
Backdoor Trees for Answer Set Programming?

Johannes K. Fichte and Stefan Szeider
johannes.fichte@tuwien.ac.at sz@ac.tuwien.ac.at

TU Wien, Vienna, Austria

Abstract. We translate the concept of backdoor trees from SAT to
propositional Answer Set Programming (ASP). By means of backdoor
trees we can reduce a reasoning task for a general ASP instance to
reasoning tasks on several tractable ASP instances. We demonstrate that
the number of tractable ASP instances can be drastically reduced in
comparison to a related approach based on strong backdoors.

1 Introduction

Answer Set Programming (ASP) is a popular framework for declarative modelling
and problem solving [25,33,35]. It has successfully been used to solve a wide
variety of problems in artificial intelligence and reasoning, e.g., match making [23],
optimization of packaging of Linux distributions [24], reasoning in robots [4], and
shift design [1]. In ASP, problems are usually modelled by means of rules and
constraints that form a disjunctive logic program. The solutions to the program
are the so-called answer sets (or stable models). Solving a problem means to
search for answer sets of logic programs. In this paper, we are mainly interested
in computational decision problems for propositional disjunctive ASP such as
deciding whether a program has an answer set (Consistency), whether a certain
atom is contained in at least one (Brave Reasoning) or in all answer sets
(Skeptical Reasoning). Further, we consider the problems counting all answer
sets (Counting) and enumerating all answer sets (Enum).

Developers of modern ASP solvers such as Clasp [26] or Wasp [3] have
demonstrated in several competitions [2,8,10,27,28] that ASP solving can be
efficiently used to solve a wide variety of instances. However from the perspective
of classical worst case complexity, many decision problems for disjunctive ASP are
“harder than NP” and have a higher worst-case complexity than CSP and Sat.
More precisely, the problems Consistency, Brave Reasoning, and Skeptical
Reasoning are complete for the second level of the Polynomial Hierarchy [13].

In the literature, more fine-grained results on computational complexity of
the ASP decision problems have been established. Syntactic properties where
the input is restricted to certain fragments have been identified under which the
computational complexity drops and where the problems can be solved more

? The first author has been supported by the Austrian Science Fund (FWF), Grant
Y698, and is also affiliated with the Institute of Computer Science and Computational
Science at University of Potsdam, Germany.

2 J. K. Fichte and S. Szeider

efficiently [29,5,6,39,18]. Parameterized complexity analyses, which take the input
size of an instance along with a parameter, indicating the presence of a certain
“hidden structure”, have been carried out [7,14,15,16,17,32]. The central idea of
parameterized complexity is that instances originating in practical applications
are often structured in a way that facilitates obtaining a solution relatively fast.
An interesting parameter can be gained from backdoors [16]. Backdoors can be
used as clever reasoning shortcuts through the search space. For a backdoor
one usually fixes a class C of programs, commonly called target class, where the
problem under consideration is computationally easier, e.g., the class of Horn
programs. Given an input program P , a strong backdoor into the target class C
is a preferably small set X of atoms such that for any truth assignment τ to
the atoms in X the program under the truth assignment τ (the reduct Pτ , see
Definition 1) belongs to C. Then, for program P and a strong backdoor X into C
we have to consider 2|X| truth assignments to the atoms in the backdoor X.
Exploiting backdoors usually consists of two steps (i) finding a backdoor of
the given instance (backdoor detection) and (ii) applying the backdoor to the
instance, determining a candidate solution, and verifying its minimality (backdoor
evaluation).

In this paper, we consider backdoor trees, which provide a more fine-grained
approach to the evaluation of strong backdoors, where we take partial assignments
in the evaluation into account. When using backdoors for a parameterized
complexity analysis one only considers the size k of a backdoor as a parameter.
Evaluating a given backdoor results in 2k (total) assignments to the atoms in
the backdoor and thus 2k programs with respect to the possible assignments.
However, a partial assignment to fewer than k atoms can already yield a program
that belongs to the fixed target class. Therefore, we consider binary decision trees,
which make partial assignments to backdoor atoms in a program precise and
lead us to the notion of backdoor trees. We investigate under which conditions
(i) we need to consider significantly fewer than 2k assignment reducts and (ii) we
can significantly improve parts of the backdoor evaluation (minimality check) if
those assignments set only a small number of atoms to true.

Our main contributions are as follows:

1. We define backdoor trees for Answer Set Programming, extend the concept of
backdoors from sets to trees (with similar steps detection and evaluation), and
establish that the reducts that we obtain from a backdoor tree are sufficient
to find all answer sets.

2. We show that backdoor tree evaluation is fixed-parameter tractable when
parameterized by a composed parameter, which incorporates considerations
of (i) and (ii) from above of a given backdoor tree into Horn and other
classes.

3. We establish fixed-parameter tractability for backdoor tree detection for
backdoor trees into the target class Horn.

Related Work. Backdoors were originally introduced by Williams, Gomes, and
Selman [40] as a tool for the theoretical analysis of decision heuristics in the area

Backdoor Trees for Answer Set Programming 3

of Sat and CSP. Nishimura et al. [36] started a systematic investigation of the
parameterized complexity of backdoor detection for SAT, which triggered a lot
of follow-up work [21]. Samer and Szeider [37] introduced backdoor trees for Sat
as a refinement of backdoors and showed that Sat is fixed parameter tractable
when parameterized by the number of leaves in a backdoor tree. The problems
of detecting backdoor trees into 2CNF and Horn formulas are fixed parameter
tractable.

2 Preliminaries

2.1 Answer Set Programming

We consider a universe U of propositional atoms. A literal is an atom a ∈ U
or its negation ā. A disjunctive logic program (or simply a program) P
is a set of rules of the form a1 ∨ . . . ∨ al ← b1, . . . , bn, c̄1, . . . , c̄m where
a1, . . . , al, b1, . . . , bn, c1, . . . , cm are atoms and l, n,m are non-negative integers.
We write H(r) = {a1, . . . , al} (the head of r), B+(r) = {b1, . . . , bn} (the positive
body of r), and B−(r) = {c1, . . . , cm} (the negative body of r). We denote the sets
of atoms occurring in a rule r or in a program P by at(r) = H(r)∪B+(r)∪B−(r)
and at(P) =

⋃
r∈P at(r), respectively. We denote the number of rules of P

by |P | = |{ r : r ∈ P }|. The size ‖P‖ of a program P is defined as∑
r∈P |H(r)| + |B+(r)| + |B−(r)|. A rule r is is normal if |H(r)| ≤ 1, r is

a constraint (integrity rule) if |H(r)| = 0, r is Horn if it is positive and normal
or a constraint. We say that a program has a certain property if all its rules have
the property. Horn refers to the class of all Horn programs. We denote the class
of all normal programs by Normal. Let P and P ′ be programs. We say that P ′

is a subprogram of P (in symbols P ′ ⊆ P) if for each rule r′ ∈ P ′ there is some
rule r ∈ P with H(r′) ⊆ H(r), B+(r′) ⊆ B+(r), B−(r′) ⊆ B−(r). Let C be a
class of programs. We call a class C of programs hereditary if for each P ∈ C all
subprograms of P are in C as well.

A set M of atoms satisfies a rule r if (H(r) ∪ B−(r)) ∩M 6= ∅ or B+(r)\M 6=
∅. M is a model of P if it satisfies all rules of P . The Gelfond-Lifschitz (GL)
reduct of a program P under a set M of atoms is the program PM obtained
from P by first removing all rules r with B−(r)∩M 6= ∅ and then removing all z̄
where z ∈ B−(r) from the remaining rules r [30]. M is an answer set (or stable
model) of a program P if M is a minimal model of PM . We denote by AS(P) the
set of all answer sets of P . A class C of programs is enumerable if for each P ∈ C
we can compute AS(P) in polynomial time.

In this paper, we consider the following fundamental ASP problems for a given
program P : Consistency asks whether P has an answer set, Brave Reasoning
asks whether a belongs to some answer set of P , Skeptical Reasoning asks
whether a belongs to all answer sets of P , Counting asks to compute the
number of answer sets of P , and Enum asks to list all answer sets of P . We
denote by AspFull the family of all problems Consistency, Brave Reasoning,
Skeptical Reasoning, Counting, and Enum.

4 J. K. Fichte and S. Szeider

2.2 Parameterized Complexity

We briefly give some background on parameterized complexity. For more detailed
information we refer to other sources [11,12,19,31,34]. An instance of a param-
eterized problem L is a pair (I, k) ∈ Σ∗ × N for some finite alphabet Σ. For
an instance (I, k) ∈ Σ∗ × N we call I the main part and k the parameter. ‖I‖
denotes the size of I. L is fixed-parameter tractable if there exist a computable
function f and a constant c such that we can decide by an algorithm whether
(I, k) ∈ L in time O(f(k)‖I‖c). Such an algorithm is called an fpt-algorithm.
FPT is the class of all fixed-parameter tractable decision problems. The class XP
of non-uniform polynomial-time tractable problems consists of all parameterized
decision problems that can be solved in polynomial time if the parameter is
considered constant. That is, (I, k) ∈ L can be decided in time O(‖I‖f(k)) for
some computable function f .

2.3 Backdoors of Answer Set Programs

In the following, we briefly summarize the concept of ASP backdoors [17]. A
(truth) assignment is a mapping τ : X → {0, 1} defined for a set X ⊆ U of
atoms. For x ∈ X, we define τ(x̄) = 1 − τ(x). By 2X we denote the set of
all assignments τ : X → {0, 1}. By τ−1(b) we denote the preimage τ−1(b) :=
{ a : a ∈ X, τ(a) = b } of the assignment τ for some truth value b ∈ {0, 1}.

Definition 1 (Strong C-Backdoor [17]) Let P be a program, X a set of
atoms, and τ ∈ 2X an assignment. The reduct of P under τ is the logic pro-
gram Pτ obtained from P by (i) removing all rules r with H(r) ∩ τ−1(1) 6= ∅
or H(r) ⊆ X; (ii) removing all rules r with B+(r) ∩ τ−1(0) 6= ∅; (iii) removing
all rules r with B−(r) ∩ τ−1(1) 6= ∅; (iv) removing from the heads and bodies
of the remaining rules all literals a, ā with a ∈ X. Let C be a class of programs.
A set X of atoms is a strong C-backdoor of a program P if Pτ ∈ C for all
assignments τ ∈ 2X .

By a minimal strong C-backdoor of a program P we mean a strong C-backdoor
of P that does not properly contain a smaller strong C-backdoor of P ; a smallest
strong C-backdoor of P is one of smallest cardinality.

A result by Fichte and Szeider [17] states that all problems in AspFull are
fixed-parameter tractable when parameterized by the size of a given strong
C-backdoor for an enumerable target class C ⊆ Normal and that finding a strong
backdoor is also fixed-parameter tractable for various target classes, including
Horn.

3 Backdoor Trees of Answer Set Programs

When we exploit a backdoor X of a program P to find answer sets according
to a backdoor-based approach [17], the exponential blowup of the running time
depends only on the size of the backdoor X. Thus, we want to find smallest

Backdoor Trees for Answer Set Programming 5

P

Py0

Py0y1

Py0y1y2 Py0y1ȳ2

Py0ȳ1

Py0ȳ1y2 Py0ȳ1ȳ2

Pȳ0

Pȳ0y1

Pȳ0y1y2 Pȳ0y1ȳ2

Pȳ0ȳ1

Pȳ0ȳ1y2 Pȳ0ȳ1ȳ2
. .

(a) Constructed from the strong Horn-backdoor Y

P

Px0

Px0,x1

Px0x1x2 Px0x̄1x2

Px0x̄1

Px̄0

. . .

(b) Constructed from the strong Horn-backdoor X

Fig. 1: Illustration of reducts of the program P and the strong Horn-backdoors X
and Y from Example 1. A gray colored node indicates that the respective program
does not belong to Horn. A white colored node indicates that the respective
program belongs to Horn.

backdoors efficiently. Evaluation of backdoors then consists of two steps: (i) com-
puting the answer sets of the program P under the assignment τ for all τ ∈ 2X ,
which produces candidates for answer sets of P (or AS(P,X)1 for short), and
(ii) checking for each M ∈ AS(P,X) whether M is a minimal model of PM . In
Step (i) we determine for each τ ∈ 2X the answer sets of the reducts Pτ and then
check whether these answer sets give rise to an answer set of P . Consequently,
we have to consider all the 2|X| assignments in the worst case. However, there
are answer set programs where we can find a backdoor X for which we do not
need all 2|X| assignments, as “shorter” assignments already yield a reduct that
belongs to the considered target class. More formally, there is an assignment τ ′

such that τ ′−1 (τ−1 for some τ ∈ 2X and the reduct Pτ ′ already belongs to
the target class C. Hence, when we incrementally assign truth values to atoms
instead of taking an assignment τ ∈ 2X , some atoms in τ can be irrelevant for
the question whether the reduct belongs to C.

Interestingly, in some cases it is of advantage to use a backdoor that is not a
smallest backdoor into the target class C. We show this in the following example.

1 Formally, AS(P,X) := {M ∪ τ−1(1) : τ ∈ 2X∩ at(P),M ∈ AS(Pτ) }.

6 J. K. Fichte and S. Szeider

P

Px0 Px̄0

Px̄0x1 Px0x̄1

Px̄0x̄1x2 . . .

Px̄0...x̄2m−2

Px̄0...x̄2m−2x2m−1 Px̄0...x̄2m−2x̄2m−1

Fig. 2: A Horn-backdoor tree BT = (T, χ) of program R from Example 2.

Example 1. Let m be some positive integer. Consider the following program:

P := { y0 ∨ x0 ← x1, . . . , x2m }∪
{ yj ∨ xi ← x0 . . . , xi−1, xi+1, . . . , x2m−1; x0 ← x1, . . . , x2m−1, ȳj ;

xi ← x0, xi−1, xi+1, x2m−1, ȳj : j = (i mod m), 0 ≤ i < 2m }.

We observe that Y = {y0, . . . , ym−1} is a smallest strong Horn-backdoor.
Figure 1(a) visualizes the assignments that we obtain when incrementally
constructing the reducts for τ ∈ 2Y . Obviously, we need all 2|Y | reducts
since “removing” any atom from an assignment τ results in Pτ /∈ Horn. The
set X = {x0, . . . , x2m−1} is also a strong backdoor into Horn. The set X is larger
than the set Y , but already for “shorter” assignments τ ′ than the assignment
reducts τ ∈ 2X we obtain that the reduct belongs to Horn. For instance, the
assignment τ ′ = {x̄1} yields the reduct Px̄1

= { y1 ← x0, x2, . . . , x2m−1 }, which
belongs to Horn. Hence, we obtain only 2m+ 1 reducts, see Figure 1(b). �

Example 1 shows that incrementally assigning backdoors can yield reducts
that belong to the considered target class even though not all atoms of the
backdoor are assigned. Then, larger backdoors can yield an exponentially smaller
number of such reducts. A main part for backdoor evaluation is to check whether
a model is a minimal model (“minimality check”). The task is co-NP-complete
in general, but fixed-parameter tractable when parameterized by the size of a
smallest backdoor into a subclass of normal programs [17]. For the minimality
check we have to consider all backdoor atoms that have been set to true by any
assignment. Hence the backdoor Y from Example 1 yields a significantly smaller
number of reducts, however for the minimality check we still have to consider
all subsets of Y . Conversely, we construct subsequently in Example 2 a program
where the number of assignments that we obtain from a smallest strong backdoor
can be arbitrarily larger than the maximum number of atoms in a backdoor that
have been set to true by any assignment on a much larger number of atoms.

Backdoor Trees for Answer Set Programming 7

Example 2. Let m be some positive integer. We define the following program:

P := { y0 ∨ x̄0 ← x̄1, . . . , x̄2m−1 }∪
{ yj ∨ xi ← x̄0 . . . , x̄i−1, x̄i+1, . . . , x̄2m−1; x0 ← x1, . . . , x2m−1, ȳj ;

xi ← x̄0, x̄i−1, x̄i+1, x̄2m−1, ȳj : j = (i mod m), 0 ≤ i < 2m }.

Y = {y0, . . . , ym−1} is a smallest strong Horn-backdoor and again Figure 1(a)
illustrates how we incrementally construct the reducts until Pτ ∈ Horn. Same
as in Example 1 we have a complete binary tree with 2m leaves. Further, we
easily observe that X = {x0, x1, . . . , x2m−1} is a strong Horn-backdoor. Figure 2
visualizes the assignments that we obtain when incrementally constructing the
reducts τ ∈ 2X . There we have only 2m+ 1 reducts where at most one atom is
set to true. �

Before we can make the observations from the previous examples precise,
we provide some basic definitions. Let X be a set of atoms, T = (N,E, r) a
binary tree with root r, and χ a labeling that maps any node t ∈ N to a
set χ(t) ⊆ { a, ā : a ∈ X }. We denote by X1(t) the positive literals of the
labeling χ(t), i.e., X1(t) := χ(t) ∩X. The corresponding assignment τχ(t) of t is
the assignment τχ(t) where τχ(t)(a) = 1 if a ∈ χ(t) and τχ(t)(a) = 0 if ā ∈ χ(t).
The pair BT = (T, χ) is a binary decision tree of P if X ⊆ at(P) and the following
conditions hold: (i) for the root r we have χ(r) = ∅, (ii) for any two nodes t, t′ ∈ N ,
if t′ is a child of t, then either χ(t′) = χ(t) ∪ {ā} or χ(t′) = χ(t) ∪ {a} for some
atom a ∈ X \ τ−1

χ(t), and (iii) for any three nodes t, t1, t2 ∈ N , if t1 and t2 are

children of t, then χ(t1) 6= χ(t2). We denote by at(BT) the atoms occurring in
assignments of BT , i.e., at(BT) :=

⋃
t∈N τ

−1
χ(t).

Next, we give a definition for backdoor trees of answer set programs.

Definition 2 Let P be a program and BT = (T, χ) be a binary decision tree
of P where T = (N,E, r). The pair BT = (T, χ) is a C-backdoor tree of P
if Pτ ∈ C for every leaf t ∈ N and τ = τχ(t). We denote by #leaves(BT)
the number of leaves of T , i.e., #leaves(BT) := |{ t : t is a leaf of T }|. We
denote by gs(BT) the maximum number of atoms that have been set to true
by a corresponding assignment of any leaf of T , more specifically, gs(BT) :=
max{ |X1(t)| : t is a leaf of T }. For reasons explained below, we call gs(BT) the
Gallo-Scutellà parameter of BT .

In other words, a backdoor tree of a program P is a binary decision tree where
the nodes of the tree are labeled by assignments τ ∈ 2X on subsets X ⊆ at(P), the
corresponding partial assignment τ of an inner node yields a reduct Pτ that does
not belong to the considered target class, and the corresponding assignment τ of
a leaf yields a reduct Pτ that belongs to the considered target class.

Relationship to a Parameter by Gallo and Scutellà

Gallo and Scutellà [20] introduced a hierarchy of classes of CNF formulas, with
the class of Horn formulas (each clause containing at most one positive literal)

8 J. K. Fichte and S. Szeider

forming its lowest level. They showed that for each level g of the hierarchy, there
are polynomial time algorithms fro checking whether a given formula belongs
to this level and whether a given formula from this level is satisfiable. The
order of the polynomial bounding the running time, however, depends on the
level k. Therefore these algorithms do not establish fixed-parameter tractability
of these problems, and only render the problems as being in the class XP (see
Subsection 2.2).

We consider the parameter in its original context and definition as nested
classes of families of sets on a family to generalize Horn formulas. Let S be a family
of sets S1, . . . , Sm, SX = S \ {Y ∈ S : X ⊆ Y }, and S−X := {S \X : S ∈ S }
for some set X. Moreover, (i) S ∈ Σ0 if and only if |S| ≤ 1 for each S ∈ S and
(ii) S ∈ Σk if and only if there is some v ∈

⋃
1≤i≤m Si such that S{v} ∈ Σk−1 and

S− {v} ∈ Σk. Then, the class Γk consists of all propositional formulas F such
that F ′ ∈ Σk where F ′ is obtained from F by removing all negative literals (note
that we consider F ′ as a set of clauses and a clause is a set of literals). Observe
that Γ0 consists of all Horn formulas.

A backdoor tree of F into Horn formulas is a binary decision tree where the
reduced formula Fτ is Horn for each leaf t and its corresponding assignment τ .

Proposition 3 (?2) A propositional formula F belongs to Γk if and only if there
is a backdoor tree BT = (T, χ) into Horn formulas of F such that gs(BT) ≤ k.

4 Backdoor Tree Evaluation

In this section, we establish an analogue to backdoor evaluation for backdoor
trees. Again we consider the reducts Pτ together with the atoms that are set to
true and extend this notion to the corresponding assignments of the leaves for
binary decision trees.

Definition 4 Let P be a program, X = at(P), and BT = (T, χ) a binary
decision tree.

AS(P, τ) :={M ∪ τ−1(1) : M ∈ AS(Pτ) } and

AS(P,BT) :={M : t is a leaf of T, τ = χ(t),M ∈ AS(P, τ) }.

In other words, the sets in AS(P,BT) are answer sets of Pτ for assignments τ
to χ(t) ∩ at(P) extended by those atoms which are set to true by τ . In the
following lemma we will see that the elements in AS(P,BT) are all the “answer
set candidates” of the original program P . The concepts are similar to ASP
backdoors, but slightly more sophisticated.

Lemma 5 (?) Let P be a program and BT = (T, χ) a binary decision tree of P .
Then, AS(P) ⊆ AS(P,BT).

2 Due to space limitations, proofs of statements marked with “(?)” have been omitted.

Backdoor Trees for Answer Set Programming 9

Theorem 6 Given a disjunctive program P , an enumerable class C ⊆ Normal,
and a C-backdoor tree BT = (T, r, χ) of P . Let g = gs(BT), ` = #leaves(BT),
and n be the input size of P . Then, the problems in AspFull can be solved in
time O(` · 2g · nc) for some constant c.

Recall that Example 2 yields programs that have a C-backdoor tree BT with
Gallo-Scutellà parameter gs(BT) = 1 and 2m + 1 leaves whereas a smallest
backdoor is of size m. Backdoor evaluation [16, Thm. 3.9] yields a running
time O(22mnc) for some constant c and input size n of program P . In contrast,
using Theorem 6 we can evaluate the backdoor tree BT in time O(2(2m+ 1) ·nc).
Consequently, we obtain an exponential speedup for certain programs. In the
next section, we will compare backdoor trees with backdoors in more detail.

Before proving Theorem 6, we need to make some observations. In view of
Lemma 5 we have to consider the corresponding reducts of the leaves t in the
backdoor tree. For each leaf t and its corresponding assignment τ we construct
the reduct Pτ and compute the set AS(Pτ). Then, we obtain the set AS(P) by
checking for each M ∈ AS(Pτ) whether it gives rise to an answer set of P . The
crucial part is again to consider minimality with respect to the Gelfond-Lifschitz
reduct. For the leaf t and its corresponding assignment τ we can guarantee
minimality with respect to the reduct (Pτ)M . Setting atoms to true by the
assignment τ does apparently not guarantee minimality with respect to PM (cf.
Lemma 5). Hence, we have to check for each atom in τ−1(1) whether there is a
“justification” to set the atom to true.

We establish the following result.

Proposition 7 (?) Let C ⊆ Normal. Given a program P of input size n, a
C-backdoor tree BT = (T, χ) of P of Gallo-Scutellà parameter g = gs(BT), a
leaf t of T , and a set M ⊆ AS(P, τχ(t)) of atoms, we can check in time O(2g · n)
whether M is an answer set of P .

We are now in position to establish Theorem 6.

Proof of of Theorem 6. Let BT = (T, r, χ) be the given C-backdoor tree, g =
gs(BT), ` = #leaves(BT), T = (N,E, r), and n the input size of P . According
to Lemma 5, AS(P) ⊆ AS(P,BT). Since Pτ ∈ C and C is enumerable, we can
compute AS(Pτ) in polynomial time for each leaf t ∈ N and τ = τχ(t), say in
time O(nc) for some constant c. Hence, |AS(Pτ)| ≤ O(nc) for each leaf t ∈ N and
τ = τχ(t). By Proposition 7, we can decide whether M ∈ AS(P) in time O(2g ·nc)
and |AS(P, τ)| ≤ O(2g · nc) for each M ∈ AS(P, τ) where τ = τχ(t) and t is a
leaf of T . Since there are at most l many leaves, we can compute AS(P, T) and
check whether for M ∈ AS(P, T) also M ∈ AS(P) holds in time O(` · 2g ·nc) and
|AS(P, T)| ≤ O(` · 2g · nc). Then we can also solve all problems in AspFull from
AS(P) within polynomial time. Consequently, the problem is fixed-parameter
tractable when parameterized by g + `. ut

There are two factors for hardness of ASP problems when parameterized
by the Gallo-Scutellà parameter plus the size a backdoor tree (i) atoms that

10 J. K. Fichte and S. Szeider

are set to true which yield potential candidates and are hence important for
the minimality check in each leaf; and (ii) leaves in a backdoor tree which yield
the reducts we have to consider. Both factors of hardness are “used” in the
proof of Theorem 6. Hence, in contrast to Sat backdoor trees we do not simply
parameterize the reasoning problems in AspFull by #leaves(BT) of a given
backdoor tree BT = (T, χ) of P to obtain a more refined view on backdoors.
Instead we also consider gs(BT) which is the maximum number of atoms that
are set to true in a leaf of T . This is attributed to the minimality check where
we have to consider the number of atoms that are set to true.

5 Relation to Backdoors

In this section, we investigate some connections between backdoors and backdoor
trees. We show that our composed parameter based on backdoor trees is more
general than the size of a backdoor.

Lemma 8 (?) Let P be a program and C be a hereditary class of programs. If
BT is a C-backdoor tree of P , then at(BT) is a strong C-backdoor of P .

We make the following observations about binary decision trees.

Observation 9 (?) Let BT be a binary decision tree, n = |at(BT)|, g = gs(BT),
and ` = #leaves(BT). Then, g ≤ n ≤ `− 1 ≤ (1 + n)g − 1.

We establish that every strong backdoor of size k yields a backdoor tree
consisting of at least k + 1 leaves and at most 2k leaves.

Lemma 10 (?) Let P be a program, C a hereditary class of programs, X a strong
C-backdoor of smallest size of P , and BT = (T, χ) a C-backdoor tree of smallest
number of leaves of P . Then, |X|+ 1 ≤ #leaves(BT) ≤ 2|X|.

The next observation states that we obtain fewer “answer set candidates”
when evaluating ASP backdoor trees than by evaluating ASP backdoors.

Observation 11 (?) Let P be a program, BT = (T, χ) a binary decision tree
of P , X := at(BT), and AS(P,X) := {M∪τ−1(1) : τ ∈ 2X∩ at(P),M ∈ AS(Pτ) }.
Then, AS(P,BT) ⊆ AS(P,X).

Lemma 12 (?) Let P be a program, C a hereditary class of programs, X a strong
C-backdoor of smallest size of P , and BT = (T, χ) a C-backdoor tree of smallest
Gallo-Scutellà parameter gs(BT) of P . Then, gs(BT) ≤ |X|.

Besides having the potential of an exponential speedup (see Example 2), we
can trivially construct from a strong C-backdoor X a C-backdoor tree of P with
g = gs(BT) and ` = #leaves(BT) by fixing an arbitrary order on the atoms in X
and constructing incrementally all partial assignments τ until Pτ ∈ C or τ assigns
all atoms in X. Therefore, we have to consider at most 2k+1 − 1 reducts as we

Backdoor Trees for Answer Set Programming 11

fixed the order on the backdoor atoms. Using the standard backdoor approach
requires to solve the problems in AspFull a running time O(22|X|nc) [16] for some
constant c. By Theorem 6 we can produce solutions in time O(2g+log ` · nc) for
some constant c. Since g ≤ k and log ` ≤ k by Lemmas 12 and 10, 22|X| ≥ 2g+log `.
In that way, backdoor trees can only improve the efficiency compared to the
traditional backdoor approach.

6 Backdoor Tree Detection

When we want to exploit backdoor trees to solve a problem instance, we have to
detect the backdoor tree first. In this section, we show that detecting Horn-back-
door trees is fixed-parameter tractable when parameterized by Gallo-Scutellà
parameter and number of leaves. We establish our fixed-parameter tractability
results via kernelization, which is in parameterized complexity theory a funda-
mental method for establishing such results [22]. Intuitively, we can think of
a kernel as a “compressed” version of the input, where the size of a kernel is
bounded by some computable function of the parameter only and the kernel
is produced by a polynomial-time reduction. However, here we need a more
restrictive notion of a kernel, loss-free kernels [37], which also occur in the context
of subset minimization under the notion of a full kernel [9]. A loss-free kernel
contains the union of all minimal solutions and represents in a certain way all
solutions.

We first define the following decision problem:

C-Backdoor-Tree Detection(GS,Leaves)

Given: A program P , an integer g ≥ 0, and an integer ` ≥ 0.

Parameter: The integer g + `.

Task: Decide whether P has a C-backdoor tree BT of Gallo-Scutellà
parameter gs(BT) ≤ g and #leaves(BT) ≤ `.

By self-reduction (or self-transformation) [38,11,12], we can use a decision
algorithm for C-Backdoor-Tree Detection(GS,Leaves) to actually find the
backdoor. Again we only require the target class to be hereditary.

Lemma 13 (?) Let C be a hereditary class of programs. If C-Backdoor-Tree
Detection(GS,Leaves) is fixed-parameter tractable, then also finding a C-back-
door tree of a given program P of Gallo-Scutellà parameter at most g and at
most ` leaves is fixed-parameter tractable (when parameterized by g + `).

In the following, we consider backdoor tree detection when parameterized by
the Gallo-Scutellà parameter g and the number of leaves ` of a backdoor tree.
Therefore, we consider notions coined by Samer and Szeider [37] in the setting of
propositional satisfiability and apply it to Answer Set Programming.

Theorem 14 The problem Horn-Backdoor-Tree Detection(GS,Leaves)
is fixed-parameter tractable.

12 J. K. Fichte and S. Szeider

The main ingredient for the proof is that we obtain in polynomial-time an
input program a set K of atoms of size at most k2 + k such that we preserve the
union of all minimal strong Horn-backdoors of size at most k (Lemma 16). In
the previous section, we observed that k is bounded by 2`. Then, because of the
loss-less kernel we can enumerate all C-backdoor trees by brute-force and check
for each tree whether the desired parameters are present.

Before we can establish the result, we introduce the notion of a loss-free
kernelization for ASP and show how to find such kernels for the problem Strong
Horn-Backdoor Detection.

Definition 15 Let C be a class of programs. A loss-free kernelization of the
problem Strong C-Backdoor Detection is a polynomial-time algorithm that
given an instance (I, k), either correctly decides that I does not have a strong
C-backdoor of size at most k, or computes a set K ⊆ at(P) such that the following
conditions hold:

1. X ⊆ K for every minimal strong C-backdoor X of size at most k and
2. there is a computable function f such that |K| ≤ f(k).

Lemma 16 ([37]) The problem Strong Horn-Backdoor Detection has a
loss-free kernelization with loss-free kernels of size k2 + k.

We are now in position to establish Theorem 14.

Proof of Theorem 14. Let C be a class of programs, P a program, g, ` > 0 integers,
and k := 2`. According to Lemma 16, we compute in polynomial-time for the
problem Strong Horn-Backdoor Detection a loss-free kernel K ⊆ at(P)
of size at most k2 + k (if it exists). If P has a C-backdoor tree BT = (T, χ) of
Gallo-Scutellà parameter g and at most ` leaves, then at(BT) is a minimal strong
C-backdoor, g ≤ at(BT), and #leaves(BT) ≤ `− 1. We claim that at(BT) ⊆ K
for any C-backdoor tree BT with gs(BT) ≤ g and ` ≤ #leaves(BT). This follows
since at(BT) contains all minimal strong C-backdoors of size at most k and K is
a loss-free kernel. To actually find a suitable C-backdoor tree, we can just try
in brute-force all possible C-backdoor trees of P of Gallo-Scutellà parameter at
most g and of at most ` leaves. Consequently, the theorem follows. ut

In view of this result we can drop the assumption in Theorem 6 that the
backdoor is provided as input:

Corollary 17 Let C ⊆ Normal be an enumerable class. The problems in
AspFull are all fixed-parameter tractable when parameterized by gs(BT) +
#leaves(BT) of a smallest gs(BT) + #leaves(BT) C-backdoor tree BT .

Proof. Let P be a program and k an integer. Since there are only linearly many
combinations for k = g + l, we can use Lemma 13 to find a C-backdoor tree BT
of smallest gs(BT) + #leaves(BT) where gs(BT) ≤ g and #leaves(BT) ≤ l if it
exists. The remainder follows from Theorem 6. ut

Backdoor Trees for Answer Set Programming 13

7 Discussion and Future Work

We have introduced backdoor trees to Answer Set Programming. The general
concept is similar to the Sat setting but requires additional considerations. The
minimality check, which is necessary to verify minimality of potential answer
set candidates with respect to the Gelfond-Lifschitz reduct, yields to additional
requirements. Therefore, we parameterize the problem of backdoor tree evaluation
by a parameter composed of the number of leaves of a backdoor tree and maximum
number of atoms that are set to true by a corresponding assignment in a leaf.
The former part is crucial to bound the number of potential reducts and hence to
bound the number of answer set candidates. The latter part is crucial to bound
the number of atoms in any assignment, which we additionally have to consider
for the minimality check.

Our parameterization raises the question of whether we can drop one part
from the composed parameter. On the one hand, one could parameterize the
evaluation problem just by the number of leaves of the backdoor tree, which
yields fixed-parameter tractability, but then the evaluation algorithm does not
necessarily yield any speedup in the algorithm since we still have to consider
the minimality check where a bound on the number of leaves does not pay
off when using our minimality check approach. In other words, the evaluation
problem is fixed-parameter tractable when parameterized by the number of
leaves of backdoor tree. We obtain a parameter that might be significantly
smaller, but the running time of the evaluation algorithm can be significantly
worse (exponentially). On the other hand, one could parameterize the evaluation
problem just by the Gallo-Scutellà parameter (the maximal number of atoms that
we have to set to true in any leaf) of the backdoor tree. Since the Gallo-Scutellà
parameter of a backdoor tree can be arbitrarily small compared to the number
of leaves of a backdoor tree (and hence the size of a smallest backdoor), we
obtain an arbitrarily smaller parameter. However, since our upper bound for
the number of reducts is (1 + n)g, where n is the number of atoms of the given
program and g the Gallo-Scutellà parameter of the backdoor tree, the number
of reducts remains non-uniformly bounded. Hence, it remains open whether
we obtain fixed-parameter tractability. Moreover, the backdoor tree detection
problem when parameterized by the Gallo-Scutellà parameter is only known to
be in XP and the question of whether it can be carried out in fixed-parameter
tractable time is currently open.

References

1. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with
answer set programming. In: Calimeri, F., Ianni, G., Truszczyński, M. (eds.) Proceed-
ings of the 13th International Conference Logic Programming and Nonmonotonic
Reasoning (LPNMR’15). pp. 32–39. Springer Verlag, Lexington, KY, USA (Sep
2015)

2. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP
solver based on constraint learning. In: Cabalar, P., Son, T. (eds.) Proceedings

14 J. K. Fichte and S. Szeider

of the 12th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’13), Lecture Notes in Computer Science, vol. 8148, pp. 54–66.
Springer Verlag, Corunna, Spain (Sep 2013)

3. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: Calimeri, F.,
Ianni, G., Truszczyński, M. (eds.) Proceedings of the 13th International Conference
Logic Programming and Nonmonotonic Reasoning (LPNMR’15). pp. 40–54. Springer
Verlag, Lexington, KY, USA (2015)

4. Andres, B., Rajaratnam, D., Sabuncu, O., Schaub, T.: Integrating ASP into ROS
for reasoning in robots. In: Calimeri, F., Ianni, G., Truszczyński, M. (eds.) Proceed-
ings of the 13th International Conference Logic Programming and Nonmonotonic
Reasoning (LPNMR’15). pp. 69–82. Springer Verlag, Lexington, KY, USA (Sep
2015)

5. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
Foundations of deductive databases and logic programming pp. 89–148 (1988)

6. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs.
Ann. Math. Artif. Intell. 12(1), 53–87 (1994)

7. Bliem, B., Ordyniak, S., Woltran, S.: Clique-width and directed width measures for
answer-set programming. In: Fox, M., Kaminka, G. (eds.) Proceedings of the 22nd
European Conference on Artificial Intelligence (ECAI’16). The Hague, Netherlands
(Aug 2016), to appear.

8. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming compe-
tition. Theory Pract. Log. Program. 14, 117–135 (1 2014)

9. Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction. Theoretical Computer Science 351(3), 337–350 (2006)

10. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
Proceedings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), Lecture Notes in Computer Science, vol.
5753, pp. 637–654. Springer Verlag, Potsdam, Germany (Sep 2009)

11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer
Science, Springer Verlag, New York, NY, USA (1999)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science, Springer Verlag, London, UK (2013)

13. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Ann. Math. Artif. Intell. 15(3–4), 289–323 (1995)

14. Fichte, J.K., Hecher, M., Morak, M., Woltran, S.: Answer set solving with bounded
treewidth revisited. In: Balduccini, M., Janhunen, T. (eds.) Proceedings of the 14th
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’17). Lecture Notes in Computer Science, vol. 10377. Springer Verlag,
Espoo, Finland (Jul 2017), to appear.

15. Fichte, J.K., Kronegger, M., Woltran, S.: A multiparametric view on answer set
programming. In: Bogaerts, B., Harrison, A. (eds.) Informal Proceedings of the
10th Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP’17) (2017), to appear.

16. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs.
ACM Trans. Comput. Log. 17(1) (Oct 2015)

17. Fichte, J.K., Szeider, S.: Backdoors to tractable answer-set programming. Artificial
Intelligence 220(0), 64–103 (2015)

18. Fichte, J.K., Truszczyński, M., Woltran, S.: Dual-normal programs – the forgotten
class. Theory Pract. Log. Program. (2015)

Backdoor Trees for Answer Set Programming 15

19. Flum, J., Grohe, M.: Parameterized Complexity Theory, Theoretical Computer
Science, vol. XIV. Springer Verlag, Berlin (2006)

20. Gallo, G., Scutellà, M.G.: Polynomially solvable satisfiability problems. Information
Processing Letters 29(5), 221–227 (1988)

21. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H., Downey,
R., Fomin, F., Marx, D. (eds.) The Multivariate Algorithmic Revolution and
Beyond, Lecture Notes in Computer Science, vol. 7370, pp. 287–317. Springer
Verlag, Heidelberg, Germany (2012)

22. Gaspers, S., Szeider, S.: Guarantees and limits of preprocessing in constraint
satisfaction and reasoning. Artificial Intelligence 216(0), 1–19 (2014)

23. Gebser, M., Glase, T., Sabuncu, O., Schaub, T.: Matchmaking with answer set
programming. In: Cabalar, P., Son, T.C. (eds.) Proceedings of 12th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13). Lec-
ture Notes in Computer Science, vol. 8148, pp. 342–347. Springer Verlag, Corunna,
Spain (Sep 2013)

24. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-Criteria Optimiza-
tion in Answer Set Programming. In: Gallagher, J., Gelfond, M. (eds.) Technical
Communications of the 27th International Conference on Logic Programming
(ICLP’11). Leibniz International Proceedings in Informatics (LIPIcs), vol. 11, pp.
1–10. Dagstuhl Publishing, Lexington, KY, USA (Jul 2011)

25. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in
Practice. Morgan & Claypool (2012)

26. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Communications 24(2),
107–124 (2011)

27. Gebser, M., Maratea, M., Ricca, F.: The design of the sixth answer set programming
competition. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Proceedings of the
13th International Conference Logic Programming and Nonmonotonic Reasoning
(LPNMR’15). pp. 531–544. Springer Verlag, Lexington, KY, USA (Sep 2015)

28. Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming
competition. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI’16). pp. 4327–4329. The AAAI
Press, Phoenix, Arizona, USA (Feb 2016), http://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/12233

29. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Conference
and Symposium on Logic Programming (ICLP/SLP’88). vol. 2, pp. 1070–1080.
MIT Press, Seattle, WA, USA (August 1988)

30. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

31. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction and database problems. The Computer Journal 51(3), 303–
325 (2008)

32. Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth.
In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI’09). vol. 2, pp. 816–822. The AAAI Press, Pasadena,
CA, USA (Jul 2009)

33. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: Apt, K.R., Marek, V.W., Truszczyński, M., Warren, D.S. (eds.)
The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Artificial
Intelligence, Springer Verlag (1999)

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12233
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12233

16 J. K. Fichte and S. Szeider

34. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, New York,
NY, USA (2006)

35. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Ann. Math. Artif. Intell. 25(3), 241–273 (1999)

36. Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn
and binary clauses. In: Proceedings of SAT 2004 (Seventh International Conference
on Theory and Applications of Satisfiability Testing, 10–13 May, 2004, Vancouver,
BC, Canada). pp. 96–103 (2004)

37. Samer, M., Szeider, S.: Backdoor trees. In: Holte, R.C., Howe, A.E. (eds.) Pro-
ceedings of 23rd Conference on Artificial Intelligence (AAAI’08). pp. 363–368. The
AAAI Press, Chicago, IL, USA (July 2008)

38. Schnorr, C.P.: On self-transformable combinatorial problems. In: König, H., Korte,
B., Ritter, K. (eds.) Mathematical Programming at Oberwolfach, Mathematical
Programming Studies, vol. 14, pp. 225–243. Springer Verlag (1981)

39. Truszczyński, M.: Trichotomy and dichotomy results on the complexity of reasoning
with disjunctive logic programs. Theory Pract. Log. Program. 11, 881–904 (11 2011)

40. Williams, R., Gomes, C., Selman, B.: On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings
of the 6th International Conference on Theory and Applications of Satisfiability
Testing (SAT’03). pp. 222–230. Portofino, Italy (May 2003)

	Backdoor Trees for Answer Set Programming

