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Abstract. This paper presents deep learning techniques for image-based plant 

identification at very large scale. State-of-the-art Deep Convolutional Neural 

Networks (DCNNs) are fine-tuned to classify 10,000 species. To improve iden-

tification performance several models trained on different datasets with multiple 

image dimensions and aspect ratios are ensembled. Various data augmentation 

techniques have been applied to prevent overfitting and to further improve 

model accuracy and generalization. The proposed approach is evaluated in the 

LifeCLEF 2017 campaign. It provides the best system among all participating 

teams by achieving a mean reciprocal rank (MRR) of 92 % and a top-5 accura-

cy of 96 % on the official PlantCLEF test set. 
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1 Introduction 

Image-based plant identification is a promising tool supporting agriculture automation 

and environmental conservation efforts. It can be used via mobile applications like 

Pl@ntNet [2] or Naturblick [3] for education, biodiversity monitoring and the collec-

tion of plant observation records either by professionals or in a citizen science con-

text. It helps to bridge the taxonomic knowledge gab and offers new interactive and 

efficient ways of browsing large image collections of flora.  

Distinguishing between 10,000 individual plant species is a challenging fine-

grained classification problem. One has to deal with categories that are very similar 

and often share a common part structure leading to low inter-class variations. On the 

other hand, plants are extremely diverse in size, shape, color and texture. Furthermore 

images of a particular species can contain different plant organs or content types. A 

single image can either show an entire plant or just a small part of it (e.g. flower, fruit, 

branch, stem or leaf) with significant changes of appearance throughout the year lead-

ing to high intra-class variations. 

The LifeCLEF 2017 plant identification challenge aims to evaluate image-based 

plant identification systems close to conditions of real-world biodiversity monitoring 

scenarios at a very large scale. This year the LifeCLEF evaluation campaign provides 

two main datasets and participants are encouraged to evaluate and compare classifica-



tion results using either one or both of them for training. The “trusted” training set is 

based on the online collaborative Encyclopedia of Life [1] with ca. 260,000 images 

coming from several public databases (Wikimedia, iNaturalist, Flickr, etc.) and insti-

tutions or websites dedicated to botany. Additionally up to 100,000 labeled and 

“trusted” images from previous campaigns are also provided. The second much larger 

“noisy” training set is built by web crawlers (e.g. Google and Bing image search). It 

contains over 1.4 million images among them many with wrong content (wrong spe-

cies, portrait of a botanist working on a species, drawings, herbarium sheet of a dry 

specimen, etc.). All in all over 1.7 million images of 10,000 species of wild, cultivat-

ed, ornamental and endangered plants mostly coming from Western Europe and North 

American flora with different types of views (branch, entire plant, flower, fruit, leaf, 

stem, bark, scans of leaf, etc.) are provided and can be used for training. For evalua-

tion a test set of 25,170 images belonging to 17,868 plant observations is provided. 

The test images represent typical smartphone application queries from Pl@ntNet and 

need to be classified by identifying the correct species for each observation. More 

information on datasets and task can be found in the LifeCLEF 2017 Lab Overview 

[4] and the plant identification task summery [5]. 

2 Implementation Details and Model Training 

To address the task of plant identification deep learning techniques are applied that 

already proved to be very successful in other image-based object classification scenar-

ios. Several models are trained and prediction results are later bagged to increase 

identification accuracy on the test set. For late fusion, ensembles tend to yield better 

results if there is a significant diversity among the models [14], [15]. In order to gen-

erate a diverse set of models the following aspects are varied across them: 

 network architecture 

 batch size 

 solver type 

 learning rate schedule (base learning rate and decay factor) 

 training dataset 

 random partition of datasets for training and validation 

 random seed (for weight initialization and model training) 

 image dimension 

 image aspect ratio 

 crop size 

 data augmentation (techniques and strengths of influence) 

Three different state-of-the-art Deep Convolutional Neural Network architectures are 

used for training and classification:  

 GoogLeNet [6] 

 ResNet [7] 

 ResNeXT [8] 



 

 

GoogLeNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

[9] in 2014 and was previously used for plant identification by [17], [20] and [21]. 

ResNet won ILSVRC and the Common Objects in Contexts (COCO) Detection Chal-

lenge [10] in 2015. For plant species recognition it was successfully used by [18] in 

the PlantCLEF 2016 challenge. ResNeXT ranked 2
nd

 place in the ILSVRC 2016 clas-

sification task. It has not been used for plant identification before. The latter two re-

sidual network architectures allow to efficiently train very deep networks where each 

layer does not need to learn the whole feature space transformation but only a residual 

correction to the previous layer. The models trained for the current plant identification 

task are using the 152 layer version of ResNet (ResNet-152) and a 101 layer version 

with cardinality = 64 and bottleneck width = 4d of the ResNeXt architecture (Res-

NeXt-101-64x4d). 

Instead of starting from scratch all networks are trained via transfer learning by fi-

ne-tuning models pre-trained on the ImageNet dataset [11]. GoogLeNet and Res-

NeXt-101-64x4d had been pre-trained on the ILSVRC version of the dataset contain-

ing 1.2 million images of 1000 object categories while ResNet-152 had been trained 

on the 10 times larger complete ImageNet dataset covering 11k object classes. All 

pre-trained models mentioned here are publically available and can be downloaded 

for the corresponding frameworks [24], [25], [26]. Previous work [19] but also own 

experiments with the trusted training set suggested that starting training with pre-

trained models leads to better results and faster convergence. Figure 1 shows progress 

of validation accuracy over 40 training epochs using a pre-trained GoogLeNet model 

compared to a model started from scratch with randomly initialized weights. 

 

 

Fig. 1. Progress in validation accuracy using pre-trained networks vs. training from scratch. 

To fine-tune a model the last fully-connected layer of the network is replaced and 

adapted to the 10k classes problem of the plant identification task. Before training – 

instead of random initialization – all weights except the ones of the exchanged layer 

are initialized with the pre-trained parameters. 

In case of GoogLeNet, NVIDIA Digits [12] in combination with the Caffe frame-

work [13] is used for training, data preparation and classification. The residual net-

works are trained via the MXNet framework [14]. All models are using either 2 



NVIDIA GeForce GTX 1080 or 2 NVIDIA GeForce GTX 1080 Ti GPUs in parallel. 

Batch sizes are chosen mostly as large as possible to not run out of GPU memory. For 

some GoogLeNet models Caffe’s iter_size parameter is applied to accumulate gradi-

ents over 2 batches. A fixed learning rate policy is used starting with a base learning 

rate around 0.01. It is decreased by a factor between 2 and 10 whenever validation 

loss or accuracy is not improving any longer. This is usually done twice within the 

entire training process. Stochastic Gradient Descent (SGD) and for some GoogLeNet 

models Nesterov’s Accelerated Gradient (NAG) is used for model optimization. Since 

GoogLeNet is not providing batch normalization a mean image is computed from the 

training set and subtracted from all images. 

Data Preparation 

 

To evaluate to what extent DCNNs can learn from noisy data compared to trusted 

data,  some models are trained using only images of the Encyclopedia of Life dataset 

(plus in some cases images of the PlantCLEF 2016 dataset) while others are trained 

with all available images. It was also tried to form a mixture of both main datasets 

(see section Submissions and Results). Besides that, random partitions (stratified 

folds) of the datasets are created, so each model can use a different fold for validation 

and the remaining folds for training. The bagging of models trained on different folds 

was previously successfully applied by [18] and the winning team of the PlantCLEF 

2015 task [22]. Instead of applying advanced methods like Borda-fuse as in [22] or 

taking the species-wise maximum as in [18], in this work only simple averaging is 

performed for model ensembling. 

Original images for training and testing are of arbitrary dimensions and aspect rati-

os. Since the networks used in this work only accept fixed sized square images as 

input, images need to be preprocessed via rescaling and/or cropping. To gain diversity 

across models, training images are rescaled to various dimensions and sometimes 

aspect ratios are additionally changed. Ensembling models using different image 

scales already improved results in previous PlantCLEF tasks [23], [19]. Scaling imag-

es to different dimensions followed by random cropping helps to improve generaliza-

tion by letting the network see patches of slightly different sections and resolutions of 

the original image. For GoogLeNet models, images are scaled to the following di-

mensions before random cropping is applied on-the-fly during training: 

 256x256 pixel 

 250x250 pixel 

 240x240 pixel 

When using Digits, different resize transformations are chosen to handle non-square 

images. Figure 2 visualizes the four transformation options offered by Digits. To not 

lose too much information per image only option 3 Half crop, half fill and 4 Squash 

which includes a warping of images by changing its aspect ratio is used in submission 

models. 



 

             

Fig. 2. Digits resize transformation options: 1. Crop 2. Fill 3. Half crop, half fill 4. Squash 

For models trained via the MXNet framework all images are resized such that the 

shorter side becomes 256 pixel while preserving the original aspect ratio. This is also 

done for all images in the test set. For test images additionally 5 patches are extracted 

by cropping square patches – the same size as used for model training – from each 

corner plus the center of the image. Predictions of these patches are averaged to gain a 

more robust classification result per image. 

Data Augmentation 

 

During training square patches are cropped in real-time from each image at random 

positions to serve as network input. Most models use input patches of size 224x224 

pixel except for one GoogLeNet model which uses input patches of 230x230 pixel. 

After cropping, horizontal flipping is applied to randomly chosen patches. For residu-

al networks additional data augmentation techniques were explored. For submission 

models the following image manipulation methods are used on-the-fly during train-

ing: 

 rotation by random angle 

 random variation of saturation (S channel in HSL color space) 

 random variation of lightness (L channel in HSL color space) 

Image patches are rotated by an angle randomly chosen between ± 45°. Color varia-

tion is applied in the HSL color space by adding values randomly chosen between ± 

32 for saturation and ± 20 for lightness to the S and L channel (originally ranging 

from 0 to 255). When learning rate is decreased during training the maximum values 

for rotation angle and color variation are also decreased, letting the network see 

patches closer to the original image at the end of each training procedure. 

Figure 4 to 7 show augmentation examples combining random cropping, horizontal 

flipping, rotation and variations of saturation and lightness. Image sources with origi-

nal aspect ratios are visualized in figure 3. The corresponding plant species and Me-

diaIds are from left to right: Leucanthemum vulgare (MediaId: 254374), Streptanthus 

polygaloides (MediaId: 351199), Wikstroemia uva-ursi (MediaId: 378991) and Ipo-

moea sagittata (MediaId: 243459). 



                

Fig. 3. Image examples with original aspect ratio 

                 

Fig. 4. Augmentation examples (MediaId 254374) 

                 

Fig. 5. Augmentation examples (MediaId 351199) 

                

Fig. 6. Augmentation examples (MediaId 378991) 

                  

Fig. 7. Augmentation examples (MediaId 243459) 

3 Submissions and Results 

Identification performance of different model ensembles is evaluated on the official 

PlantCLEF 2017 test set. All submitted runs are created by aggregating predictions of 



 

test images using models of all three network architectures trained with different da-

tasets and configurations. For each observation predictions are averaged over: 

 all images belonging to the same observation 

 all 5 patches cropped from the resized image 

 all models within the ensemble 

Run 1 

For the first run three models (one per network architecture) are ensembled using only 

images from the trusted datasets Encyclopedia of Life (E) and PlantCLEF 2016 (P) 

for training. 

 

Run 2 

For the second run an ensemble of six models containing four GoogLeNets, one Res-

Net-152 and one ResNeXt-101-64x4d is trained using images from datasets E and P 

plus all images from the noisy web dataset (W). 

 

Run 3 

For the third run the trusted datasets E and P are augmented by “good” (trustworthy) 

images from the noisy web dataset, as well as some images from the test set. To ac-

complish this, the web set is filtered by using models from the first run to identify 

plant species on web images. Correctly classified files (highest prediction equals 

ground truth) are selected to form a new filtered web dataset (FW) of 508,802 images. 

Furthermore some images from the test set are also added to the training set. Here the 

residual networks of run 1 and 2 are used to gather images with a prediction score 

greater than 0.98. The resulting set of 18,217 images is additionally filtered by choos-

ing only images with at least 6 out of 20 predictions (5 predictions per image of 4 

networks) suggesting the same species without confusion by any other species. This 

way, 9934 images from the test set are selected (T) and also added to the training set. 

Two GoogLeNet models pre-trained with data from the second run and one ResNeXt 

model from the first run are fine-tuned with the new formed trusted training set (E, P, 

FW, T) and used to aggregate predictions for the third run. 

 

Run 4 

For the final and best scoring fourth run, all 12 models from the previous runs are 

ensembled and their predictions bagged via averaging. 

 

Table 1 gives an overview of number of models, datasets used for training and the 

official results for each submitted run. Identification performance is measured by 

evaluating mean reciprocal rank (MRR), top-1 and top-5 accuracy on the test set. 

 

 



Table 1. Number of models, training datasets and performance results of submitted runs 

Run # Models Datasets MRR [%] Top1 Acc. [%] Top5 Acc. [%] 

 1    3 E,P 84.7 79.4 91.1 

 2    6 E,P,W 91.5 87.7 96.0 

 3    3 E,P,FW,T 89.4 85.7 94.0 

 4  12 E,P,W,FW,T 92.0 88.5 96.2 

 

More information on models, their individual configurations, training details, valida-

tion scores and datasets used for each run can be found in a separate excel sheet [27].  

It should be mentioned, that during training, scores on validation sets were in most 

cases significantly lower than scores on the PlantCLEF test set. Especially when using 

images from the noisy dataset for training and validation, accuracy dropped to around 

52 %. When looking at validation scores in [27] one has to take into account that 

models use different datasets and folds for validation. Only scores of models using the 

exact same datasets are comparable. Table 2 illustrates three examples of models 

using identical subsets for training and validation. 

Table 2. Implementation details of three models using all available images of the trusted and 

noisy datasets and identical subsets for training and validation 

Model-ID M5 M8 M9 

Network architecture GoogLeNet ResNet-152 ResNeXt-101-64x4d 

Framework Digits/Caffe MXNet MXNet 

Pre-trained via ImageNet-1k ImageNet-11k ImageNet-1k 

Datasets E, P, W E, P, W E, P, W 

Validation subset 2
nd

 fold 2
nd

 fold 2
nd

 fold 

Image size [px] 250x250 shorter side 256 shorter side 256 

Resize transformation half crop, half fill - - 

Crop size [px] 224x224 224x224 224x224 

Augmentation crop, mirror crop, mirror, 

rotation, satura-

tion, lightness 

crop, mirror, rota-

tion, saturation, 

lightness 

Learning rate   

schedule 

0.015 40 epochs, 

0.001 35 epochs, 

0.0005 28 epochs, 

0.0001 26 epochs 

0.01 26 epochs, 

0.001 9 epochs, 

0.0001 10 epochs 

0.01 15 epochs, 

0.001 12 epochs 

Batch size 128 44 48 

Solver Type SGD SGD SGD 

Val. set accuracy [%] 52.74 52.53 52.99 

Included in run 2 & 4 2 & 4 2 & 4 



 

Figure 8 compares scores of all submissions to the LifeCLEF 2017 plant identifica-

tion task. Run 2, 3 and 4 (MarioTsaBerlin) belong to the best scoring submissions 

among all participating teams. Especially run 2 and 4 show outstanding performances 

with a MRR of over 91 % and a top-5 accuracy of 96 % on the test set. More results 

and evaluation details can be accessed via the PlantCLEF 2017 homepage [28].  

 

 

Fig. 8. Official scores [MRR] of the LifeCLEF 2017 plant identification task. The above de-

scribed methods and submitted runs belong to MarioTsaBerlin. 

4 Discussion 

State-of-the-art DCNNs are powerful tools to identify objects in images. By fine-

tuning pre-trained models (originally trained to classify ImageNet categories like cars, 

dogs, cats, etc.) they can be adapted to identify a large number of different plant spe-

cies. By bagging several diverse models, identification performance can be signifi-

cantly increased. To gain diversity, models are trained on different folds using various 

datasets, image dimensions, aspect ratios and augmentation techniques.  

Submission results suggest that if the number of training examples is sufficiently 

high DCNNs are capable of handling quite a fairly large amount of noise in the train-

ing set. For the third run the trusted training set is augmented by adding “good” ex-

amples from the noisy web dataset. To sort out which images contain correct content 

of plant species, DCNNs previously trained with trusted datasets are used to filter the 

web set. Although increasing identification accuracy by almost 8 % for models using 

the augmented dataset, it still does not reach the performance of models using all 



available data for training including many images with wrong content. A different 

filter approach, focused on discarding “bad” images rather than including “good” 

ones, might lead to better results and would be worth investigating in the future. 

Due to time constraints it was not possible to systematically investigate the influ-

ence of certain settings on single network architectures. For this to be done, individual 

parameters need to be changed while keeping all other configurations the same. This 

was given up in favour of producing models with high diversity.  

Unfortunately training from scratch was only carried out for a relatively small 

number of iterations using the trusted dataset exclusively. It was abandoned in favour 

of fine-tuning pre-trained models which seemed to be more promising at that time. 

Nevertheless it would be interesting to train networks from scratch for a longer period 

of time using all available images and to compare results with fine-tuned networks. 

The models trained in this work will be further developed and later integrated into 

the mobile application Naturblick. The application provides information about urban 

nature in Berlin and offers different species identification tools including audio-based 

bird identification using algorithms developed and evaluated in previous LifeCLEF 

campaigns [29], [30].  

 

Acknowledgments. I would like to thank Hervé Goëau, Alexis Joly, Pierre Bonnet 

and Henning Müller for organizing this task. I also want to thank the BMUB (Bun-

desministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit), the Museum 

für Naturkunde Berlin and especially the Naturblick project team for supporting my 

research.  

References 

1. Encyclopedia of Life Homepage, http://eol.org/, last accessed 2017/05/21 

2. Goëau H, Bonnet P, Joly A et al. (2013) Pl@ntNet mobile app. In: Proceedings of the 21st 

ACM international conference on Multimedia, pp 423-424, 2013 

3. Naturblick App Homepage, http://naturblick.naturkundemuseum.berlin/, last accessed 

2017/05/21 

4. Joly A, Goëau H, Glotin H, Spampinato C, Bonnet P, Vellinga WP, Lombardo JC, Planqué 

R, Palazzo S, Müller H (2017) LifeCLEF 2017 Lab Overview: multimedia species identi-

fication challenges. In: Proceedings of CLEF 2017 

5. Goëau H, Bonnet P, Joly A (2017) Plant identification based on noisy web data: the amaz-

ing performance of deep learning (LifeCLEF 2017). In: CLEF working notes 2017 

6. Szegedy C et al. (2014) Going Deeper with Convolutions, In: arXiv:1409.4842, 2014 

7. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In: 

CVPR, 2016 

8. Xie S, Girshick R, Dollár P, Tu Z, He K (2016) Aggregated Residual Transformations for 

Deep Neural Networks, In: arXiv:1611.05431, 2016 

9. Russakovsky O et al. (2014) ImageNet Large Scale Visual Recognition Challenge. In: 

arXiv:1409.0575, 2014 

10. Lin TY et al. (2014) Microsoft COCO: Common Objects in Context. In: Fleet D, Pajdla T, 

Schiele B, Tuytelaars T (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes 

in Computer Science, vol 8693. Springer, Cham 

http://naturblick.naturkundemuseum.berlin/


 

11. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A largescale hierar-

chical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 

2009. pp. 248–255 (2009) 

12. Digits Homepage, https://developer.nvidia.com/digits, last accessed 2017/05/21 

13. Jia Y et al. (2014) Caffe: Convolutional Architecture for Fast Feature Embedding. In: 

arXiv:1408.5093, 2014 

14. Chen T et al. (2016) MXNet: A Flexible and Efficient Machine Learning Library for Het-

erogeneous Distributed Systems. In: Neural Information Processing Systems, Workshop 

on Machine Learning Systems, 2016 

15. Kuncheva L, Whitaker C (2003) Measures of diversity in classifier ensembles, Machine 

Learning, 51, pp. 181-207, 2003 

16. Sollich P, Krogh A (1996) Learning with ensembles: How overfitting can be useful, Ad-

vances in Neural Information Processing Systems, volume 8, pp. 190-196, 1996 

17. Ghazi MM, Yanikoglu B, Aptoula E (2016) Open-set Plant Identification Using an En-

semble of Deep Convolutional Neural Networks. In: CLEF2016 Working Notes 

18. Šulc M, Mishkin D, Matas J (2016) Very Deep Residual Networks with MaxOut for Plant 

Identification in the Wild. In: CLEF2016 Working Notes 

19. Lee SH, Chang YL, Chan CS, Remagnino P (2016) Plant Identification System based on a 

Convolutional Neural Network for the LifeClef 2016 Plant Classification Task. In: 

CLEF2016 Working Notes 

20. McCool C, Ge Z, Corke P (2016) Feature Learning via Mixtures of DCNNs for Fine-

Grained Plant Classification. In: CLEF2016 Working Notes 

21. Champ J, Goeau H, Joly A (2016) Floristic participation at LifeCLEF 2016 Plant Identifi-

cation Task. In: CLEF2016 Working Notes 

22. Choi S (2015) Plant identification with deep convolutional neural network: Snumedinfo at 

lifeclef plant identification task 2015. In: Working notes of CLEF 2015 conference 

23. Hang ST, Tatsuma A, Aono M (2016) Bluefield (KDE TUT) at LifeCLEF 2016 Plant 

Identification Task. In: CLEF2016 Working Notes 

24. GoogLeNet Model files for the Caffe framework, 

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet, last accessed 

2017/05/21 

25. ResNeXt-101-64x4d model files for the MXNet framework, 

http://data.mxnet.io/models/imagenet/resnext/101-layers/ 

26. ResNet-152 model files for the MXNet framework, http://data.mxnet.io/models/imagenet-

11k/resnet-152/, last accessed 2017/05/21 

27. Model and training details, http://www.animalsoundarchive.org/RefSys/PlantCLEF2017, 

last accessed 2017/05/21 

28. PlantCLEF 2017 Homepage, http://www.imageclef.org/lifeclef/2017/plant, last accessed 

2017/05/21 

29. Lasseck M (2015) Towards Automatic Large-Scale Identification of Birds in Audio Re-

cordings. In: Mothe J. et al. (eds) Experimental IR Meets Multilinguality, Multimodality, 

and Interaction. Lecture Notes in Computer Science, vol 9283. Springer, Cham 

30. Lasseck M (2016) Improving Bird Identification using Multiresolution Template Matching 

and Feature Selection during Training. In: CLEF2016 Working Notes 

https://developer.nvidia.com/digits
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

