoter, F.R.,
Repetto, D., Waloschek, S., Carr, C., Kranzler, S., Choi, K., Viktorin, P.,
Santos, J.F., Holovaty, A., Pimenta, W., Lee, H.: librosa 0.5.0 (feb 2017),
https://doi.org/10.5281/zenodo.293021

10. Neal, L., Briggs, F., Raich, R., Fern, X.Z.: Time-frequency segmentation of bird
song in noisy acoustic environments. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP 2011). pp. 2012–
2015 (2011)

11. Oquab, M., Bottou, L., Laptev, Ivan, S., Josef: Learning and transferring mid-level
image representations using convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). pp.
1717–1724 (2014)

12. Piczak, K.J.: Recognizing bird species in audio recordings using deep convolutional
neural networks. In: Working Notes of CLEF 2016 - Conference and Labs of the
Evaluation forum, Évora, Portugal, 5-8 September, 2016. CEUR-WS Proceedings
Notes, vol. 1609, pp. 534–543 (2016)

13. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer,
T., Haar Romeny, B.t., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram
equalization and its variations. Computer Vision, Graphics and Image Processing,
vol. 39 pp. 355–368 (1987)

14. Ricard, J., Glotin, H.: Bag of MFCC-based words for bird identification. In: Work-
ing Notes of CLEF 2016 - Conference and Labs of the Evaluation forum, Évora,
Portugal, 5-8 September, 2016. CEUR-WS Proceedings Notes, vol. 1609, pp. 544–
546 (2016)

15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. International Journal of Computer Vision 115(3),
211–252 (2015)

16. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall (2001)
17. Sprengel, E., Jaggi, M., Kilcher, Y., Hofmann, T.: Audio based bird species iden-

tification using deep learning techniques. In: Working Notes of CLEF 2016 - Con-
ference and Labs of the Evaluation forum, Évora, Portugal, 5-8 September, 2016.
CEUR-WS Proceedings Notes, vol. 1609, pp. 547–559 (2016)

18. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet
and the impact of residual connections on learning. In: Proceedings of the Inter-
national Conference on Learning Representations Workshop (ICLR 2016) (2016)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2016). pp. 2818–2826 (2016),
https://arxiv.org/abs/1512.00567v3

20. Tóth, B.P., Czeba, B.: Convolutional neural networks for large-scale bird song
classification in noisy environment. In: Working Notes of CLEF 2016 - Conference
and Labs of the Evaluation forum, Évora, Portugal, 5-8 September, 2016. CEUR-
WS Proceedings Notes, vol. 1609, pp. 560–568 (2016)


