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Abstract—This paper describes the software architecture of a
multi-agent simulator specifically designed to simulate Unmanned
Aerial Vehicles (UAVs). The simulator has the aim of helping
a developer to design a multi-agent application in which a
team or flock of UAVs are employed for a certain mission in
an environment. The basic feature of the described tool is the
ability to simulate the real physics and dynamics of the entities
involved (UAVs), not only by emulating real reactions to forces
and torques but also showing the UAVs in a 3D view. The
simulator provides the basic classes handling stabilization and
control of a quadrotor UAV and let the developer to design
her/his application by concentrating only on behavioral aspects
of the entities. As usual in multi-agent applications, in order to
handle interactions among UAVs, a set of classes is included to
simulate a wireless communication system with a certain latency
and packet loss probability. The simulator can be also executed
without the visualization engine in order to run simulations (that
could require a long time to complete) in headless servers. The
paper also includes a case-study of a flocking application.

I. INTRODUCTION

In the recent years, aerial monitoring and inspection of
geographic areas is often performed by means of Unmanned
Aerial Vehicles (UAVs) [8] that are able to perform flight
missions in a complete autonomy. Furthermore, the recent
appearance in the market of small multirotors (the so-called
“drones”) along with the availability of high performance and
low-cost sensor and control boards, and high capacity batteries,
make these unmanned aircrafts a very interesting solution for
such kind of applications.

UAVs present other problems that, in the current stage,
do not permit them to be a complete replacement of manned
aircrafts. The aspect of application testing is one of the most
important: when designing the algorithms to drive one or more
UAV in performing a mission, a software bug could provoke a
crash, thus causing the loss of the UAV and the data gathered;
in the same way, tuning the parameters of a e.g. a flocking
algorithm [14], [9], [3], [7], [6] is quite hazardous when done
“in-flight”, since a wrong parameter could have dangerous
consequences.

For these reasons, the use of software simulators becomes
mandatory, and helps to verify the correctness, effectiveness
and performances of a navigation or collective behavior algo-
rithm before make it run on-board. However, the key require-
ments of a simulation approach or tool for UAV applications
are not only related to the sole behavior aspect: many ‘“real-
world” issues, like the physics and dynamics of such kind of
objects (which are indeed characterized by a high inertia), can
affect quite a lot the performances of algorithms, which, in
turn, must consider the physical constraints of the UAVs and
their ability to perform certain kind of maneuvers. A good

simulator must also be able to emulate the real physics of
involved entities, handle collisions and use real-world mea-
surement units, in order to let the developer design her/his
algorithms as close as possible to the reality.

The work presented in this paper belongs to the out-
lined context: the paper describes a software simulator for
multi-agent/UAV applications developed by authors and able
to take into account the physical model and constraints of
the simulated entities, thus aiming at proving a scenario as
realistic as possible. The tool is able to simulate the UAVs
according to the behavior implemented by the developer; it
not only considers navigation and movement but includes also
interaction and (wireless) communication, which are treated
emulating latencies and limited-range broadcasting. In order to
evaluate the effectiveness of the developed algorithms, some
performance indexes can be computed during simulation and
exported to proper result files.

The simulator is developed in C++ and presents a modular
structure able to offer an adequate flexibility to the developers;
the core provides the basic classes defining the simulation
world and the abstract agents; here dynamics and collisions
are handled by a real-time physics simulation library, which
is Bullet [5]; the uav module provides the real UAVs, imple-
mented as quadrotor VTOL vehicles, with all the needed PID
controllers to perform in-flight stabilization and navigation;
2D/3D visualization is also possible, and handled by exploiting
OpenGL [16], it is an optional feature than can be enabled of
the basis of developer desires: indeed graphic display can be
disabled in order to run long-term batch simulations.

The paper is structured as follows. Section II outlines
the background and discusses the related literature in the
field. Section III present the main aspects of the simulator,
while Section IV describes a case-study. Section V reports our
conclusions.

II. RELATED WORK

The literature reports a large number of agent simulation
environments but only few of them considers physical envi-
ronments, physical constraints and provides 2D/3D display
capabilities.

NetLogo [17] is one of the most popular toolkits for agent
simulation; it is Java-based and is able to perform simulation of
a large number of agents. Agents live in a virtual environment
which is bi-dimensional and discretised into small square cells:
each cell can be occupied by a (static) environment element
or by a (mobile) agent. Ad an-hoc language is provided to
model the behavior of agents that can live, move and interact
in the 2D environment. Beside these simple environmental
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Fig. 1. Simplified Class Diagram of the Simulator

aspects, NetLogo is not able to simulate real-world physics
and dynamics of entities nor to provide a 3D display.

Tridimensional capabilities are instead provided by
Breve [10], a 3D environment for the simulation of decen-
tralized systems and artificial life. It allows the designer to
simulate continuous time and 3D space by including an inter-
preted object-oriented language, an OpenGL display engine, as
well as the support for body physical simulation and collision
resolution. Agent behavior is implemented in Python [1] or
by another easy-to-use language named ‘“‘steve”. Breve is no
longer maintained since 2009, but the simulation environment
is still used, thus the author of Brave has partially restored the
website!.

PALAIS [15] is another 3D simulation tool for prototyp-
ing, testing, visualization and evaluation of AI algorithms
for games; the designer can define the game by executing
arbitrary three-dimensional scenes and behaviors. A scripting
environment and a simple programming interface are also
provided for simulation control and data visualization. This
scripting interface is minimal and can be also accessed via
JavaScript. One of the interesting feature of PALAIS is the
ability of sharing a project in order to, e.g., collaborate with
peers and build up showcases for algorithms and behaviors.

ARGoS [12] is an open source, modular, multi-robot sim-
ulator to simulate real-time large heterogeneous swarms of
robots. User can easily add custom features and allocate further
computational resources where needed, moreover multiple
physics engines can be used and assigned to different parts
of the environment.

Gazebo [11] is an open-source 3D robotic simulator, able to
simulate the physics and dynamics of any mechanical structure
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made of joints. It offers the ability to drive joints with forces
or torques and integrates the definition of sensors to let the
robot perceive the environment. Behavior programming can be
done by means of external software interacting with Gazebo
by means of its API. A ROS [13] interface is also available.

A tool similar to Gazebo is VREP [4], a commercial
simulator also available in a free educational (and limited)
license. From a certain point of view, it offers more features
than Gazebo: indeed VREP has a quite friendly user interface
that can be used to both define robot structure—by means
of plug-and-play action for robot components—and program
the behavior. Programming can be performed by means of the
built-in Lua interpreter (which is however a little bit weird) or
by using a C/Python APIL.

With respect to the solution reported in this paper, the
cited simulators are more general purpose, while our work
focuses mainly on multi-rotor UAVs. Therefore, while, in our
simulator, UAV models and all the UAV stabilization and
navigation algorithms are ready to use, in the other tools not
only the UAV model must be designed, but also the control
algorithms must be specifically written and tuned. Therefore, in
our solution the designed can only concentrate on “high-level”
behavior and interaction aspects rather than control issues.

III. ARCHITECTURE OF THE SIMULATOR

The software simulator described in this paper is written
in C++; its simplified class diagram is reported in Figure 1. it
is composed of three main modules: Core, Uav and Gui.

A. The Core

The Core consists of the classes that represents the basic
entities of the simulator. Mission is the main class that has
the responsibility of instantiating the simulator and starting the



overall system; indeed it reads a configuration file (in “.INI”
format) that specifies all the parameters of the simulation,
including the type of the agents employed, the presence of the
GUI, the size of the environment and other mission-specific
items. This class creates, at start-up, an instance of class
Simulator, which is a container that refers all the Agents
instantiated in the simulation and the World, which is the
class handling the physics and dynamics of agents; thus class
World relies on the Bullet library. Simulation execution is
performed by World by using a discrete-time approach?; for
each time interval, this class triggers the invocation of callback
methods of the simulated entities as well as the updating of
data on their dynamics (via the Bullet library); indeed, an
event delegation model is adopted by the definition of two
listeners, PreTickListener and PostTickListener
that are triggered respectively before and after the update of
the physics of the agents.

The Core includes also the abstract classes Agent and
PhysicalAgent that must be extended in order to im-
plement the specific user-defined agent behavior. These two
classes are designed to make a distinction between logical and
physical agents: the latter category includes agents located at a
precise point in the simulated space/environment and with the
ability to move, while the former category refers to other not
location-aware entities that however live in the environment
and needs to be simulated. Each agent is uniquely identified
by an id (class Agent IdType) that is indeed an integer.

Interaction among agents is also handled in the Core. Since
the aim is the simulation of physical entities, the communica-
tion is modeled by simulating a wireless transmission channel
with a configurable latency and loss probability. Agents have
the capabilities to communicate with their peers by means a
short distance communication, and with a possible base station
through a long-range system; both kind of channels support
unicast and broadcast communication. These kind of commu-
nication are handled by classes MessageTransceiver and
MessageDispatcher. The former is a class associated to
each agent and basically implements the message reception
queue. The latter is a singleton that has the objective of
collecting sent messages thus delivering them to receiving
transceivers. A message is characterized by the ids of sender
and receiving agents (or only sender, is the message is sent in
broadcast) and the payload which can be any C++ type’.

B. Unmanned Aerial Vehicles

The objective of the simulator is to study the behavior of
UAV-based applications, therefore the uav module provides all
the necessary classes to simulate the behavior and dynamics
of UAVs. Two kind of UAVs are simulated, which differ on
the basis of the commands that can handle. Class UavAgent
implements a UAV that can be externally controlled through
the imposition of certain Euler angles to the airframe—i.e. roll,
pitch and yaw—and a certain amount of power for propulsion
(thrust). On the other hand, class AutonomousUavAgent
can be controlled by directly imposing target horizontal speeds
v, and vy of the UAV (relative to the body frame), heading

2In the implementation, time tick is fixed to 2.5 ms, which is the sampling
time usually employed in control loops of flight algorithms for multi-rotors.

3Indeed, since the simulator uses the Qt library, the payload is implemented
using a QVariant type.

and altitude. Both kind of agents are characterized by a certain
location in the physical space that resembles the geographical
coordinates of a real environment; this location (as well as all
the other physical parameters) are updated by the Bullet library
on the basis of the movements of the UAV body.

Fig. 2. The graphical model of the UAV implemented in the simulator

The UAV modeled is a classical X-shaped quad-rotor
whose graphical model is depicted in Figure 2. To simulate
it, the classes of the wav module implement all the control
algorithms needed to perform in-flight stabilization and navi-
gation. Motors are modeled by applying a certain drag force
to the points of the body where motors themselves are placed;
such drag forces are determined on the basis of the outputs
of the control algorithms and using a simplified mathematical
model for motors and propellers.

Different control modes are implemented. In manual mode
(Figure 3), the input throttle, pitch, roll and yaw values are
directly sent to the mixer that calculates the power to apply
to the motors. In attitude mode (Figure 4), pitch and roll
are controlled by means of two PID* controllers that compare
target (desired) angle values with the real ones returned by the
Bullet physical engine; these PIDs are thus used to perform
in-flight stabilization.

Roll command ———» —>» Motor 1

Pitchcommand ——»| x.shaped [—>» Motor2
Mixer

Yaw command ———3| Matrix |3 Motor3

Thrust command ——) ——>»  Motor 4

Fig. 3. Manual mode

When GroundSpeedAnd VertSpeed mode is selected (Fig-
ure 5), targets are given in terms of speeds relative to the body
frame v,, v, and v, ; such speeds are compared with the actual

4Proportional-Integral-Derivative
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ones (determined by Bullet) and the differences are sent to
speed PIDs which, in turn, drive the PIDs on Euler angles.
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Fig. 5.

In GroundSpeedAndAltitude mode, an altitude PID is
included to the previous mode to control the target height of
the UAV (Figure 6).

Finally, with GroundSpeedAltitudeAndHeading, control
on target heading is included with respect to the previous mode
(Figure 7).
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Fig. 7. GroundSpeedAltitudeAndHeading mode

During the development of a certain specific behavior
algorithm, it has been helpful to take a manual control of
agents. For this reason, the simulator includes also a graphical
virtual joystick as well as the interface to a real USB joystick.

Classes of the uav module also implement fault detection.
Faults can occur due to UAV-to-UAV and UAV-to-terrain

collisions or be configured to occur in a UAV with a certain
probability; the latter feature is used to simulate problems
in hardware (e.g. propeller breaking, battery drain, etc.) or
in software (e.g. bugs in flight control stack). In both cases,
UAVs involved in the fault are killed and removed from the
simulation. Collisions are handled at each simulation step by
retrieving, from Bullet engine, information about all intersec-
tions among rigid bodies and then killing the relevant agents.
In order to perform tests, the GUI also allows the user to kill
an agent manually.

Fig. 8. A screenshot of the Simulator

C. The Graphical User Interface

The Gui module provides the Graphical User Interface with
capabilities to visualize the physical environment, the agents,
and to inspect their state. A screenshot is shown in Figure 8. In
order to understand the real behavior of UAVs by looking at its
flight, several windows can be opened with different point of
views of the physical scenario: (i) the overall scene in 3D; (ii) a
2D display from the top; (iii) a 3D subjective view with respect
to a specific agent. In all the windows, the view camera can
be moved by using the mouse. Physical and graphical models
are loaded from geometry definition files (OBJ) that can be
generated by 3D graphic modelers, such as Blender [2].

From the software point of view, the Gui is composed
of two basic classes. WorldRenderer has the task of
performing the display of the UAVs and the background and
exploits the OpenGL library. MissionGui, on the other hand,
provides the necessary code to display the list of agents and
interact with the simulation (starting/stopping the simulation,
inspecting the agents, opening new views, killing agents); it is
based on the QTS5 library.

As the architecture of Figure 1 shows, the graphical inter-
face is separated from the simulation engine: this is needed
to perform batch simulation on headless high-performances
servers and then gather results.

IV. CASE STUDY: SIMULATION OF A UAV FLOCKING
APPLICATION

In this section we describe the case-study of a flocking
application where a set of UAVs are employed to perform
aerial inspection of a specific zone of terrain. The aim is to
monitor an area using a set of UAVs each equipped with a
camera sensor able to take aerial pictures. The idea is to have
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a collaborating application so that, should an UAV fail, the
other ones can identify the fault and try to recover data lost
by performing a re-scouting of the areas relevant to the faulty
agent. To this aim, UAVs organise themselves in a flock that
scouts the area on the basis of a leader-followers approach.
The algorithm used is fully described and evaluated in [7],
[6], so we concentrate here on simulation aspects rather than
the flocking approach itself.

Implementing the simulation requires to write some
classes that extend the basic classes of the simulator,
i.e. AutonomousUavAgent, Mission and MissionGui.
In our case, the FullAgent class extends the first one
of the previous three and implements the behaviour of the
flocking and area coverage algorithms. The Mission class is
instead extended in order to provide mission-specific code: the
extended class will have the task of creating the agents (by
reading the configuration file described below) and start the
simulation. Finally, the mission-specific MissionGui needs
to be written in order to include the basic code for agent
rendering and other GUI aspects, if needed. All of these classes
(together with the other code needed for the simulation) are
then compiled into a shared-object in order to take advantage
of the plug-in feature of the simulator: the shared-object is
loaded by the simulator at run-time on the basis of a certain
field present in the configuration file; in this way it is easy to
guarantee the coexistence of different simulative algorithms,
along with the ability to select at runtime the desired mission
approach.

Simulation parameters are specified by means of text files
(INT format). Listing 1 shows a part of the configuration used
in the flocking application. The INI file is composed of three
sections: (i) global parameters (section [Globall); (ii) list
of agents to instantiate at the beginning of the simulation (sec-
tion [Uavagents]); and (iii) list of areas to explore, along
with related coordinates (section [AreasToExplorel]).

In the first section, parameter missionType represents
the model to adopt for the UAV and actually represents the
name of the dynamic library that contains the customized
code of a specific mission to run; parameter autoStart
instead affects non-batch simulations, on which the GUI is
activated. The second section ([Uavagents]) specifies the
number of agents and the initial position and heading, as well
as the identifier, of each of them. Finally, the third section
specifies the areas to explore, their location, and the parameter
rectHeading, which is the direction agents will follow while
exploring.

Listing 1. Sample configuration

[AreasToExplore]

size=1 ; Rectangle count
1\areald=1
1\rectCenter=@Point (50 50)
1\rectSize=@Size (80 100)
I\rectHeading=60

[Global]
missionType=uav/FullAgentWithBaseStation

autoStart=false ; start simulation automaticalll
[UavAgents]
size=10 ; Total number of UAVs

1\agentId=1;
1\initialPos=Q@Point (0 0)
1\initialHeading=0
2\agentId=2
2\initialPos=Q@Point (2 2)
2\initialHeading=0

’

V. CONCLUSIONS AND FUTURE WORK

This paper has described the architecture of multi-agent
simulator specifically designed for unmanned aerial vehicles.
The tool described is able to simulate the physics and dynamics
of several quadrotor UAVs engaged in a cooperative mission.
The simulator is written in C++ and the designer can use it
and implement the desired behavior by simply subclassing
the AutonomousUavAgent. Since all aspects related to
navigation, stabilization and control of the UAV are already
provided by the basic classes of the simulator, the designer can
concentrate only on the “high-level” behavior of the agents and
their mutual interaction. A 3D display engine is also provided,
in order to visualize the UAVs flying in the environment
and thus make it possible to verify, at sight, the real agent’s
behavior. Indeed, the display engine can be disabled in order to
run the simulation in a headless server and then gather output
results.

As future work, we plan to include a scripting language
in order to let developers to implement their own simulation
by means of a simple approach rather than being involved in
writing and compiling C++ source code.
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