
Towards an Approach for Engineering Complex
Systems: Agents and Agility

Massimo Cossentino, Luca Sabatucci
Istituto di Calcolo e Reti ad Alte Prestazioni

CNR, Palermo, Italy
massimo.cossentino, luca.sabatucci@icar.cnr.it

Valeria Seidita
Dip. dell’Innovazione Industriale e Digitale

Università degli Studi di Palermo, Italy
valeria.seidita@unipa.it

Abstract—The way in which we use and conceive modern
software systems is changing. Humans/users are becoming more
and more immersed in today complex systems operation, systems
interact in a dynamic fashion with the users and with changing
and dynamic environments. New design paradigms are necessary.
In this paper we propose a first insight to engineering complex
physical systems by employing agility and a framework for self-
adaptive service composition.

I. INTRODUCTION

Due to the advancements in computer technologies, we are
now drawing near a new era where each of us owns more
than one computer (or smart or wearable device and so on).
Computers and devices are more and more interconnected and
we are getting used to work and live with them in an active
fashion.

Our life is shared and in partnership with the technology.
This brings to the necessity of communication, collaboration,
cooperation and understanding among different devices and
among users and devices. The everyday life style is deeply
changing and consequently a new way of considering the
creation and the interconnection of modern software systems is
arising. Indeed, modern computer and devices must be more
than simple responders; they have to be able to sense and
anticipate users’ needs in order to support them in the right
way. Instructions we give to software systems are not passive
and plan of actions no more decided at design time.

The scenario from now on is: humans work in tandem with
their devices (and software systems). At the same time soft-
ware systems have to interact in a proactive fashion in order
to guide and support users on the base of their preferences,
habits, constraints and contexts they live.

Such a kind of situations is common, for instance, in the
field of smart cities, e-health, e-commerce, etc. and the open
challenges are still a lot, from design approaches to standards,
from interoperability to trust and so on.

Software systems where users are included and are part
of the system require a high level of adaptivity and self-
organization. Classic design approaches are not suitable for
analyzing, designing and developing software systems sup-
porting users in the cited scenarios where, in a few words,
main features are: continuous changing operational context
and changing environment. We have to change the way in
which we look at software development.

Promising approaches to engineering complex physical sys-
tems like these span from Agile approaches to a new current
where design time and runtime approach are plunging into
each other.

In this paper, we propose the use of the framework MUSA
supported by an agile approach that sees users and agents
highly immersed in the design process. Agility let realize the
user inclusion.

The paper is structured as follows: section II outlines
motivations and challenges of the work from a design point
of view; section III describes the MUSA framework and how
it is engaged in including the user in the design loop; section
IV illustrates Agile approaches features and how they may
be useful in the complex systems domain; section V focuses
on the use of MUSA and agility detailing how the use of
MUSA realize agility; finally in section VI some conclusions
are drawn.

II. MOTIVATION

Engineering and developing complex physical systems
where humans (or users) work together with the system and
they both are immersed and continuously interact with a very
dynamic environment, requires to consider several factors that
may be summarized in: changing operational context and
changing environment. Complex software systems supporting
digital economy have to intrinsically exhibit adaptation.

A complex (self-adaptive) physical system is a system able
to modify its behavior in order to respond or to face changes
occurring in the environment it is working on or inside the
system itself. Adaptation depends on all the actors that interact
with the system, the environment whose changes are affected
by and affect the system. The system behavior itself is a source
of changes and adaptation. Adaptive behavior is prone to three
types of dependency: actor-dependency, system-dependency
and environment-dependency. These factors are taken into
account during the requirement engineering phase of complex
physical (self-adaptive) systems.

Different kinds of approaches for engineering self adaptive
systems exist, they span from control theory to service oriented
and from agent-based approaches to nature inspired ones. They
all map to the four MAPE activities - well known in the field
of Autonomic Computing - Monitoring, Analyzing, Planning
and Executing.

1

A promising approach to manage complexity in runtime
environments and to implement MAPE activities is to de-
velop adaptation mechanisms that involves software models.
This is referred to as models@run.time [3]. The idea is to
extend the model produced using MDE approaches to runtime
environment. The authors of [3] emphasize the importance
that software models (artifacts) may play at runtime stating
that if“a system changes, the representation of the system
(the models) should all change, and viceversa”. In so doing,
researchers in this field stop at artifact levels; they wish artifact
produced were tied to the process used for creating them.
However at the best of our knowledge this is still a vision,
an idea and nothing has been really realized for really putting
the design phases at runtime.

Baresi et al. [2] introduce the need of bringing near the
design time to the runtime: “The clear separation between
development-time and run-time is blurring and may disappear
in the future for relevant classes of applications”. This allows
some changing activities to be shifted from design and devel-
opment to run time and some changing responsibilities to be
assigned to the system itself instead of to the analysts or de-
signers. Thus realizing and really implementing adaptation [1],
[6].

Hence, requirements engineering has to deal with require-
ments that change at run time, for instance as the result of
changing in the environment. Uncertainty and incompleteness
are at the base of requirements engineering for complex
(self-adaptive) physical systems [11], [7]. Some researchers
investigated the use of a goal model for specifying behavior
and requirements [14], [10] and for supporting the modeling
of adaptation mechanism instead of implementing adaptation
at run time.

The life cycle of a complex (self-adaptive) physical system,
or of one of its components, starts with its design and does
not terminate with its deployment and testing. The life-cycle
continues with some monitoring phases aiming at identifying
and handling new or emergent requirements and/or needs from
users.

Classic heavyweight methodologies cannot be used anymore
for engineering and developing such a kind of systems in fact,
normally, they prescribe a very disciplined process that follows
a well specific life-cycle; the main aim is to make the software
development as more predictable as possible. In these cases
all the requirements have to be identified and analyzed in the
very early activities of the design process and transformed
into code through whatever life cycle the designer considers
more useful (waterfall, iterative and incremental and so on).
This way of working has been well established for years for
all those systems that do not require particular changes. What
we mean is: normally, a software system is the solution to
a problem, regardless the level of complexity of the problem
and the software, and the level of adaptability to changing
requirements is managed at design time using ad-hoc life
cycles or process models.

Due to the features of complex (self-adaptive) physical
systems and the fact that, nowadays, systems are more in-

terconnected and various than before, designers have not
the right means to anticipate and design interactions among
different components, and interactions among users and the
system. Indeed, (self-adaptive) software system properties are
effectively known only when all the relationships among
the software components and between the software and the
environment have been expressed and have been made explicit.
Such issues have to be dealt with at runtime; modeling and
monitoring users and the environment is the key for enabling
software to be adaptive [11], [7]. Self-adaptation deals with
requirements that vary at run time. Therefore it is important
that requirements lend themselves to be dynamically observed,
i.e., during execution.

We are moving into a new era of research for engineer-
ing complex (self-adaptive) physical systems. A new design
paradigm is necessary for enabling the design and development
of systems that adapt their behavior at runtime with little, or
better, no human intervention.

This paper attempts at framing some characteristics related
to engineering complex physical systems by merging Agile
approach to design at runtime. This is a first experiment to
engineering complex systems and exploit the lessons learnt
on the use of self-adaptive composition of services in dynamic
and distributed environment by means of MUSA (Middleware
for User-Driven Service Adaptation).

III. A MIDDLEWARE FOR USER-DRIVEN
SELF-ADAPTATION (MUSA)

The Middleware for User-driven Self-Adaptation (MUSA)
has arisen for managing evolution and adaptivity of dy-
namic workflows [19]. Compared to traditional languages (e.g.
BPMN and BPEL) MUSA provides a wider space of solution
that improve the freedom of action when it is necessary
to overcome exceptional events such as failures or resource
unavailability. The authors adopted the solution of relaxing
the high constrained workflow specification to increase the
flexibility in dynamically generating alternative solutions.

The key concept is a clear separation between ‘what the
system has to address’ and ‘how it will operate for addressing
it’. The enablers of the MUSA vision are: a) representing the
two dimensions, what and how, as a couple of run-time arti-
facts (respectively goals and capabilities); b) implementing a
reasoning system for dynamic binding of capabilities to goals;
c) representing goals and capabilities with some formalism,
based on a common grounding semantic.

The result is a multi-agent system, implemented in the
Jason [4] agent-oriented programming language.

A. What: a Declarative Specification of Goals

The characteristics of being autonomous and proactive make
the agents able to explore a solution space, even when this
space dynamically changes or contains uncertainty.

Indeed, MUSA accepts, at run-time, requirements as a set
of goals to be addressed [21].

The main language for goal injection is GoalSPEC, based on
the natural language, and specifically conceived to be attractive

2

for a business audience. This language allows for describing
workflows as a set of the user’s goals that are delegated to the
management system.

GoalSPEC supports Adaptivity because it is intended to
make the business goals explicit in the process. Goals do not
specify how to operate, but they rather define the expected
results.

GoalSPEC also supports Evolution because business pro-
cesses change during the time. This could happen because of
the introduction of new business goals (laws to be respected
or new desired functionalities). Whereas, traditionally, all the
revisions imply to check inter-dependencies among process’s
tasks, with a consequent hard work of maintenance, MUSA
accepts run time variations in the set of injected goals.

In the last years, MUSA and GoalSPEC have been used
in many different application domains, from document man-
agement systems, smart travel planning, to cloud application
mashup. The design activity necessary for instantiating the
system in a specific domain includes the definition of an
ontology/conceptual diagram.

B. How: a Declarative Specification of Capabilities

The concept of capability is a mixture of planning ac-
tions [8] and services (or micro-services [16]). MUSA respects
this dual nature by separating the abstract capability – a
symbolic description of the effect of the action – and the
concrete capability – a small, independent, composable unit
of computation that produces some concrete result.

The capability supports self-adaptation because it is not
specific for a given goal, but it can be reused for addressing
several ones. It also is implemented for explicit fault isolation.

Moreover, we focus on the idea that capabilities make it
easier to deploy new versions of the software frequently.
Indeed, providing capabilities as run-time entities constitute
the basis for continuous data exchange between human and
agents and therefore system evolution. Moreover, each capa-
bility is relatively small, and therefore easier for a developer
to implement. It can be deployed independently of other
capabilities. By separating the overall functionality through
capabilities, it is easier to organize the overall development
effort around multiple teams.

C. Self-Configuring a Solution

MUSA provides an automatic reasoner that, at run-time,
configures the workflow by associating available capabilities
to the injected goals.

The approach is possible because both goals and capabilities
are first-class entities to be used within agent deliberation.
An agent requiring to address an unanticipated goal must
decide which capability (or combination of capabilities) have
to execute.

The automatic reasoner selects and associates capabilities
according to the goals that are injected [18]. The basic idea is
that of exploring a space of solutions, where goals represent
points of the space that must be reached, and the abstract
capabilities provide evolution functions that allow moving

through this space. Therefore self-configuration is defined as
a space search problem.

Actually, the automatic reasoner is not a property of a single
agent, but rather it is a social ability of all the agents of the
system. Indeed, the algorithm is distributed and decentralized
(for details see [20]).

D. The Self-Adaptation property

The main advantage of using MUSA for executing work-
flows is the ability to self-adapt the running instance when
something unexpected happens. The self-adaptation property
is based on the feedback loop [5].

In MUSA, the feedback loop is composed of two nested
loops. The inner loop is a traditional MAPE-K loop [7] where
the activities are: Monitor, Analyze, Plan, and Act. This loop is
responsible for managing the periods of stability of the system.
During this time the system tries to run a specific workflow
configuration. Local task replacement may be enacted for
ensuring the continuity of service.

However, it is possible that some severe malfunctioning
occurs and that the monitor reveals a violation of requirements
forces the system to stop working. The system becomes un-
stable and some fixing is necessary. These events are captured
by the outer adaptation loop. In this case the system blocks
any capability concerning the current execution and executes a
new self-configuration phase. The result may be a totally new
workflow instance to be executed for replacing the previous
one.

The outer loop also monitors the goal injection, retrieving
cases in which the running workflow is obsolete with respect
to the new injected goals. Also in these case the system’s
objective is that of switching from a workflow configuration
to another one that is able of addressing the new set of goals.

IV. AGILITY AND COMPLEX (SELF-ADAPTIVE) SYSTEMS

Agile is not strictly a methodology, it is more a way of
conceiving working in teams. Agile movements were born
and are operating for exploring new alternatives to traditional
software development. Proponents of Agile approaches think
that software development process can adapt to changing
and dynamic operational conditions, imposed by variable and
unpredictable environment, by putting emphasis to actual
working code [13]. In this way Agile allows people to act in
response to uncertainty and unpredictability through iterations,
increments and feedbacks.

Agile is an efficacious alternative to traditional software
sequential development. Agile development paradigm is well
suited to the design of systems where requirements contin-
uously change. Requirements changing is, in the case of
the system we are considering here, due to uncertain and
dynamic development environments resulting from: evolv-
ing technologies, changing customer requirements and other
changes related to the analysis and design phase. All the
existing Agile approaches face changes with incremental and
small software releases, with highly adaptation to sudden or

3

Design Time Runtime

Requirements
Analysis

System Design (offline)

Execution and
Monitoring

New
Requirements

Acquisition

yes

System Design
(online)

no
able to
re-plan

system is
autonomous

Minimal human
intervention

feedback loop

MUSA

Fig. 1. Designing complex self-adaptive systems employing MUSA and Agility

last moment changes and with the production of the amount
of documentation necessary only for learning and modifying.

So how and why talking about agility in the context of
complex (self-adaptive) physical systems and agents? In [9]
the author states that lightweight methodologies, including XP
and Agile, “include some concepts and principles of natural
complex systems”. The main principles of natural complex
systems (see [17] for a literature review) are:

• open systems and inner interactions - complex adaptive
physical systems are open systems exchanging informa-
tion in open and dynamic environments and components
of the systems interact dynamically each other. Interac-
tions affect the overall behavior of the system.

• feedback loop and emergent behavior - changes in some
parts or components of the system result in changes in
other parts or in the whole system.

• distributed control - control is distributed through the
system.

• emergent behavior - features of the system and its be-
havior in its whole cannot be described and understood
only looking at the single components, a holistic vision
is necessary, interactions among components let the be-
havior arise.

These principles perfectly fit agile practices, the most im-
portant one is that Agile greatly focuses attention on the
continuous open interaction among all the involved stakeholder
of the system. So, our hypothesis is: complex physical system
involves software components and users both at run time and
design time. If we consider the complex adaptive physical
system and its design process as it were a whole, as if one
were an integral part of the other then we may apply the Agile
principles. Agile principles assure us to use one of the best
approaches for engineering self-adaptation [12], [15]; agents,
in some moments of the software development, are “agilists”.
Users are included in the design process with the support of
the multi-agent system from which MUSA is made. In the
following we give an overview of the MUSA framework in
order to let understand how it (by means of agents) support
in the developing and enacting a software application and to

bring to the illustration on how its use is agile.

V. DESIGNING COMPLEX SELF-ADAPTIVE SYSTEMS
EMPLOYING MUSA AND AGILITY

Using the MUSA framework allows to include the user
in the design process by employing the following agents:
discovery agent, specification manager, negotiator, worker e
case manager; moreover it partially realizes the design time at
run time [18].
Fig. 1 is intended to explain which are the main activities to
be performed when developing an application with MUSA.
The process is divided in two parts, the first one (the left
block in the figure) includes the standard design activities
(Requirements Analysis and System Design) for developing
a first release of an application. During the very first step,
the system design activity is performed “offline”, hence re-
quirements are captured and analyzed in a quite common and
standard fashion and then they are converted in the design of
the multi-agent system underpinning MUSA. During the first
execution at runtime (the first specific workflow configuration)
the system starts to monitor the environment and each time a
change occurs, a new requirement or a need, then the system
tries to re-plan. If re-planning is possible then the system goes
on in its work and continues the executing and monitoring
phase otherwise the system searches for a new solution. An
“online” system design is performed, users and agents in
MUSA collaborate in order to find a new solution at run
time as explained in the previous section. The design phase is
immersed in the run time one, agents and users work in team.
During the “online” System Design the presence of agents lets
users apply a minimal intervention thus enhancing adaptation.
Moreover, the team formed by agents and users, during the
implementation of the feedback loop, apply an agile approach
that, as said in section IV, gives a means and is one of the most
promising approaches for designing and developing complex
(self-adaptive) systems.

In the following we analyze the Manifesto for Agile Soft-
ware Development1 with respect to the rationale underpinning

1http://agilemanifesto.org

4

TABLE I
MUSA FEATURES SUPPORTING AGILITY

Agile Manifesto MUSA general Features
Early and continuous delivery of valuable software. The Proactive Means-End-Reasoning for producing plans allows to create

soon a working software and to continually update it by (re)starting from
a set of goals and capabilities. (See also the following principle).

Deliver working software frequently with a preference to the shorter
timescale.

Once a new set of goals is specified, MUSA, by means of the injection
technique, allows to produce new portions of working software. (See also
the previous principle).

Business people and developers must work together daily throughout the
project.

Regardless of the role played by agents or humans in the MUSA loop, the
use of goals allows to specify the business logic of how services have to
be composed thus realizing the continuous collaboration among business
people and developers.

Give projects the environment and support they need, and trust the job will
be done.

Capabilities and goal specifications are compliant with the conceptualiza-
tion of the environment.

Working software is the primary measure of progress. MUSA, by means of the solution explorer agent, checks in the space of
solutions if the new set of goal has been reached.

Agile processes promote sustainable (all the involved stakeholder maintain
a constant pace) development. Simplicity–the art of maximizing the amount
of work not done–is essential.

The use of MUSA as a middle layer, for realizing design process at runtime,
allows of some part the process to be made automatic thus reducing the
amount of work to be done and documentation to be produced.

The best architectures, requirements, and designs emerge from self-
organizing teams.

The core of MUSA collaboration issues is guaranteed by the holonic ar-
chitecture. Holons allow self organization among, distributed coordination
and knowledge sharing.

Frequently tuning and adjusting team’s behavior for becoming more
effective.

With regard to the team composed both by agents, holons continuously
know the state of the environment and so they are able to reach all the
new goals by organizing and self adapting their behavior.

the use of MUSA:

Individuals and interactions over process and
tools
MUSA interacts with its environment. There is no
need to follow a rigid design process and the pres-
ence of MUSA guarantees that the user is the center
of design/runtime as well as interaction between
users and software.
Working software over comprehensive documen-
tation
Using MUSA does not imply to produce documen-
tation; the only useful documentation is the one for
describing the environment through the ontology and
for the newly introduced capabilities and goals.
Customer collaboration over contract negotiation
Considering the runtime phase as part of the design
process, the user and the customer are at the center
of MUSA activities; the customer collaboration starts
with the definition of the requirements and contin-
ues during the execution with advising new goals.
Negotiation happens at run time with a pay per use
criterion, it is automatic and has a minor importance
with respect to collaboration.
Responding to change over following a plan
No plans are pre-defined but the system is made able
to configure itself at runtime each time a change
occurs.

In Table I, we show how the principles behind the Agile
Manifesto2 are met by using MUSA, both during the self-
adaptive system development and its running. In the left
column the principles of Agile Manifest are summarized, the

2http://agilemanifesto.org/principles.html

right column shows which MUSA’s feature helps in putting
into practice agility.

VI. CONCLUSION

Actually, complex physical (self-adaptive) systems are re-
quired to be much more than simply an ensemble of interacting
components; components are not only intertwined but they
form a unique ensemble of persons, technologies, organi-
zations and environmental contexts. Environment, moreover,
could involve laws and rules regulating the social interactions
and the interaction of people with the technology. Humans
are immersed together with devices in a highly dynamic
environment where a great amount of data and services are
constantly available. It is unthinkable that a human user were
able to act in such a kind of environment and to consciously
handle all the offered possibilities.

Standard analysis and design of systems with these extended
features are more challenging than ever, mainly because the
behavior of system components depends and have to be
specified in terms of their interactions and communications
with the physical environment. Moreover, interactions and
communications are affected by environment dynamics at
runtime.

Inspired by models@runtime [3] research line and by Baresi
et al. [2] that suggest to reduce the boundary gap between
design time and run time, we propose the use of MUSA
along with some Agile design activities that see users and
agents highly included and immersed in the design process.
Agility allows to realize user inclusion and to provide a means
for establishing a design approach that adapt and evolve at
run time while new requirements arise from the continuous
interaction among users and dynamic environment.

What we illustrate here is a first experiment towards en-
gineering complex (self-adaptive) physical systems; it was

5

helpfulfor gaining useful insights on design activities in order
to complete the development of a design methodology for
complex systems we are working on.

REFERENCES

[1] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos,
Alessandra Gorla, Paola Inverardi, and Thomas Vogel. Software engi-
neering processes for self-adaptive systems. In Software Engineering
for Self-Adaptive Systems II, pages 51–75. Springer, 2013.

[2] Luciano Baresi and Carlo Ghezzi. The disappearing boundary between
development-time and run-time. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pages 17–22.
ACM, 2010.

[3] G. Blair, N. Bencomo, and R. B. France. Models@ run.time. Computer,
42(10):22–27, Oct 2009.

[4] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using Jason, volume 8.
John Wiley & Sons, 2007.

[5] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger
Giese, Holger Kienle, Marin Litoiu, Hausi Müller, Mauro Pezzè, and
Mary Shaw. Engineering self-adaptive systems through feedback
loops. In Software engineering for self-adaptive systems, pages 48–70.
Springer, 2009.

[6] Jim Buckley, Tom Mens, Matthias Zenger, Awais Rashid, and Günter
Kniesel. Towards a taxonomy of software change. Journal of Software
Maintenance and Evolution: Research and Practice, 17(5):309–332,
2005.

[7] Betty HC Cheng, Rogerio De Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, et al. Software engineering for self-adaptive systems: A
research roadmap. In Software engineering for self-adaptive systems,
pages 1–26. Springer, 2009.

[8] Michael Gelfond and Vladimir Lifschitz. Action languages. Computer
and Information Science, 3(16), 1998.

[9] M Gerber. Keynote speech: Lightweight methods and their foundations
in chaos theory. In 6th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2002), Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland, 2002.

[10] Heather J Goldsby, Pete Sawyer, Nelly Bencomo, Betty HC Cheng, and
Danny Hughes. Goal-based modeling of dynamically adaptive system
requirements. In Engineering of Computer Based Systems, 2008. ECBS
2008. 15th Annual IEEE International Conference and Workshop on the,
pages 36–45. IEEE, 2008.

[11] Paola Inverardi. Software of the future is the future of software? In
International Symposium on Trustworthy Global Computing, pages 69–
85. Springer, 2006.

[12] Radhika Jain and Peter Meso. Theory of complex adaptive systems and
agile software development. AMCIS 2004 Proceedings, page 197, 2004.

[13] Philippe Kruchten. Agility with the rup. Cutter IT journal, 14(12):27–
33, 2001.

[14] Sotirios Liaskos, Alexei Lapouchnian, Yiqiao Wang, Yijun Yu, and Steve
Easterbrook. Configuring common personal software: a requirements-
driven approach. In 13th IEEE International Conference on Require-
ments Engineering (RE’05), pages 9–18. IEEE, 2005.

[15] Peter Meso and Radhika Jain. Agile software development: Adaptive
systems principles and best practices. Information Systems Management,
23(3):19–30, 2006.

[16] Dmitry Namiot and Manfred Sneps-Sneppe. On micro-services archi-
tecture. International Journal of Open Information Technologies, 2(9),
2014.

[17] Mark EJ Newman. Complex systems: A survey. arXiv preprint
arXiv:1112.1440, 2011.

[18] Luca Sabatucci and Massimo Cossentino. From Means-End Analysis to
Proactive Means-End Reasoning. In Proceedings of 10th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, May 18-19 2015, Florence, Italy.

[19] Luca Sabatucci, Carmelo Lodato, Salvatore Lopes, and Massimo
Cossentino. Towards self-adaptation and evolution in business process.
In AIBP@ AI* IA, pages 1–10. Citeseer, 2013.

[20] Luca Sabatucci, Salvatore Lopes, and Massimo Cossentino. Self-
configuring cloud application mashup with goals and capabilities.
Cluster Computing - The Journal of Networks Software Tools and
Applications, 2017.

[21] Luca Sabatucci, Patrizia Ribino, Carmelo Lodato, Salvatore Lopes,
and Massimo Cossentino. Goalspec: A goal specification language
supporting adaptivity and evolution. In International Workshop on
Engineering Multi-Agent Systems, pages 235–254. Springer, 2013.

6

