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Abstract. We present an adaptation of the deep convolutional network
Inception-v4 tailored to solving bioacoustic classification problems. Bird
sound classification was treated as if it were an image classification prob-
lem by a transfer learning of Inception. Inception, the state-of-the-art
in image classification, was used together with an attention algorithm,
to (multiscale) time-frequency representations or images of bird sounds.
This has resulted in an efficient pipeline, that we call Soundception.
Soundception scored highest on all tasks in the BirdClef2017 challenge.
It reached 0.714 Mean Average Precision in the task that asked for classi-
fication of 1500 bird species. To our knowledge Soundception is currently
the most effective model for biodiversity monitoring of complex sound-
scapes.
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1 Introduction

The main objective of our approach is to create an easy-to-use pipeline of an
acoustic model from an image model. We want to stay in the same framework of
the state-of-the art deep learning [7] Inception-v4, and to transfer it to sound-
scape classification. Inception-v4 has been pre-trained on imagenet, then we
adapt its inputs and learn a bird acoustic activity detector thanks to the clas-
sification outputs joint to an attention mechanism. Then we process a transfer
learning from pre-trained weights on imagenet to bird classification. The paper
describes our methodology to efficiently build this model, that we call ’Sound-
ception’, in few weeks a reduced GPU resources. We show that Soundception
gives to the best scores of the BirdClef 2017 challenge [5]. In the last section we
discuss on perspectives to increase the accuracy of Soundception.

2 Audio featuring

2.1 Audio to tri-channel time-frequency image

The data representation is a crucial step in any learning process. In our approach,
the representation must be scalable and based on image processing including



Fig. 1. From Top to Bottom, S1, S2, S3, resp. 128, 512, and 2048 bins FFT window
spectrograms of a bird call. The fourth at the Bottom overlaps the three above and
shows their complementarity.

some acoustic specificities, because we take advantage of Google Inception that
is fed by a RGB image. Therefore, we generate three log-spectrograms by fast
Fourier transform at three scales : window size of wi∈{0,1,2} = 2(2×i) × 128 (i.e.
128, 512, 2048). This fast computation approximates a compressed multi-scale
representation of voices and chirps of birds. We think it improves usual spectral
representations that deal with either temporal or frequency resolution (see usual
representation in [4, 3]). Next, we reshape the three spectrograms by bilinear
interpolation, into an optimal dimension for Inception inputs. In sum, our audio
featuring is :

1. Resample the dataset to 22050 Hz sampling rate.

2. Let min duration be the accepted minimum duration of audio sample.

3. Let min subduration be the accepted minimum duration of the subimage.

4. Let d(x) be the duration of the audio sample x.

5. While d(x) < min duration self concatenate x.

6. Compute three log-spectrogram Si(x) with window sizes wi ∈ (128, 512, 2048).

7. Remove outliers of the Si(x) distribution to avoid quantification error.

8. Resize (bilinear interpolation) Si(x) to an optimal format for Inception:
height = 299 pixels for the frequency dimension, 299×min subduration/1.5
pixels for the time dimension.

9. Concatenate the three Si(x) into one 3 channels RGB multiscale image I.



2.2 Data augmentation

During the training stage, we run data augmentation. Therefore, we use stan-
dard transformations in computer vision. More precisely we run the Inception
preprocessing on the spectrograms Si as random hue, contrast, brightness, and
saturation, plus random crop in time and frequency, as follows :

1. Random choice of an image I in the dataset.
2. Random crop a subimage Ic from I:

– let hIc = initial height of Ic = 299,
– let dIc = initial duration of Ic = 15sec. ∼ 299× 10,
– set random temporal dilatation factor of Ic uniformly sampled in [0.95, 1.05],
– set random top of Ic uniformly sampled in [0.96, 1]× hIc,
– set random bottom of Ic uniformly sampled in [0, 0.01]× hIc,
– crop and resize Ic from I with above parameters and random time offset.

3. Vision preprocessing of Ic by hue, contrast, brightness, saturation variations.
4. Add random noise or process local brightness to Ic.

Fig. 2. Sample of a multiscale representation of bird activities, before (Top) versus
after (Bottom) data augmentation.

3 Model specification

3.1 Transfer learning from Inception-v4 to Soundception

Inception-v4 is the state-of-the-art in computer vision [1]. There are several ways
to adapt Inception-v4 to time-frequency analysis, as a simple average pooling on
the time axis, or use recurrent layer at the top of the network or both. Here we
adapt Inception-v4 to make it entirely convolutional on the time domain, the aim
being to make it invariant to temporal translation, and to allow arbitrary width-
sized image. Secondly we add a time and a time-frequency attention mechanisms
into the branches as represented in the synopsis of Inception-v3 Fig 3.



Fig. 3. Architecture of Inception-v3 (credit: [8]), similar to Inception-v4 model, showing
the place of the branch where is connected each of the attention mechanism.

We set dIc = 15 seconds, min d = 60 sec., scale = 1.5 sec. for 299 pixels
in respect to baseline Inception inputs of 299 × 299 pixels, and the available
VRAM per GPU (12 Go). We do not use specific bird detection in order to avoid
handcrafted detection which could weaken the complete pipeline. The detection
is processed by an attention mechanism as presented in the next section. It runs
on a large time window (dIc = 15sec.) to increase the probability of bird activity
in the image. The main process results into one time frequency RGB image (as
Fig. 1) per audio file, thus 36492 in BirdClef 2017.

3.2 Attention mechanisms in time and time-frequency

Attention mechanisms are gaining popularity. The goal is to focus attention
somewhere or on something. We can learn detection from classification by adding
a soft attention mechanism [2]. Thus, we add to the Inception model two atten-
tion mechanisms : a temporal attention into the auxiliary branch, and a time-
frequency attention in the main branch.

Each attention mechanism is an element wise product of the detector feature
map with the feature maps of the previous Inception layers. These mechanisms
learn how to pass the information and thus play the role of bird activity detectors.

The first attention mechanism is the temporal attention defined by a sigmoid
activation because the bird temporal activities are expected to be binomial in
time.



Fig. 4. Example of temporal attention on spectrogram (Top). The temporal attention
is shown in white segments (Bottom).

The second attention mechanism is defined by the softmax of the outputs1,
yielding to smooth neuron time-frequency activity distribution.

Next, based on the sigmoid or softmax of the outputs, we compute the ele-
ment wise product between the feature maps of the signal and the feature maps
of the detector.

In Fig. 4 we show how Soundception focuses in time on bird activities. In Fig.
5 we show that in time-frequency Soundception indeed focuses on the loudest
formant/frequency of the bird call.

Fig. 5. Example of time-frequency attention : the spectrogram image (Top), the time-
frequency attention (Bottom), in grey scale (highest attention is white, lowest is black).

3.3 Training stage

The training of the model took several days depends of hyper-parameters, using
randomly split training (90%) and (10%) validation sets as in [4]. For the transfer
learning, we first train only the top layer of Soundception, then we fine tune all
layers. We split training in different stages with different batch sizes, according
to the available GPU memory :

1 Normalization with softmax is: (expnu)/
∑
v

expnv.



1. Train the model with time window of dIc = 15sec.,

2. Train last layers and detectors with mini-batch size of 8,

3. Fine tune all layers with mini-batch size of 4.

There are different options to evaluate the prediction on the development set.
We could consider the audio file transform into images I as previously described
with arbitrary temporal size. Here, we optimize the model according to the
average score of the predictions from the subimages Ic of the main images I.

4 Results

Fig. 6. Results of all the challengers in the BirdClef2017 international contest. The
DYNI UTLN RUN1 is the best in three task categories : Soundscapes with time-code,
and the two traditional classification tasks. It is third in the ’Soundscape without time-
codes’. Complementary, the DYNI UTLN Run2 yields to lower scores in average but
to the best score in the other task ’Soundscape without time-codes’.

We report Fig. 6 the official scores on the four tasks of each of the challenger.
Our model Soundception wins this challenge in the four tasks. The DYNI UTLN
RUN1 depicted in this paper is the best model in three of the tasks, with 0.714
Mean Average Precision (MAP) on the 1500 species ’traditional records’ task,
0.616 MAP with ’background species’ task, and 0.288 MAP on the ’Soundscapes
with time-codes’ task. It is third in the ’Soundscape without time-codes’ task, for



which our other run (DYNI UTLN Run2) which explored different parameters
is first.

These results are good despite the fact that we had not time to completely
train Soundception on different topologies and to develop associated preprocess-
ings in the four weeks of the challenge.

5 Conclusion and future work

In this paper we show how we transferred Inception-v4 from image to the acoustic
domain, and how it learns bird sound detection by itself using attention models.
The results show that it is possible to tackle state-of-the-art sound classification
by the transfer learning of efficient pre-existing image classification model. This
strategy can be useful to tackle other challenge without pre-segmentation.

We had not been able to let completely converge the training stage of Sound-
ception due to the huge computation and GPU needs, however it reaches the
best results in the BirdClef 2017 challenge. There is a lot to be done in this area.
Our current work also explores different scalable optimizations to learn audio
to image representations instead of pseudo multi-scale FFT spectrograms. We
currently develop a model with stacked GRU at the top of the network.
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