
Overview of a Formal Semantics
for the JADEL Programming Language

Federico Bergenti∗, Eleonora Iotti†, Stefania Monica∗ and Agostino Poggi†
∗ Dipartimento di Scienze Matematiche, Fisiche e Informatiche

Università degli Studi di Parma
Parco Area delle Scienze 53/A, 43124 Parma, Italy

Email: federico.bergenti@unipr.it, stefania.monica@unipr.it
† Dipartimento di Ingegneria e Architettura

Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43124 Parma, Italy

Email: eleonora.iotti@studenti.unipr.it, agostino.poggi@unipr.it

Abstract—This paper outlines a first proposal of a formal
semantics for the JADEL programming language. JADEL is an
agent-oriented programming language based on JADE that has
been recently proposed to ease the adoption of JADE, and to
promote its use. In previous works, JADEL was specified at the
syntax level, and only an informal semantics was given. The
major contribution of this paper is to outline a formalization
of the semantics of JADEL to complement previous works and
to allow reasoning on JADEL agents and multi-agent systems.
First, the paper provides a brief recall on JADEL by describing
its main abstractions and their specific syntactic constructs. Then,
a discussion of the proposed operational semantics based on
transition systems is described. Finally, a detailed operational
semantics of only some relevant constructs is given. The validity
of the proposed approach is discussed in the conclusion of the
paper, together with directions of future developments.

I. INTRODUCTION

JADEL, which stands for JADE (Java Agent DEvelopment
framework) Language, is an agent-oriented programming lan-
guage designed to help the development of JADE [1] agents
and multi-agent systems. A preliminary work on JADEL [2]
shows the main ideas and motivations behind its creation,
together with a first example of JADEL code. More recent
works [3] describes the current state of the development of
JADEL and related tools, and frame JADEL in the scope of
model-driven development. In short, JADEL was conceived
to meet the needs of software developers that want to take
advantage of agent technologies—and of JADE in particular—
with no need to deal with the implementation details that or-
dinary use of JADE requires. Actually, writing complex JADE
applications is sometimes perceived as a difficult task, espe-
cially by developers who are starting to approach it. Due to its
inherent complexity and its continuous growth, JADE has now
a steep learning curve, especially for the number of low level
implementation details that the developer is required to master.
Despite these difficulties, JADE is widely recognized as one
of the most popular tools to develop multi-agent systems,
and it is used successfully in very different contexts, from
academic research to industrial applications [4], in the constant
attempt to effectively use the beneficial features of agents from

the point of view of software development [5]. Moreover,
related projects WADE (Workflows and Agents Development
Environment) [6]–[8], and AMUSE (Agent-based Multi-User
Social Environment) [9], [10] contributed to increment the
possibilities of JADE. JADE is now a complete tool, but
such a completeness comes at a cost: its constantly increasing
complexity. One of the reasons for the initial success of
JADE is that it was designed as a Java library, which was an
appreciated choice in the early 2000s. At the time, Java was
quickly becoming one of the most promising technologies,
and developers wanted to use it, also because it was tightly
connected with the growth of the Web. In fact, Java, and
the long gone Java applets, played a key role in the rapid
expansion of the Web. The idea of supporting developers of
multi-agent systems with a Java library, rather than with a
specific language, is one of the fundamental design choices
behind JADE. But, nowadays, a pure Java approach is less
appealing because a number of valid alternatives are becoming
popular, and, at the same time, because DSLs (Domain-Specific
Languages) are becoming popular among developers, and not
just among domain experts [11], [12].

The work on JADEL started [2] to provide current and
future JADE users with a simpler, yet seamlessly effective,
tool. The major purpose of JADEL is to provide a high-
level view on the most important abstractions that JADE
provides, allowing developers to concentrate on agent-oriented
abstractions, rather than on lower-level details. JADEL is by
design a DSL, whose host language is a dialect of Java
called Xtend [13]. The choice of developing a DSL is not
accidental, since DSLs are often simpler to learn and to
use, thanks to their lighter syntax, and because they are
tailored on the specific needs of their target domain, which is
agent-oriented programming in this case. Well-designed DSLs
provide a small number of relevant abstraction, constructs
and expressions, whose purpose is to manage effectively the
specific abstractions of their specific domains.

The core features of JADEL, namely agents, ontologies,
and behaviours, are briefly described in [14], and the recent
extension of the language to support roles in FIPA interaction

55

protocols (see, e.g. [15]) is discussed in [16], [17]. A nontrivial
example of a JADEL multi-agent system is presented in [3].
Such an example is the implementation of the asynchronous
backtracking [18] algorithm, which is used as a test case to
evaluate the expressiveness of JADEL against an informal
pseudocode [3], and which is also used to validate the possi-
bility of reinterpreting relevant applications of other parallel
and distributed computing paradigms in terms of agents (see,
e.g., [19], [20]). In all those previous works, the semantics
of JADEL was described only informally, and this paper
complements those works by describing the principal parts
of an operational semantics for JADEL. Obviously, there are
relevant advantages in specifying a formal semantics for a pro-
gramming language, for example, to support verification and
compiler implementation. Unfortunately, general-purpose lan-
guages, such as Java, are too difficult to formalize completely,
and only minimal extracts are formalized (see, e.g., [21]).
On the contrary, DSLs are typically sufficiently small, and
for some of them a complete formalization was provided.
Moreover, agent-oriented programming languages are often
provided with a formal semantics, and for some of them
the formalization predated the implementation of tools, e.g.,
AgentSpeak(L) [22], and Concurrent MetateM [23]. For other
agent-oriented programming languages, the formal semantics
came together with the implementation of tools, e.g., SEA L
(Semantic web-Enabled Agent Language [24], and SEA ML
Semantic web-Enabled Agent Modeling Language [25]. No-
tably, relevant studies intended to provide JADE with a formal
semantics are available, e.g. [26], and an overview of a
complete formalization of JADE in terms of transition systems
can be found in [27], [28].

This paper is organized as follows. Section II briefly
describes the main abstractions and constructs of JADEL.
Section III provides a summary of the syntax of the language.
Section IV shows the most relevant parts of an operational
semantics for JADEL. Finally, Section V concludes the paper
and discusses future developments.

II. OVERVIEW OF JADEL

JADEL is an agent-oriented programming language de-
signed around the features of Xtext [29], a framework which
provides effective support for the development of DSLs. The
use of Xtext eases the design of a DSL because it simplifies
the main steps involved in such a task, e.g., the creation of the
grammar and the implementation of the compiler. First, Xtext
provides a DSL to express EBNF (Extended Backus-Naur
Form) grammars, from which a parser can be easily obtained
with the help of a parser generator. Then, Xtext provides a
base grammar, called Xbase grammar [30], which is highly
extensible and it is used to implement the basic features of the
Xtend language [13], such as expressions, and type references.
Xtend is a dialect of Java, and its syntax and semantics rely
on those of Java, but specific syntactic facilities are provided
to make it lighter and simpler. JADEL can be considered an
agent-oriented extension of Xtend.

JADE provides a number of abstractions, and related Java
classes, for the construction of agents and multi-agent systems.
JADEL selects only a few primary abstractions among them
in order to provide the developer with an agent-oriented
view of agents and multi-agent systems. Only four main
abstractions that JADE implements were chosen, namely
agents, behaviours, communication ontologies, and interaction
protocols. For the sake of brevity, and because the support
for interaction protocols is still at an early stage, in this
paper only agents, behaviours and ontologies are considered.
In detail, JADEL agents use ontologies and behaviours, and
the syntax of JADEL clearly highlights the connections of
the agent with ontologies and behaviours. The declaration
of an agent is allowed to extend the declaration of another
agent, with the usual semantics of inheritance, and two event
handlers are provided to support initialization and take-down
phases. Behaviours can be activated in such initialization and
take-down phases by means of specific expressions. Actually,
JADEL provides a specific syntax to declare and activate
behaviours, and it also offers specific constructs to manage
actions and events.

The behaviours of JADEL can be cyclic or oneshot,
and the semantics of such types of behaviour is the same
as JADE cyclic and one-shot behaviours, respectively. A
behaviour can be specific to a group of agents, i.e., it can
take advantage of the common characteristics of such agents
in the definition of its action. Also, a behaviour can refer to
a specific communication ontology. The body of a behaviour
contains a set of fields, a set of methods and a nonempty set
of event handlers. In fact, at least one event handler must be
present in order to define the action of the behaviour. Event
handlers are specified for behaviours by means of the construct
on-when-do which identifies the event, states conditions on
it, and describes the action to perform in response. Behaviours
can extend other behaviours, with the usual semantics of sub-
classing, and all event handlers of a base behaviour are added
to all derived behaviours.

The ontologies of JADEL are formal means to support the
semantics of agent communication languages for specific prob-
lems. An ontology provides a dictionary of terms and schemas,
which can be arranged in a hierarchy. Terms and schemas
are used to send and receive syntactically-correct messages.
In detail, an ontology consists of a set of propositions, a
set of predicates, and a set of concepts, which can be basic
or composite. Propositions are first-order logics well-formed
formulas. Predicates are first-order logics predicates with an
arity, and their arguments are terms formed using concepts.
Basic (or atomic) concepts are atomic terms provided by
JADE. They can be composed to create other (composite)
concepts, which can be used to express complex terms. Com-
posite concepts can be seen as function symbols in first-order
logics. They are terms with arguments, and such arguments are
terms themselves. Predicates are used to state relations among
concepts, while concepts are used to to describe entities of
the domain. Both concepts and predicates can be derived from
other base concepts and predicates, respectively.

56

odecl ::= ontology o extends obase
?

{ propdecl
∗
cdecl

∗
pdecl

∗
}

propdecl ::= proposition prop

cdecl ::= concept c (cpar∗) extends cbase
?

pdecl ::= predicate p (cpar∗) extends pbase
?

cpar ::= many
? c x | many? cbasic x

cbasic ::= aid | bool | byte sequence

| content element list | date | float
| integer | string

Fig. 1. JADEL grammar for ontologies. Metavariables o, obase denote
ontologies, prop denotes a proposition, c, cbase denote concepts, p, pbase
denote predicates, and x denotes a generic variable.

expr ::= xexpr | actb | extr | send
actb ::= activate behaviour x as

? b(xexpr∗)
extr ::= extract x as t

send ::= send message m? { msgexpr∗ }
msgexpr ::= pexpr | oexpr | cexpr | rexpr
pexpr ::= performative is INFORM | . . .
oexpr ::= ontology is o
cexpr ::= content is x
rexpr ::= receivers are l

Fig. 2. JADEL grammar for extended Xtend expressions. xexpr refers to
standard Xtend expressions, metavariables x, y denote variables, b denotes a
behaviour, t denotes the name of a type, m denotes a message, o denotes an
ontology, and l denotes a variable which refers to a list of agent identifiers.

III. THE GRAMMAR OF JADEL

This section summarizes the grammar of JADEL to support
the description of an operational semantics in next section. A
detailed description of the grammar of JADEL is included in
an upcoming paper. The syntax that JADEL adopts is provided
starting from ontologies, whose grammar is shown in Figure 1
using the EBNF language, where

1) X
∗

stands for the repetition of X zero or more times;
2) X

+
means that X is repeated one or more times; and

3) X
?

means that X is optional.
Figure 2 shows the grammar of JADEL expressions, as

an extension of the grammar of Xtend expressions. In fact,
it is worth noting that JADEL relies on Xtend expressions
instead of introducing a new syntax for expressions. This
choice has the advantage of grounding JADEL on a solid
grammar for expressions whose primary goal is to support the
construction of procedural languages. The syntax of extended
expressions introduced in Figure 2 provides specific features
to activate behaviours, to send messages and to extract the
content of messages. For JADEL, messages are structures that
have a number of fixed properties: the performative, the list
of recipients, the ontology and the content. The performative
denotes the type of the message, and exactly one performative
is contained in a syntactically-correct message. The list of
recipients specifies the agent identifiers of all agents that are
intended to receive the message. Ontologies are identified by
their names, and they must be declared using the grammar of

bdecl ::= btype behaviour b (t x
∗
) for a

?
onto

?

extends bbase
?

{ field
∗
method

∗
bevent

+
}

btype ::= cyclic | oneshot
onto ::= uses ontology o

field ::= (var | val) t? f = expr?

method ::= t m(t mpar
∗
) { expr∗ }

bevent ::= do { expr∗}
| on message m when {wexpr}

?

do { expr∗}
wexpr ::= wexpr or wexpr | wexpr and wexpr

| not wexpr | pexpr | oexpr | cexpr
Fig. 3. JADEL grammar for behaviours. Metavariables b, bbase denote
behaviours, t denotes a type, x denotes a variable, a denotes an agent type,
o denotes an ontology, f denotes the name of a field, m denotes the name
of a method, mpar denotes the name of a parameter, m denotes a message,
while expr, cexpr, pexpr, and cexpr are defined in Figure 2.

adecl ::= agent a onto
?
extends abase

?

{ field∗ method∗ aevent+ }
aevent ::= on event { expr∗ }
event ::= create | destroy

Fig. 4. JADEL grammar for agents. Metavariables a, abase denote agents,
while onto, field, method and expr are defined in Figure 2.

Figure 1. Finally, the content of a message can be either a
proposition, a concept, a predicate, a string of characters or a
sequence of bytes.

Figure 3 shows the JADEL grammar for behaviours. In
JADEL, the reception of a message is an event, and, as said
previously, it corresponds to the use of a specific construct
on-when-do, called bevent in Figure 3. Such a construct
captures the event corresponding to an incoming message, and
it can express conditions on incoming messages by means
of message templates defined in the when block. Message
templates refer to the properties of incoming messages, and
they can be combined using logic connectives. The closing
block do contains the block of code to be executed when
conditions on messages hold.

Finally, JADEL grammar for the declaration of agents is
shown in Figure 4. As expected, it simply let the developer
manage the lifecycle of agents, which is where behaviours are
activated or deactivated.

IV. AN OPERATIONAL SEMANTICS FOR JADEL

The semantics of JADEL briefly described in this paper is
formally defined by means of operational rules and auxiliary
lookup functions. The three lookup functions from the op-
erational semantics of Featherweight Java (FJ) [21], namely
fields, mtype and mbody, are used to connect the semantics
of the agent-oriented features of JADEL with the semantics
of the host language, which is nothing but a syntactic dialect
of Java. Actually, the agent and behaviour abstractions that
JADEL provides are mapped into Java classes that derives

57

agent A1 extends A2{F
∗
M

∗
aevent

+} fields(A2) = G
∗

fields(A1) = F
∗
G

∗ (1)

agent A1 uses ontology O1 extends A2{F
∗
M

∗
aevent

+} ontologies(A2) = O
∗

ontologies(A1) = O1 O
∗ (2)

agent A . . . {F ∗
M

∗
aevent

+} on create {expr∗} ∈ aevent
+

mtype(setup, A) = ε→ ε mbody(setup, A) = 〈ε, expr∗〉 (3)

agent A . . . {F ∗
M

∗
aevent

+} on destroy {expr∗} ∈ aevent
+

mtype(takeDown, A) = ε→ ε mbody(takeDown, A) = 〈ε, expr∗〉 (4)

Fig. 5. Rules that specify the operational semantics of agents.

BT behaviour B1(t x
∗
) extends B2{F

∗
M

∗
bevent

+
} fields(B2) = G

∗

fields(B1) = t x
∗
F

∗
G

∗ (5)

BT behaviour B1(t x
∗
) forA extends B2{F

∗
M

∗
bevent

+
} fields(B2) = G

∗

fields(B1) = t x
∗
F

∗
G

∗
a

(6)

where a is the field A theAgent = (A) myAgent;

BT behaviour B1 extends B2{. . . bevent
+
} events(B2) = bevent2

+

events(B1) = bevent
+
bevent2

+ (7)

Fig. 6. Rules that specify the operational semantics of behaviours.

from classes Agent and Behaviour, respectively. Such
classes are provided by JADE in its API and, obviously,
they have fields and methods. In detail, in the operational
semantics of FJ, the fields lookup function associates each
class name with its own fields plus inherited fields. For JADEL
agents, fields works exactly as in FJ, as shown by rule (1)
in Figure 5. Despite this, there are differences between FJ
classes and JADEL agents and behaviours. For example, the
two agent event handlers on-create and on-destroy
implicitly provide two methods, as shown in Figure 5, rules (3)
and (4), which are not part of FJ.

Methods are identified by means of the two functions mtype
and mbody. The first function takes the name of the method
and the name of the class, and returns a mapping between
the parameter types and the return type of the method. When
the return type is void, or there are no parameters, we
conventionally use ε. The second function, mbody, also takes
the name of the method and the name of the class, and it
returns a pair, whose first element is a list of parameters,
and whose second element is the actual body of the method.
The definition of mtype and mbody for JADEL agents and
behaviours is the same that of FJ. Behaviour fields, instead,
are obtained not only by the user declared fields, but also by
behaviour parameters, and there is an implicitly declared field
theAgent, which identifies the agent that is currently using
a behaviour, as shown in Figure 6, rules (5) and (6).

Two additional auxiliary lookup functions are defined for
ontologies and events. Function ontologies takes an agent and

it returns a list of ontologies, as in rule (2), when an ontology
is specified by the declaration uses-ontology. Function
events, instead, is defined only for behaviours, and it maps
the name of a behaviour with its list of declared events. It is
worth noting that the list of events is not limited to the event
handlers that are specified in the behaviour, but it also contains
inherited events, as shown in rule (7).

The management of events also requires the definition of
such inherited events, even if they are not JADEL abstractions,
at least explicitly. In fact, in JADEL, event handlers are
translated into inner classes of the host behaviour, and they are
composed of specific fields and methods, which collectively
define the actual action of the behaviour.

For the sake of brevity, only some rules to manage events are
shown in Figure 7. Rules (8) and (9) define the innerclasses
lookup function, which takes the name of a behaviour and a
list of events, and it returns a pair whose first element is the
definition of the current inner class plus the already defined
inner classes, and whose second element is the number of the
processed events. Each inner class Eventn has a list of fields
and methods, which are identified by looking at the definition
of the event handler. As shown in rule (10), if the event handler
is in the form of the on-when-do construct, two fields
are implicitly defined, namely, an ACLMessage field and a
MessageTemplate field. Three methods of Eventn are
also defined, namely the receive, doBody and run. Those
are all void methods without parameters. Rule (11) shows
the definition of the receive method. The doBody method

58

bevent
∗
= ∅

innerclasses(B, bevent
∗
) = 〈ε, 0〉

(8)

beventn ∈ events(B) innerclasses(B, bevent
∗
) = 〈E,n〉

innerclasses(B, beventn bevent
∗
) = 〈private class Eventn{F ∗

M
∗} E,n+ 1〉

(9)

where F
∗

and M
∗

depend on beventn
beventn = on message m when{wexpr}do{expr∗}

fields(Eventn) = ACLMessage m; MessageTemplate mt = wexpr;
(10)

beventn = on message m when{wexpr}do{expr∗}
mbody(receive, Eventn) = 〈ε,m = theAgent.receive(mt); 〉 (11)

events(B) = bevent0 . . . beventN
mbody(action, B) = 〈ε, super.action(); Event0.run(); . . . EventN.run();〉 (12)

Fig. 7. Rules that specify the operational semantics of events.

expr : activate behaviour x as b(xexpr∗) expr ∈ C <: Agent

b x = new b(xexpr∗); this.addBehaviour(x);
(13)

expr : activate behaviour x as b(xexpr∗) expr ∈ C <: Behaviour

b x = new b(xexpr∗); theAgent.addBehaviour(x);
(14)

expr : performative is P expr ∈ wexpr

MessageTemplate.matchPerformative(P);
(15)

w1 or w2 ∈ wexpr

MessageTemplate.or(w1, w2);

w1 and w2 ∈ wexpr

MessageTemplate.and(w1, w2);

not w ∈ wexpr

MessageTemplate.not(w);
(16)

Fig. 8. Rules that specify the operational semantics of relevant expressions.

contains the Java translation of the expressions contained in
the do block, and the run method contains the usual pattern
for message reception, as documented in virtually all teaching
material on JADE (see, e.g., [31]). Finally, the action
method of the behaviour runs in sequence all behaviour event
handlers, which would typically check their condition and
return immediately.

In Figure 8, the semantics of some interesting expres-
sions is shown. Expressions are directly translated into
Java code that uses the API of JADE. For example, the
activate-behaviour construct declares a new object x
of type b, and it adds the object to the list of behaviours of
the agent by means of addBehaviour, which is a method
of class Agent. Rules (13) and (14) show the activation of
a behaviour in two cases, i.e., the activation inside an agent
and inside another behaviour. Rules (15) and (16) show the
translation of a when expression into a MessageTemplate.

V. CONCLUSIONS

This paper presented an overview of an operational seman-
tics for the JADEL programming language. First, the syntax
that JADEL provides for its main abstractions is shown and
discussed. Then, relevant lookup functions and operational
semantics rules are provided to offer an outlook on the
complete operational semantics. In detail, JADEL agents and
behaviours are mapped into Java classes using the lookup

functions of FJ, a minimalistic subset of Java equipped with
an operational semantics. In addition, new auxiliary functions
are defined to treat the agent-oriented features of JADEL,
which are obviously not part of FJ. Finally, relevant rules that
formalize the operational semantics of JADEL expressions in
terms of Java statements are presented. The major contribution
of this work is to formalize the mapping between JADEL and
Java with JADE, and to provide useful guidelines for code
generation. Actually, the proposed operational semantics is the
core of the current implementation of the JADEL compiler.

The current implementation of JADEL is in use to ex-
periment on the new possibilities that the features of smart
devices offer to agents. In particular, JADEL agents are given
indoor localization capabilities [32], [33], in known environ-
ments but without a dedicated infrastructure, to experiment
on location-aware games [10]. Moreover, JADEL has been
used to experiment on the use of agent technologies to support
effective collaborations in synergy with social networks [34].
All such works emphasized the effectiveness of JADEL in
the implementation of agents that interact following complex
protocols. In particular, the implementation of agents for
experiments suggested interesting improvements of the lan-
guage in the direction of incorporating support for declarative
programming, as typically expected from an agent-oriented
programming language (see, e.g., [35] for a recent discussion
on the subject).

59

REFERENCES

[1] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE – A
Java agent development framework,” in Multi-Agent Programming:
Languages, Platforms and Applications, R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, Eds. Springer, 2005, pp. 125–147.

[2] F. Bergenti, “An introduction to the JADEL programming language,” in
Procs. IEEE 26th Int’l Conf. Tools with Artificial Intelligence (ICTAI).
IEEE Press, 2014, pp. 974–978.

[3] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “A comparison between
asynchronous backtracking pseudocode and its jadel implementation,” in
Procs. of the 9th Int’l Conference on Agents and Artificial Intelligence
(ICAART), ser. ScitePress, vol. 2, 2017, pp. 250–258.

[4] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal
of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.

[5] F. Bergenti, “A discussion of two major benefits of using agents in
software development,” in Third International Workshop on Engineering
Societies in the Agents World (ESAW 2002), 2002, pp. 1–12.

[6] F. Bergenti, G. Caire, and D. Gotta, “Interactive workflows with WADE,”
in Procs. of the 21st IEEE International Conference on Collaboration
Technologies and Infrastructures (WETICE 2012). IEEE, 2012, pp.
10–15.

[7] G. Caire, D. Gotta, and M. Banzi, “WADE: A software platform to de-
velop mission critical applications exploiting agents and workflows,” in
Procs. of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems. International Foundation for Autonomous
Agents and Multiagent Systems, 2008, pp. 29–36.

[8] F. Bergenti, G. Caire, and D. Gotta, “Large-scale network and service
management with WANTS,” in Industrial Agents: Emerging Applica-
tions of Software Agents in Industry. Elsevier, 2015, pp. 231–246.

[9] F. Bergenti, G. Caire, and D. Gotta, “Agent-based social gaming with
AMUSE,” in Procs. 5th Int’l Conf. Ambient Systems, Networks and
Technologies (ANT 2014) and 4th Int’l Conf. Sustainable Energy
Information Technology (SEIT 2014), ser. Procedia Computer Science.
Elsevier, 2014, pp. 914–919.

[10] F. Bergenti and S. Monica, “Location-aware social gaming with
AMUSE,” in Advances in Practical Applications of Scalable Multi-
agent Systems. The PAAMS Collection: 14th International Conference,
PAAMS 2016, Y. Demazeau, T. Ito, J. Bajo, and M. J. Escalona, Eds.
Springer International Publishing, 2016, pp. 36–47.

[11] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[12] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Computing Surveys (CSUR), vol. 37,
no. 4, pp. 316–344, 2005.

[13] L. Bettini, Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing, 2013.

[14] F. Bergenti, E. Iotti, and A. Poggi, “Core features of an agent-oriented
domain-specific language for JADE agents,” in Trends in Practical
Applications of Scalable Multi-Agent Systems, the PAAMS Collection.
Springer, 2016, pp. 213–224.

[15] F. Bergenti, G. Rimassa, M. Somacher, and L. M. Botelho, “A FIPA
compliant goal delegation protocol,” in Communication in Multiagent
Systems: Agent Communication Languages and Conversation Policies,
M.-P. Huget, Ed. Springer, 2003, pp. 223–238.

[16] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “A case study of the
JADEL programming language,” in Proceedings 17th Workshop Dagli
Oggetti agli Agenti (WOA 2016), ser. CEUR Workshop Proceedings,
vol. 1664. RWTH Aachen, 2016, pp. 85–90.

[17] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Interaction protocols
in the JADEL programming language,” in Procs. 6th Int’l Workshop
Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2016). ACM Press, 2016, pp. 11–20.

[18] M. Yokoo and K. Hirayama, “Algorithms for distributed constraint
satisfaction: A review,” Autonomous Agents and Multi-Agent Systems,
vol. 3, no. 2, pp. 185–207, 2000.

[19] S. Cagnoni, F. Bergenti, M. Mordonini, and G. Adorni, “Evolving binary
classifiers through parallel computation of multiple fitness cases,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 35, no. 3, pp. 548–555, 2005.

[20] S. Monica and F. Bergenti, “A stochastic model of self-stabilizing
cellular automata for consensus formation,” in Proceedings of 15th

Workshop Dagli Oggetti agli Agenti (WOA 2014), ser. CEUR Workshop
Proceedings, vol. 1260. RWTH Aachen, 2014.

[21] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: A minimal
core calculus for Java and GJ,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 23, no. 3, pp. 396–450, 2001.

[22] A. S. Rao, “AgentSpeak (L): BDI agents speak out in a logical
computable language,” Agents Breaking Away, pp. 42–55, 1996.

[23] M. Wooldridge, “A knowledge-theoretic semantics for concurrent
MetateM,” Intelligent Agents III Agent Theories, Architectures, and
Languages, pp. 357–374, 1997.

[24] M. Challenger, M. Mernik, G. Kardas, and T. Kosar, “Declarative
specifications for the development of multi-agent systems,” Computer
Standards & Interfaces, vol. 43, pp. 91–115, 2016.

[25] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, and
T. Kosar, “On the use of a domain-specific modeling language in
the development of multiagent systems,” Engineering Applications of
Artificial Intelligence, vol. 28, pp. 111–141, 2014.

[26] M. Baldoni, C. Baroglio, and F. Capuzzimati, “Typing multi-agent
systems via commitments,” in Engineering Multi-Agent Systems: Second
International Workshop, EMAS 2014, F. Dalpiaz, J. Dix, and M. B. van
Riemsdijk, Eds. Springer, 2014, pp. 388–405.

[27] F. Bergenti, E. Iotti, and A. Poggi, “Outline of a formalization of JADE
multi-agents system,” in Proceedings 16th Workshop Dagli Oggetti agli
Agenti (WOA 2015), ser. CEUR Workshop Proceedings, vol. 1382.
RWTH Aachen, 2015.

[28] F. Bergenti, E. Iotti, and A. Poggi, “An outline of the use of transition
systems to formalize JADE agents and multi-agent systems,” Intelligenza
Artificiale, vol. 9, no. 2, pp. 149–161, 2015.

[29] M. Eysholdt and H. Behrens, “Xtext: Implement your language faster
than the quick and dirty way,” in Procs. ACM Int’l Conf. Object
Oriented Programming Systems Languages and Applications companion
(OOPSLA 2010). ACM, 2010, pp. 307–309.

[30] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Massow,
W. Hasselbring, and M. Hanus, “Xbase: Implementing domain-specific
languages for Java,” in Procs. 11th Int’l Conf. Generative Programming
and Component Engineering (GPCE 2012). ACM Press, 2012, pp.
112–121.

[31] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent
systems with JADE, ser. Wiley Series in Agent Technology. John Wiley
& Sons, 2007.

[32] S. Monica and F. Bergenti, “Location-aware JADE agents in indoor
scenarios,” in Proceedings of 16th Workshop Dagli Oggetti agli Agenti
(WOA 2015), ser. CEUR Workshop Proceedings, vol. 1382. RWTH
Aachen, 2015, pp. 103–108.

[33] S. Monica and F. Bergenti, “A comparison of accurate indoor localization
of static targets via WiFi and UWB ranging,” in Trends in Practical
Applications of Scalable Multi-Agent Systems, the PAAMS Collection.
Springer International Publishing, 2016, pp. 111–123.

[34] F. Bergenti, E. Franchi, and A. Poggi, “Agent-based social networks
for enterprise collaboration,” in 20th IEEE International Workshop
on Enabling Technologies: Infrastructure for Collaborative Enterprises,
2011, pp. 25–28.

[35] L. Fichera, F. Messina, G. Pappalardo, and C. Santoro, “A Python
framework for programming autonomous robots using a declarative
approach,” Science of Computer Programming, vol. 139, pp. 36–55,
2017.

60

