Refining and Generalizing P-log — Preliminary
Report

Evgenii Balai and Michael Gelfond

Texas Tech University, Lubbock, TX, USA
{evgenii.balai,michael.gelfond}@ttu.edu

Abstract. This paper is a preliminary report on the development of a
new, improved version of the knowledge representation language P-log.
This version clarifies syntax and semantics of the original language and
brings informal reading of its main concepts closer to their formal se-
mantics. It also expands P-log with a sophisticated type system and
removes some unnecessary restrictions on the occurrences of atoms ex-
pressing observations, interventions, and randomness in P-log rules. The
generalization simplifies the syntax and allows to formalize reasoning the
authors were not able to formalize in the original P-log.

1 Introduction

The paper is a preliminary report on the development of a new, improved ver-
sion of the knowledge representation language P-log. The language, introduced in
[7,6], is capable of combining non-monotonic logical reasoning about agent’s be-
liefs in the style of Answer Set Prolog (ASP) [9] and probabilistic reasoning with
Causal Bayesian Networks [15]. In addition to being logically non-monotonic,
P-log is also “probabilistically non-monotonic” - addition of new information
can add new possible worlds and substantially change the original probabilistic
model. Another distinctive feature of P-log is its ability to reason with a broad
range of updates. In addition to standard conditioning on observations, P-log al-
lows conditioning on rules, including defaults and rules introducing new terms,
deliberate actions in the sense of Pearl, etc. These and several other features
make P-log representations of non-trivial probabilistic scenarios (including such
classical “puzzles” as Simpson Paradox, Monty Hall Problem, etc.) very close to
their English descriptions which greatly facilitate a difficult task of producing
their probabilistic models and sheds some light on subtle issues involved in their
solutions. The ability of P-log to represent causal and counterfactual reasoning
is discussed in [8]. In [10] P-log was expanded to allow abduction in the style of
CR-Prolog [5] and infinite possible worlds. A P-log prototype query answering
system (based on ASP solvers) is described in the dissertation [20]. The system
allowed the use of P-log in a number of applications such as a system for finding
best probabilistic diagnosis for certain types of failure in the Space Shuttle [20],
development and automation of mathematical models of machine ethics [16],
methods for combining probabilistic and logical reasoning in robotics [19], etc.

Syntactically, P-log is a sorted language whose programs contain definitions
of sorts (e.g. tests = {t1,t2} and grades = {a,b,c,d, f}) and declarations of
functions (e.g. grade : tests — grades). The atoms of P-log are properly typed
expressions of the form f(f) = y (or regular arithmetic atoms); literals are atoms
or their negations (written as f(f) # y); regular rules are of the form head <«
body where head is a literal and body is a collection of literals possibly preceded
by a default negation not. In addition P-log allows random selection rules

random(f(z) : {X : p(X)}) < body (1)

describing possible outcomes of random experiments. The rule says that normally
the values of f(Z) are selected at random from the set {X : p(X)}N{y1, ..., yx}
where {y1,...,yx} is the range of attribute f. If p is the range from the decla-
ration of f then : {X : p(X)} is omitted. Two other statements obs(l), where [
is a literal, and do(f(Z) = y), which we refer to as activity records, are used to
record an observation of [being true and a deliberate intervention into a ran-
dom experiment which assigned value y to f(Z). The rules of a P-log program
IT define the collection of possible worlds — answer sets of the translation 7(IT)
of II into an ASP program. The sorts of the program are viewed as collections
of atoms. For regular rules 7 simply replaces P-log atoms of the form f(z) =y
by f(Z,y) and adds an axiom guaranteeing the uniqueness of y. The rule (1) is
translated into

f@ =yr0or ... or f(T)=1yr < body,not intervene(f(x)) (2)

(to avoid proliferation of notations we identify f(z) =y with f(Z,y)) and

intervene(f(z)) + do(f(Z) =Y) (3)
+— f(Z) =Y, not p(Y), body, not intervene(f(Z)) (4)
We also need
+ obs(l),not [(5)
f(@) =y« do(f(2) =y). (6)

Consider program G consisting of definition of tests, grades, grade given above
and rule random(grade). It is easy to check that W; consisting of sort atoms
{tests(t1),tests(t2), grades(a), ..., grades(d), grades(f)} and a particular out-
come {grade(t;) = a,grade(ts) = ¢} of the grade assigning experiment is a
possible world of G. Other possible worlds contain other assignments of grades
to tests. To define the probabilistic semantics of a P-log program IT we need to
define (unnormalized) probabilistic measure, (W) of possible worlds of IT quan-
tifying the agent’s belief in the likelihood of random experiments represented by
W. The world W7 above contains two such experiments.

In the absence of additional information P-log semantics uses the assumption
(known as the Indifference Principle) that all possible outcomes of our experi-
ments are equally likely. Therefore, u(W7) will be equal to 1/5x1/5 =1/25. An

additional probabilistic information can be encoded in P-log by so called causal
probability statement (or pr-atoms) — expressions of the form

pr(f(t) =ylcB) =v

where B is a set of literals possibly preceded by a default negation. The statement
says that, if B holds, then the probability of the selection of y for the value
of f(f) is v. In addition, it indicates the potential existence of a direct causal
link between B and the possible value of f. If we expand our program G by
pr(grade(T) = ¢) = 2/5 then u(Wi) would be equal to 2/5 x 3/20. As usual,
the probability of a proposition is defined as the sum of normalized probabilistic
measures of possible worlds in which this proposition is true.

Even though the authors believe that P-log is a very promising knowledge
representation language which deserves further study and development, a critical
reading of the original papers revealed that some of the design decisions made
by the original authors can be substantially improved. This paper explains and
justifies these improvements, makes necessary modifications of corresponding
mathematical definitions, and demonstrates how the changes increase expressive
power of the language.

2 Language Refinements

The first group of improvements, referred to as language refinements, clarifies
syntax and semantics of the language and brings informal reading of its main
concepts closer to their formal semantics.

2.1 Total and partial functions

The first clarification is related to the failure of the original definition of P-log
to distinguish between total and partial functions. Even though the latter are
clearly used in some examples, their existence is never explicitly mentioned in
the text. Two things are needed to remedy the problem.

— An atomic statement of the form f(Z) # y should be viewed as true when
f(Z) is defined, i.e. has a value, and this value is different from y; A statement
not f(z) = y should be true if f(z) has the value different from y or is
undefined.

— Literals of the form f(Z) # y shall not be allowed in the heads of program
rules.

The first requirement is rather obvious and, as was shown in [4] it can be achieved
by a very small modification of ASP. To see the reason for the second require-
ment, let us consider the following:

Ezxzample 1. Let Py be a P-log program:

f : boolean

f # false

According to the intuitive reading of the program statement f # false implies
that f is defined and its value is different from false. Together with the declara-
tion this should guarantee that the value of f is true. However, according to the
original P-log semantics from [6], the program P; has exactly one possible world
which consists of a literal f # false, and hence P; does not entail f = true.

The example shows an unpleasant discrepancy between intuitive meaning of the
program and its formal semantics. Note, that the problem would disappear if f
were defined as random. This would guarantee that f is defined and that it takes
on one of the Boolean values. Hence, as expected, the new program, P{ would
entail f = true. The same effect, however, could be reached without allowing
literals of the form f(Z) # y in the heads of rules. In our case, f # false of P will
be simply replaced by a more appropriate observation obs(f # false) which will
produce the same result. So, prohibiting occurrences of such literals in the heads
allow us to narrow the gap between intuitive and formal meaning of statements
without any real loss of expressive power. Moreover, disallowing this syntactic
feature leads to a substantial simplification of the formal semantics of P-log.
Instead of defining possible worlds as sets of literals we can view them simply as
(partial) interpretations of the attribute terms from the program’s signature (in
other words, collections of atoms). So far we were not able to find any adverse
effect of our restriction on the original syntax. It is important to notice that,
despite this restriction, P-log programs may contain a rule —p < body where p
is boolean. It is because —p is understood simply as a shorthand for an atom

p = false.

2.2 P-log observations

Another problem with the original P-log semantics is related to the intuitive
meaning of P-log observations — statements of the form obs(l). According to
[6], such observations are used “to record the outcomes of random events, i.e.,
random attributes, and attributes dependent on them”. However, axiom (5)
does not faithfully reflect this intuition, since it does not prohibit observations
of non-random events. Instead it simply views obs(f(z) = y) as a shorthand for
the constraint

—not f(z)=y

where f is an arbitrary attribute. A newly introduced observation simply elimi-
nates some of the possible worlds of the program, which reflects understanding
of observations in classical probability theory. This view is also compatible with
treatment of observations in action languages. So there are no adverse conse-
quences of expanding the observability of attribute values to a non-random case.
In fact, this is frequently done in practice. (See, for instance, “Bayesian squirrel”
example in [6].) Hence, the new intuitive meaning allows observations of both,
random and non-random events.

2.3 Refining the meaning of do statement

We also need to clarify the P-log meaning of the do statement. The original
paper states: “the statement do(f(Z) = y) indicates that f(Z) = y is made true
as a result of a deliberate (non-random) action”. Note that here, f(Z) is not
required to be declared as random, i.e., its value does not have to be normally
defined by a random experiment. This is not wrong. Even though the original
intervening action do of Pearl only applies to random attributes (no other types
are available in Bayesian Nets) nothing prohibits us from expanding the domain
of do to non-random ones. After all this is exactly what we did with observations.
But, in case of intervening actions such extension seems to be unwarranted. It
is easy to see that for non-random f(z), do(f(z) = y) is (modulo do) equivalent
to f(Z) = y, which undermines the utility of such statements. In addition, it
violates one of the important principles of language design frequently advocated
by N. Wirth and others: Whenever possible, make sure that important type of
informal statements you want expressible in your formal language corresponds to
one language construct. Moreover applying do to interfere into a random experi-
ment with a dynamic range causes an ambiguity of an interpretation: should the
deliberately assigned value belong to the dynamic range or an arbitrary value of
the proper sort must be allowed? The formal semantics from [6] corresponds to
the second option, but this seems to be accidental. It seems that the intuition
and analysis of examples suggest that both, random and deliberately assigned
values, should belong to the dynamic range of the attribute. This change can be
achieved by a simple modification of translation 7 of P-log into ASP.

We expand the signature of 7(IT) by a new atom random(f(Z), p), identified
with random(f(z) : {X : p(X)}), replace rule (1) by

random(f(z),p) + body (7)
and add constraints

« not random(f(X),p),do(f(X) =) (®)
and

< f(2) =Y, not p(Y),random(f(z),p) ()

Constraints guarantee that do can only be applied to random attributes and that
both, random and deliberately assigned values are limited to those from the dy-
namic range. To describe results of random experiments which proceed without
an intervention we introduce another special atom, truly_random(f(Z), p) which
is true iff the value of f(Z) is assigned as the result of random experiment, and
expand the program by rule

f@ =yror ... or f(T)=yr < trulyrandom(f(Z),p) (10)

where {y1,...,yx} is the range of f, providing the means for random selection
of the value for f(z) and rule

truly_random(f(z)) + random(f(Z),p),
not do(f(z) = y1), (11)

not do(f(z) = yi)

which serves as the definition of truly_random. Even though the introduction of
truly-random(f(z),p) is not absolutely necessary (the body of rule (10) could
have been replaced by random(f(Z),p)) it is better aligned with the English
meaning of random and truly_random and slightly simplifies the assignment
of probabilistic measures to possible worlds of I7. In particular, probabilistic
measure should be assigned to f(Z) within a possible world W only if W contains
truly_random(f(z),p) for some p.

The differences between the behavior of the original P-log and its new incar-
nation can be illustrated by the following example:

Ezample 2. Consider P-log program P, consisting of rules

f:{1,2,3}
random(f : {X : X > 1})
do(f =1)

It is easy to see that, due to constraint (9), the program is logically inconsistent,
i.e., has no possible worlds. According to the old semantics, however, P, has
possible world {f = 1}. Similarly, constraint (8) ensures that program Ps

f:{1,2,3}
do(f =1)

has no possible world while according to the old semantics its possible world is

{f=1}

3 Language Enhancements

The proposed version of P-log contains two new enhancements:

— An extension of the language with a more elaborate and convenient type
system similar to the one used in knowledge representation language SPARC
[3].

— Removal of some restrictions on the occurrence of so called activity records,
i.e. specialized literals formed by obs and do.

3.1 Sorts

Recall that, in the original P-log, sorts are described by statements of the form
s = {t1,...,tn}, where s is a sort name and ¢1,...,t, are ground terms. Even
though this is sufficient theoretically, such an approach is almost impossible
to use in practice. This is immediately obvious when we deal with large sorts
which may possibly include each other. In the paper we extend the syntax for
defining sorts by using the framework from [3] in which standard ASP syntax and
semantics is expanded by a powerful type system. This supports the methodology
of starting a knowledge representation task with identifying types of objects
relevant to the domain, allows a much easier specification of complex and/or
large sorts, helps to avoid potential problems with safety conditions of rules,
and allows detection of trivial but difficult to detect errors related to typos and
sort violations.
Sorts there are defined by statements of the form:

sort_name = sort_expression

where sort_name is a unique identifier preceded by the symbol # and
sort_expression can be in one of the following forms:?

b {tlv (3%} tn}
e f(sort_names, ..., sort_-name,)
e sort_name; ... D sort_name,

where n > 0, each t; is a ground term, f is a function symbol, and & denotes
a set operator (union, intersection, difference, or concatenation) where the set
operations result in a non-empty set. This allows declarations of the form

#blocks = {b}{1..100}
#locations = #blocks + {table}
#actions = put(#blocks,#locations)

used for formalization of the blocks world domain. The first sort declaration
concatenates b with the set of natural numbers from 1 to 100 obtaining blocks
{b1,...,b100}. The second uses union denoted by + to define locations as the
set {b1,...,b100,table}. The third defines the collection of actions put over the
Cartesian product of the first two: put(bl, bl), put(bl,b2), ... put(bl,table),. ..
Sorts of the latter form are sometimes referred to as records. The full language
allows a more general form of record definition,

e f(sort_-namei(X1),...,sort.namen(X,)) : cond

where cond is a condition on variables X, ..., X,,. (For the precise form of this
condition see [3].) For instance, the sort definition:

#actions = put(#blocks(X),#locations(Y)) : X <> Y)

! The actual syntax is slightly different, we simplify it here to shorten the description.

allows to avoid records like put(b1,b1) which do not really denote any actions to
be excluded from the sort.

We hope that this description is sufficient for most readers of this preliminary
report. Those interested in more details are referred to [3] where this type system
is discussed in depth.

3.2 Removing restriction on program occurrences of special atoms

Recall that, in addition to regular arithmetic and attribute atoms of the form
f(z) = y, the signature of P-log also contains atoms formed by four special
Boolean attribute terms: do(f(Z) = y), obs(f(Z) = y), (often identified with
do(f(Z),y), obs(f(Z),y)) obs(f(Z) # y) and random(f(Z),p). Such atoms are
also referred to as special. The original P-log, however, severely restrict occur-
rences of these atoms in the program rules. Atoms formed by do and obs —
referred to as activity records — are only allowed to occur in a program as facts
(rules with the empty bodies). Atoms formed by random are only allowed to oc-
cur in the head of rules. The new version of P-log removes this restriction. The
original reason to do this was not caused by “practical” need of such generalized
rules.

We followed language design principles illuminated by N. Wirth [18] and at-
tempted to simplify P-log by removing restrictions, i.e., “achieving simplicity by
generalization”. This attempt seems to be successful. The syntax of the language
was simplified. The semantics remained unchanged. Addition of new concepts
provided us with the ability to express new, previously inexpressible, thoughts.
However, as pointed out in [18] one should remember that achieving simplicity
through generality has its possible drawbacks. In doing this we “may end up with
programs that through their very conciseness and lack of redundancy elude our
limited intellectual ability”. So far, we were not able to find any serious adverse
effects caused by our generalization, but one should remember that this report
is preliminary.

We now discuss a particularly interesting case of our generalization: rules with
activity records in their bodies. We will show how such rules allow us to express
knowledge we were not able to express in the original P-log (where activity
records were only allowed to occur as facts). We have already mentioned that
the addition of an observation to an original P-log program may only eliminate
some of its possible worlds but cannot create a new one. Allowing observations
to occur in the bodies of P-log rules changes the situation. The addition of an
observation obs(a,true) to a program

a: boolean
Q=< —a<+ nota
a < obs(a, true)

creates a possible world which did not exist according to the original program.
This extension of the language does not significantly complicate its mathematical
semantics but seems to add substantially to its expressive power.

To further illustrate this phenomena let us assume that we would like to use
P-log to formalize knowledge relevant to the following problem.

Ezxample 3. Suppose that an experienced diagnostician was able to reduce an
appearance of a malfunctioning symptom s to two possible causes, ¢1 and cy.
In what follows we discuss several ways in which this knowledge can be repre-
sented and used in reasoning.

The purely qualitative information available to the diagnostician can be ex-
pressed in P-log by a program Pj:

s,c1,c2 ¢ boolean
¢y ¢ not c1
¢y — not cy
S < C1
S < Co
-8 <—not s

The first two rules say that malfunctioning does not normally happen — a natural
default we use in our actions before becoming aware of a problem by observing
or experiencing its symptoms. The next three rules give the complete list of
possible causes for s. According to this program the probabilities of s, ¢; and ¢,
are 0. If Py were expanded by, say, ¢, the new program P;U{c; } would entail the
symptom s. Note also, that under no circumstances the diagnostician is expected
to expand P4 by the fact s. That would amount to accepting s as its own cause
and making connections between ¢; and co unusable for diagnostics. Instead,
according to a standard methodology, a diagnostician who observes the symptom
is expected to record it by statement obs(s, true). In our case this, however, leads
to a problem. It is important to note that an update of Py by observation of
the truth of any attribute of P, (including s) leads to inconsistency. This is
not necessarily an unwelcome outcome for the observations of causes — after
all causes are normally not directly observable and need to be derived from the
observations of symptoms and the background knowledge. This shall not however
happen for the observation of the symptom s. The following informal argument
is possible in this case: Since we are given a complete list of possible causes of s
and s is observed to be true we can not continue to use closed world assumptions
for causes. At least one of them must be true to explain s. But which one and with
what probability? To answer this question we should think of causes as random
attributes which may or may not be true. Accordingly, the program describing
the agent’s knowledge should have possible worlds Wy = {c1, s}, Wa = {ca, s},
and W3 = {c1, a2, s} corresponding to three combinations of possible causes of
s.

The missing knowledge used by the reasoner to go from observation obs(s)
of a symptom to its causes can be represented by expanding P, by the rules:

_ {mndom(cl) < obs(s)
random(cy) < obs(s)

which have observations in their bodies. It is easy to check that program
Ps =P, URU{obs(s)}

is consistent and has three possible worlds W7, W, and W3 described above.
Using the Indifference Principle built into the semantics of P-log, the program
assigns probability 2/3 to both ¢; and c¢p and probability 1 to s. Note that having
obs(s) instead of s in the bodies of rules from R is important. Using s would
lead to some unexpected behaviour. To see that, consider our original knowledge
base (formalized by T = P, U R) and assume that diagnostician discovered
(or assumed) that ¢; is true. Of course, that will allow the diagnostician to
derive s. The new information, however, will not change the probability of cs. It
will remain 0. This is exactly the result produced by T U {c;}. Let us now see
what happens if obs(s) in R is replaced by s. Let us denote the result of this
replacement by R’ and consider

Q=P,UR U{c1}

Clearly, @ entails random(cq) and, hence, the addition of ¢; causes the proba-
bility of ¢o change from 0 to some positive value, which violates our intuition.

Let us now assume that, by checking some available statistics, the diagnos-
tician acquires knowledge about probabilities of ¢; and cs. These probabilities
can be represented by the set PA of causal probability atoms:

_ fpr(c1) =0.05
PA= {pT(CQ) =0.01

The probabilities assigned to ¢; and ¢z by the new program,
Ps=P;,UPA

are now approximately 0.8 and 0.2. So ¢; is the most likely cause of the symptom.
Finally, let us consider the case when after some direct or indirect observation
the diagnostician establishes that co is true. The probabilities assigned to ¢; and
co by program
P; = Ps U {obs(c2)}

are now 0.05 and 1 respectively. The latter observation is an example of a prob-
abilistic phenomena called “explaining away” [17]: when you have competing
possible causes for some event, and the chances of one of those causes increases,
the chances of the other causes must decline since they are being ”explained
away” by the first explanation.

The example shows a fairly seamless combination of logical and probabilistic
reasoning in search of causal explanations of a symptom. The authors were not
able to express this type of reasoning in the original P-log based on ASP. We
could, however, do it in CR-Prolog — extension of ASP by so called consistency-
restoring rules. This, however, required to learn the semantics of CR-Prolog.

Moreover, currently there is no reasoning system implementing P-log with con-
sistency-restoring rules and the task of developing and efficiently implementing
such a system seems to be non-trivial. In contrast, implementing P-log with
rules containing activity records in their bodies seem to be substantially less
formidable.

There are other possible uses of observations in the body of rules. Not all
attributes are always observable. In fact, in the original interpretation of obs, if
the value of f(Z) is undefined, then f(Z) is, of course, unobservable. Sometimes,
however, f(Z) is undefined by a program not because such value does not exist,
but simply because it is not known to the reasoner. In some of such cases this
value can be obtained by a direct observation. (We refer to such f(Z) as directly
observable.) In P-log this property can be expressed by a rule:

f(Z) =y < obs(f(Z),y)

Note that, for a directly observable value y of an attribute f(Z), expanding a pro-
gram by obs(f(Z),y) is (modulo atoms formed by obs) equivalent to expanding
it by f(Z) = y. Impossibility of observing f(Z) can be expressed as

+— obs(f(2),Y)

4 Conclusion

The paper is a preliminary report on a new, modified version of knowledge
representation language P-log. The changes are not dramatic and may be even
missed by a casual observer, but we believe them to be important. In particular,
we

— Increase integrity of the language by correcting omissions and inaccuracies of
the original version and bringing formal and informal meanings of important
constructs closer to each other.

— Supply P-log with a type system which supports methodology of starting a
knowledge representation task with identifying and declaring types of objects
relevant to the domain.

— Simplify P-log by generalizing its syntax. The old restrictions on the occur-
rence of special atoms in programs rules are removed and treated as regular
ones. In addition to achieving simplicity, the new version gives knowledge
engineers means to express knowledge and automate reasoning which were
not available in the language before. As an example, we discuss how the new
version can account for the common probabilistic phenomenon of “explaining
away” .

As a result, the new version should be significantly better suited for teaching
as well as for practical applications. Another extension of the original P-log,
strongly advocated by the second author, is that by aggregates and other set
related constructs of Alog [11, 12]. Such an extension, currently discussed by the

authors, will not require any additional theoretical work even though it will have
some influence on the language implementation.

Future work

In the near future, we plan to:

— Implement a query answering system for the new version of P-log.

— Further investigate the expressive power and usability of new, generalized
rules, and type system.

— Consider further extensions of the language.

Currently, we are working on the development of a new P-log query answering
system? which improves the algorithms from [20] (Short description of the cor-
responding algorithm can be found in [1]. Our improvements include: expanding
the class of programs where the algorithms are applicable, implementing a type
system, and softening some of the restrictions on the programs. We plan to finish
this implementation and its correctness proof in the near future. It would also
be interesting to investigate other approaches to P-log inference, including;:

— Developing approximate inference algorithms (possibly based on Monte-
Carlo sampling methods).
— Comparing inference methods for a recently introduced new formalism

LpMLN [13] with those in P-log developed so far. The results from [14] and

PMLN’

[2] would allow us to use inference in P-log for programs in L and

vice versa.

Acknowledgments

We would like to thank Leroy Mason and Nelson Rushton for useful discussions
on subjects related to this paper.

References

1. Balai, E.: Combining logic and probability: P-log perspective. In: Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016. pp. 3974-3975 (2016)

2. Balai, E., Gelfond, M.: On the relationship between P-log and LPMMY In: Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016. pp. 915-921 (2016)

3. Balai, E., Gelfond, M., Zhang, Y.: Towards answer set programming with sorts. In:
Logic Programming and Nonmonotonic Reasoning, 12th International Conference,
LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceedings. pp. 135-147
(2013)

% https://github.com /iensen/plog2.0/wiki

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Balduccini, M.: A ”conservative” approach to extending answer set programming
with non-Herbrand functions. In: Correct Reasoning, pp. 24-39. Springer (2012)
Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
International Symposium on Logical Formalization of Commonsense Reasoning,
AAAT 2003 Spring Symposium Series. pp. 9-18 (2003)

Baral, C., Gelfond, M., Rushton, J.N.: Probabilistic reasoning with answer sets.
TPLP 9(1), 57-144 (2009)

Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets. In:
International Conference on Logic Programming and Nonmonotonic Reasoning.
pp. 21-33. Springer (2004)

Baral, C., Hunsaker, M.: Using the probabilistic logic programming language p-
log for causal and counterfactual reasoning and non-naive conditioning. In: IJCAI
2007, Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, Hyderabad, India, January 6-12, 2007. pp. 243-249 (2007)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365-386 (1991)

Gelfond, M., Rushton, N.: Causal and probabilistic reasoning in P-log. In: Dechter,
R., Geffner, H., Halpern, J. (eds.) A tribute to Judea Pearl, pp. 337-359. College
Publications (2010)

Gelfond, M., Zhang, Y.: Vicious circle principle and logic programs with aggregates.
TPLP 14(4-5), 587601 (2014), http://dx.doi.org/10.1017/S1471068414000222
Gelfond, M., Zhang, Y.: Vicious circle principle and formation of sets in ASP
based languages. In: Logic Programming and Nonmonotonic Reasoning, 14th In-
ternational Conference, LPNMR 2017 (to appear)

Lee, J., Wang, Y.: Weighted rules under the stable model semantics. In: Baral,
C., Delgrande, J.P., Wolter, F. (eds.) Principles of Knowledge Representation
and Reasoning: Proceedings of the Fifteenth International Conference, KR 2016,
Cape Town, South Africa, April 25-29, 2016. pp. 145-154. AAAI Press (2016),
http://www.aaai.org/ocs/index.php/KR/KR16 /paper/view /12901

Lee, J., Yang, Z.: LPMMN | weak constraints, and p-log. In: Singh, S.P., Markovitch,
S. (eds.) Proceedings of the Thirty-First AAAT Conference on Artificial Intelli-
gence, February 4-9, 2017, San Francisco, California, USA. pp. 1170-1177. AAAI
Press (2017), http://aaai.org/ocs/index.php/AAAI/AAAIL7 /paper/view/14547
Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press
(2000)

Pereira, L.M., Saptawijaya, A.: Programming Machine Ethics. Springer Publishing
Company, Incorporated, 1st edn. (2016)

Wellman, M.P., Henrion, M.: Explaining’explaining away’. IEEE Transactions on
Pattern Analysis and Machine Intelligence 15(3), 287-292 (1993)

Wirth, N.: On the design of programming languages. In: IFIP Congress. pp. 386—
393 (1974)

Zhang, S., Stone, P.: Corpp: Commonsense reasoning and probabilistic planning,
as applied to dialog with a mobile robot. In: Proceedings of the 29th Conference
on Artificial Intelligence (AAAI) (January 2015)

Zhu, W.: Plog: Its algorithms and applications. Ph.D. thesis, Texas Tech University
(2012)

